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Incompressible Gravitational Aether/Cuscuton

(UV-complete ) Quantum Gravity




@oSInological constant problem

G,,= (T

-




@osinological constant problem

G,uv = (Tm/>

Only known solution: Landscape + Anthropics™

i |



@OSInological constant problem

qu .ﬁOIl

e (T,.)

® )

Only known solution: Landscape + Anthropics®,_



@oOSInological constant problem

Only known solution: Landscape + Anthropics®,_



PENGTaVitating the vacuum at Pl!




o210
1!

PESGravitating the vacuum at

= Supersymmeiric Large Extra Dimensions (SLED)

= /A curves 2 compact extra dimensions (r ~ 10 gm)




PESsravitating the vacuum at PI!

= Supersymmeiric Large Extra Dimensions (SLED)

= /A curves 2 compact extra dimensions (r ~ 10 gm)

= Cascading Gravity (degravitation)

= (Infinite) Extra dimensions filter out long-wavelength
modes, including A




EXIT A AdImens



PESravitating the vacuu . Pl

= Supersymmeiric Large Extra Dimensions (SLED)

= /A curves 2 compact extra dimensions (r ~ 10 gm)

= Cascading Gravity (degravitation)

= (Infinite) Extra dimensions filter out long-wavelength
modes, including A




(L

d
O _
L B
- v
S W
v U
- -
-

ITm

L

=X a




X dimensions and CC probl

score card

Suppress the observed 4, in a
way (independent of UV physics/quantum

gravity)




J

EXiTa dimensions and C(

i

score card

f‘ﬁ

Suppress the observed A, in a

way (independent of UV physics/quantum
gravity)

very testable (when developed)

C o) Ol



Suppress the observed A, in a

way (independent of UV physics/quantum
gravity)

very testable (when developed)

Don’t solve



BT dimensions an
Score card

1d CC problel

Suppress the observed A, in a

way (independent of UV physics/quantum
gravity)

very testable (when developed)

Don’t solve
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Here is an alternative:
sravitational Aether

e 1
(87G) leu[ﬂ’,uu] =— Tpp — Irg’pp o o PR

& The metric is now blind to vacuum energy:

.Ty.p = pvacgpy + ExCitﬂtlﬂﬂ.S

= In order to satisty the

= Further assume incompressible fluid:

. =7 (v u, + g)

(tests of gravity severely constrain new deg's of freedom)
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S cuton and Quantum Gravity

Quantum Gravity at a Lifshitz Point

Petr Horava

Berkeley Center for Theoretical Physics and Department of Physics
University of California. Berkeley. CA. 94720-7300

and

Theoretical Physics Group. Lawrence Berkeley National Laboratory
Berkeley. CA 94720-8162. USA
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= the only modification of GR
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p/ p for matter

1.e., effective G depends on the Eq. of state.

m Radiation vs. Matter era: EAaE 0 N
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FRW cosmology with
sravitational Aether

p/ p for matter

_  PefE / Plw=0 = E

 pett/ Plu= 1/3 4




FRW cosmology with
sravitational Aether
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@ Ly-a+WMAPS3 @ejak, slosar, McDonald 2006):

Gn/Gr=0.731+0.04
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»Li7 prefers Aether to GR
»He4 prefers GR to Aether
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= Euler + continuity equations =2
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p + T = p'O(u®, ) + const.
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NOTIcrelatvistic Perturbations:

= Euler + continuity equations =2
1

p’ 5 = 1T = pFO('u:_ rD) + const.

& Perturbations around a static background:

= Longitudinal modes vanish

= Aether follows the velocity of non-relativistic matter
= Gravitational constant depends on pressure:
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BIOW cdoes aether affect tests of
gravity’

= Aether tracks matter
= Internal pressure is negligible

= Aether is irrotational =2 e.g. observing gravito-
magnetic effect due to earth rotation can test it

= Internal structure of self-gravitating objects with
relativistic pressure (e.g. neutron stars, supernovae)
will be sensitive to aether
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BUT Physical theor @_5 should
have an act '

coarse-grained theories have information-
loss =2 they re not unitary = no action

o Fluid mechanics does not have an action:
c.f. viscosity, turbulence, diffusion

Biggest hurdle for UV-completion of the theory!




Aether and Black Holes

v
= Aether around a spherical Black Hole: : }

2m

+ (1 — =—)7ldr®* + r2dQ?




Aether and Black Holes

= Aether around a spherical Black Hole: },

r-Z2m <=



LA RSO S EALH RE S | SSr G N G i ol G S O Ty

|-

S




Mether and Black Holes

= Aether around a spherical Black Hole: },
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SLEHETABH'S and cosmic acceleration
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IFIetime Acceleration scenario

deSitter : ds? = —(1 — dmppr?)dt? + (1 — dxpp)~Ldr? + r2dQ2
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B Oy around the black hole (m < r < H!) looks
like de-Sitter space, so slow-moving particles
(i.e. stars/ galaxies)



IFte-time Acceleration scenario

deSitter : ds® = —(1 — dxpar®)dt® + (1 — 4xpy) tdr® 42
Aether : ds® = —(1 + 2aper? Y dt® + dr* + r*deY’

& Oy around the black hole (m < r < H) looks
like de-Sitter space, so slow-moving particles
(i.e. stars/ galaxies)

= As this happens around every BH, the coarse-
grained Universe should look like
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M. Balogh
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What have we achieved?

by
introducing an incompressible gravitational aether
Horava-Lifshitzrenormalizable gravity = aether

Aether ( is preferred by
cosmological observations (Ly-a, WMAP, SDSS);

2 Follows dust matter, and can satisty tests of General

Relativity



MNSSIng links and future directions
C_—




(D
()
\
3
)

-

MNeSing links and future dir

= Future surveys will constrain
with 10 times better precision (Planck/ACT/SPT/SDSS3)




MNSSINg links and future directions

= Future surveys will constrain
with 10 times better precision (Planck/ACT/SPT/SDSS3)

= Precision tests of gravity: (Gravity Probe B)




MNSSiNg links and future directions

= Future surveys will constrain
with 10 times better precision (Planck/ACT/SPT/SDS53)

= Precision tests of gravity: (Gravity Probe B)

— Correlations between
and (JDEM/Euclid)




N

NNSSiNg links and future direction

= Future surveys will constrain
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= Future surveys will constrain
with 10 times better precision (Planck/ACT/SPT/SDS53)
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= PFundamental theory/action and quantization

= Aether—>




SSing links and future directions

:70L - surveys will constrain
3tler precision (Planck/ACT/SPT/SDSS3)

(Gramty Probe B)

(JDEM/Euchd)

3'_?‘:! ental theory/action and quantization
Aether 2
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potadicdn’t you just kill Inflation?!

@ G o (1+w) G

B —2since w = -1 during inflation, one could still




