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1. Abbott’'s model (1985). And its problems
2. A possible improvement (N. . 2006). And its problems.
3. Anovel approach (WIP).
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Theactionis — _(do)* +e0+——Ti(FAF

Instantons induce apotential: V =co+ W coslo/ f) + 1.,

e The renormalized
When ¢ = () we have the symmetry o — o+~ 2anf CC term
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Also at the quantum level 754
the potential looks like: ]

* In quantum mechanics the local minima are on equal footing.

« Here the situation is more interesting:

Hawking temperature in de-Sitteris 7 ~ VV

|

«For V" > )M* in effect there are no local minima.

«For | < 1/- we have tunneling.
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Thedecayrateis [ ~ V/*exp(—1/V)
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Abbott’s model (1985). And its problems

A possible improvement (N. |. 2006). And its problems.
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3. Anovel approach (WIP).
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Also at the quantum |evel 759
the potential looks like: ]

* In quantum mechanics the local minima are on equal footing.

« Here the situation is more interesting:

Hawking temperature in de-Sitteris 7y ~ VvV

« For | > )\~ in effect there are no local minima.

*For | < 1/- we have tunneling.
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The universe is empty.

Cannot be realized in string theory.
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» In quantum mechanics the local minima are on equal footing.
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The universe is empty.

Cannot be realized in string theory.
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Cannot be realized in string theory.
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By the time we get down to 4D there are many axion fields in string theory.
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Cannaot be realized in string theary.

By the time we get down to 4D there are many axion fields in string theory.

However, since their origin in 10D is a gauge symmetry they are all periodic.
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Minor problem:

Cannot be realized in string theory.

Reason:
By the time we get down to 4D there are many axion fields in string theory.

However, since their origin in 10D is a gauge symmetry they are all periodic.

Nowaytoadda £¢) term tothe potential.
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Minor problem:

Cannot be realized in string theory.

Reason:
By the time we get down to 4D there are many axion fields in string theory.

However, since their origin in 10D is a gauge symmetry they are all periodic.

Nowaytoadda ¢£¢) term tothe potential.

Never say never
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Turned out that there is a way to avercome this (McAllister, ¢ tein & 308.0706 )

D-branes can absaorb this gauge transformation and generate a non periodic term .
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Turned out that there is a way to avercome this (McAllister, tein & tnhal 0808

D-branes can absorb this gauge transformation and generate a non periodic term .
In fact 2 linear term is easy to get:

The DBI action is

Denote / B by b weget
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which for large b is linear.
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The universe is empty.

Cannot be realized in string theory.
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Also at the quantum |level 751
the potential looks like:

* In quantum mechanics the local minima are on equal footing.

« Here the situation is more interesting:

Hawking temperature in de-Sitteris 7Ty ~ VV

]

«For V" > )M* in effect there are no local minima.

«For " < 1/- we have tunneling.
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Cannot be realized in string theory.

By the time we get down to 4D there are many axion fields in string theory.

However, since their origin in 10D is a gauge symmetry they are all periodic.
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Turned out that there is a way to avercome this (McAllister, ¢ tein &

D-branes can absorb this gauge transformation and generate a non periodic term .
In fact 2 linear term is easy to get:

The DBI action is

Denote [ B by b weget

which for large b is linear. :
What about the empty universe praoblem?
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Let's modify Abbott’'s model in the following way:

<@ - g @ L R e
EH relaxation inration

The relaxation action is a simpler version of Abbott’s action
!

Irelaxation — / FEy—g| —F10v) — Veen — V(1))

where (1)) = e
b Much like in Abbott’s case the vacuum energy is reduced slowly.

The challenge is to evade the emptiness problem by converting the potential energy
into kinetic energy.

Sinfiation 1S designed to fix that while making sure that the vacuum energy at the
end of inflation is small.

9050086 Page 34/




Thatis Sipfiation Makes

sure that we have
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Let's modify Abbott’'s model in the following way:

where (') =¢v
b Much like in Abbott’s case the vacuum energy is reduced slowly.
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end of inflation is small.
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Let's modify Abbott’'s model in the following way:

The relaxation action is a simpler version of Abbott’s action
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where V(i) =¢ew
b Much like in Abbott’s case the vacuum energy is reduced slowly.

The challenge is to evade the emptiness problem by converting the potential energy
into kinetic energy.

Sinfiation 1S designed to fix that while making sure that the vacuum energy at the
end of inflation is small.
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Let's modify Abbott’'s model in the following way:

relaxation = ||" ry—g | —(dv)” - TI.I — V(i '.

where (') =€
b Much like in Abbott’s case the vacuum energy is reduced slowly.

The challenge is to evade the emptiness problem by converting the potential energy
into kinetic energy.

Sinfiation IS designed to fix that while making sure that the vacuum energy at the
end of inflation is small.
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Classically, this makes sure that the vacuum energy we end up with vanishes and

the universe is not empty.
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Classically, this makes sure that the vacuum energy we end up with vanishes and

the universe is not empty.
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Classically, this makes sure that the vacuum energy we end up with vanishes and

the universe is not empty.

Quantum mechanically one finds that

Vo~ (107°€V)  —— AV <(Tev)’

Msysy < TeV
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Classically, this makes sure that the vacuum energy we end up with vanishes and

the universe is not empty.
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Classically, this makes sure that the vacuum energy we end up with vanishes and

the universe is not empty.

Quantum mechanically one finds that
Vo ~ (10°eV)* — AV < (Te¥F)Y
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Classically, this makes sure that the vacuum energy we end up with vanishes and

the universe is not empty.

Quantum mechanically one finds that
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So the picture is:

Hidden sector

TeV SUSY

Gauge mediation Gravity mediation

() sector
:11 [H]"H&' . l‘ l —.-';”
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Problems with the model:

L. So far we talked about: vacuum energy = kinetic energy.

®
TeV SUSY |

- -~ - N
3auge mediation { \:@, 'y mediation

i} sector
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Problems with the model:

1. So far we talked about: vacuum energy - kinetic energy.

we should have: vacuum energy = kinetic energy - SM heat.

Hidden sector

TeV SUSY

Ity mediation

{ir

sector

\/ ~ 10

SUSY

ﬁ

Re-heating coupling
- C
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Main problems with the model:
L. So far we talked about: vacuum energy - kinetic energy.

we should have: vacuum energy - kinetic energy -2 SM heat.

Hidden sector

TeV SUSY

cau Sofar | have made no progress in nediation
addressing these questions.

Q This suggests to me that perhaps a
different approach should be taken
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So far | have made no progress in
addressing these questians.

This suggests to me that perhaps a
different approach should be taken

Perhaps the reheating process is not the standard one:
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Problems with the model:
L. So far we talked about: vacuum energy = kinetic energy.

we should have: vacuum energy - kinetic energy - SM heat.

Hidden sector

TeV SUSY

Gauge mediation Gravity mediation
(N) MSSM () sector
If ' - 21
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Re-heating coupling
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So far | have made no progress in
addressing these questians.

This suggests to me that perhaps a
different approach should be taken

Perhaps the reheating process is not the standard one:
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This suggests to me that perhaps a
different approach should be taken

Perhaps the reheating process is not the standard one:

fe>00ee In the rest of the talk I'll discuss a couple of alternatives. Bacths)




1** approach:
Suppose that for somereasan |7 () <0. Vio)>0 and Vi) =0

So the potential loaks like

L 4
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So the potential loaks like

L 4
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1% approach:
Suppose that for some reasan

So the potential looks like

Itis not unreasonable to

magine a small hump.
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1°* approach:
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So the potential loaks like

L 4
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1°* approach:
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So the potential loaks like

Itis not unreasaonable to

magine a small hump.
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1% approach:
Suppose that for some reason IL" 0l <0. Vio)>0 and Vioe) =0

So the potential loaks like

Itis not unreasonable to

byl

imagine a small hump.

1. Does notsolvethe basicproblem( v — 1y ¢ ).

—

!‘uJ

The empty universe  4mmb Overshoot problem.
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1% approach:

Suppose thatfor somereason |7 () < (0. V(é) >0 and Viog) =0
3 : _ A
So the potential loaks like
It is not unreasonable to ESP
a .
imagine a small hump. =
! " 1§, |

e

1. Does not solve the basicproblem( v — v+

MJ

Theempty universe ¢ Overshoot problem.

Can be solved by an ESP. .
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15 approach:
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1. Does not solvethe basicproblem( v v+ )
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2. Theempty universe

&) COvershoot problem.

Can be solved by an ESP. |
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15* approach:

Ao s

L 4

1. Doesnotsolve v .y ¢
4

2. Theemptyuniverse 4 Overshoot problem.

Can be solved by an ESP. |
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- Chung et.al (2000
'I" Y == = BT
\[H I +fmanet.a N4
A » = 200

Potential due to the particles

N

L 4

1. Doesnotsolve v .y (O

2. Theemptyuniverse 4= Overshoot problem.

Can be solved by an ESP.
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1** approach:

Patential due to the particles
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L 4

1. Doesnotsolve v v (O
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Theempty universe 4 Overshoot problem.

Can be solved by an ESP. .
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15" approach:

As the universe expands

L 4

1. Doesnotsolve v . Vv L

!‘uJ

Theempty universe  ¢mmb Overshoot problem.

Can be solved by an ESP. |
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15 approach:

As the universe expands and expands

L 4

!—'ﬁ

Doesnotsolve v v (¢

MJ

Theempty universe  ¢mmb Overshoot problem.

Can be solved by an ESP. |
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1°* approach:

A
We end up with a small CC
and plenty of heat.
ESP _
- LN -
¥ 4, i
1. Doesnotsolve v .y L
2. Theempty universe <4 Overshoot problem.

Can be solved by an ESP.
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1% approach:

As the universe expands and expands

L 4

1. Doesnotsolve v v L

!‘-J

Theempty universe ¢ Overshoot problem.

Can be solved by an ESP. |
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1** approach:

We end up with a small CC

and plenty of heat.

ESP

1. Doesnotsolve v v (O

M

. Theempty universe 4= Overshoot problem.

Can be solved by an ESP. .
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1% approach:

We end up with a small CC

and plenty of heat.

Since we don’'t know how

L 4

to solve the 15 problem

Two oraoblems: | we move to the 2™ approach

1. Doesnotsolve v .y L

!‘uJ

Theempty universe 4= Overshoot problem.

Can be solved by an ESP. i
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s it passible to have an ESP -

at V' =0 for any potential?

9050086 Page 78/




Is it possible to have an ESP

at V" = 0 for any potential?
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One paossibility is coupling of the form

. - y
| + —U¥ | V(o.SM. ...
\ _.jr'. /

9050086 Page 80/




Is it possible to have an ESP

at V" = 0 for any potential?

>

F i
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One possibility is coupling of the form

=% .
| + —0¥ | V(o.SM. ..

MY /
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Two issues to worry about:
1. Quantum corrections.

What stops the inflaton after the BB?
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Is it possible to have an ESP

at V" = 0 for any potential?
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One possibility is coupling of the form
= 1
—¥¥ | Vi(o.S5M
_-._Er: |

Two issues to worry about:
1. Quantum corrections.

What stops the inflaton after the BB?
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Consider for example the mass of the quarks term in the potential
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Consider for example the mass of the quarks term in the potential
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Consider for example the mass of the quarks term in the potential
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1-loap of the quarks induces
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Consider for example the mass of the quarks term in the potential

f I

|1+ —0U
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1-loop of the quarks induces

Since 4 £ | the correction is not of the form

[‘ L+ %wa Vie.SM....

¥
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Consider for example the mass of the quarks term in the potential
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Vesp = —3M, “omments:

1. l'.‘tlhnlla"\y' 100 :]lg
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Not easy to fix since there is no dependence on )
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1. Way too big.

Not easy to fix since there is no dependence on \/
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1. Way too big.

Not easy to fix since there is no dependence on }]

2. When bosons are added we get
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a— 2081 Comments

1. Way too big.

T

Not easy to fix since there is no dependence on }

2. When bosons are added we get
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Vesp = —3M, Comments

1. Way too big.

Not easy to fix since there is no dependence on }/

2. When bosons are added we get

VeEsp = —3 V¥, f: £+ ¥ My

1 E——
r... -

4 £

Since 3 £ ] wecanget

[---,__- -

ESF

without having a SUSY spectrum

-3 Mp+) M;

g = {)

L' &)
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Vesp = —3M Comments:

1. Way too big.
Not easy to fix since there is no dependence on }/

Interesting only if stable to

2. When bosons are added we get :
further quantum corrections.
Vesp=—-3Y Mz+Y Mg
5
Since 3 £ ] wecanget
VeEsp =0

without having a SUSY spectrum
—Y Mz+ Y Mg=

L 0
9050086 ‘ o
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Ik,. F — —%‘11{ ;-‘ Comments

1. Way too big.

Not easy to fix since there is no dependence on }/
Interesting only if stable to

2. When bosons are added we get

further quantum corrections.
Vesp=—3Y Mp+Y Mj
i 2 B
Since 3 £ ] wecanget Right now | see no reason
Vesp =0 for this to be the case.
without having a SUSY spectrum So we maove on to take Il
—Y Mp+) Mg=0
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Still have a generic potential V(o) =A"f | )
And we wish to have an ESP 4

at V=90

9050086 Page 102/




9050086

Still have a generic potential Vie)=A7 | ]

And we wish to have an ESP . A
\

A passibly interesting observation is that
wewant Vpgp = () onlyduring
the period after the end and before

reheating.
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"% approach

Still have a generic potential Vie)=Nf | — )
And we wish to have an ESP 4
\

at V=10

>

/

A nassiblvi resti ion is th ; : . oL g
A possibly interesting observation is that During this period the only contributions to

wewant Vpgp =( only during the energy density are due to
the period after the end and before 1- Potential energy
reneating. 2- Kinetic energy of the inflaton.
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A coupling of the form
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L A coupling of the form

1[_;1IJ P 1+ (O 2

might do the trick:

After inflation and before re-heating we have

R, + [!Jrvl_‘ =

Soifwetake ¢ =1 weget Vigp =)
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L A coupling of the form

- "{I"I) ':' ;D‘—-—r' () -\
Y [3 == -

might do the trick:
After inflation and before re-heating we have

R+ (do) =V

Soifwetake ¢ =1 weget Vigp =0

L NiCe a00uUt tn tNat It tn flat ted to the volume of th Mpact
|
) o )
T & dal= & r:} = . g nNo TITHN Th i —'frll-rl J
a'.rl‘f el T .i.-"*_'l' = .'J!I.. I' [i}
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We have the same two issues to warry about:
1. Quantum caorrections.

What staps the inflaton after the BB?
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We have the same twao issues to warry about:
1. Quantum corrections.
Seem to work much better

2. What stops the inflaton after the BB?
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2. What stops the inflaton after the BB?

There are several possibilities:
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2. What stops the inflaton after the BB?

There are several possibilities:

A) The particles created after the BB could balance the static potential.

(if they push in the opposite direction M 4V < 0 )
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2. What stops the inflaton after the BB?

There are several possibilities:

A) The particles created after the BB could balance the static potential.

(if they push in the opposite direction M.sV s < 0)

Can this be sustained for 14 Milliard years?
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2. What stops the inflaton after the BB?

There are several possibilities:

A) The particles created after the BB could balance the static potential.

(if they push in the opposite direction 7 Vs <0)

Can this be sustained for 14 Milliard years?
B) Could add wiggles to the inflanton

potential.

D R R R R e I B e e ) e e
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2. What stops the inflaton after the BB?

There are several possibilities:

A) The particles created after the BB could balance the static potential.

(if they push in the opposite direction M,V < 0 )

Can this be sustained for 14 Milliard years?

B) Could add wiggles to the inflanton

ootential.

]

Will do the job at high temperature

| T [ e e [ e e ) e R R

and (B) when the universe cools down.
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We have the same two issues to worry about:
1. Quantum carrections.

What stops the inflaton after the BB?

L TICe ail iy that It tn Tidt 2idied 10 the voiume ar tn Mpact
3 2 : ca
™ _"'_ - a YT "'_"'__ —‘_;II.,-I
~ Ry — Ry+ (90 2o =
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L .

9050086

coupling of the form

m

=2
aq
-
e o
a
o
=ik
|

and before re-heating we have

fter inflation

A -
=~ Le

=

P —-—::{}ral_l_
Soifwetake ¢ =1 weget Viep =0
tis nice about this is that if the inflat olated to the volum
= = i ) = T T+ : 1
! A’?_r_u —(JdO)” > =
es ¢=1 automatic. No tuningis needed
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