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Abstract: We consider a codimension-2 brane inflation scenario in awarped flux compactification of 6D gauged supergravity. The volume modulus
of the model is stabilized by means of potential s& amp;nbsp;localized on the regularized background branes. We discuss the cosmological evolution
of the world-volume of a probe codimension-2 brane when it moves along the radial direction of the internal space. In order to have slow-roll
inflation,& amp;nbsp;we find& amp;nbsp;that the warping of the internal space is required to be weak, in contrast to the string inflation constructions
with strong warping. We discuss the parameter range that the inflation is in agreement with the observationally inferred parameters and which
furthermore is consistent with the probe brane approximation. We argue& amp;nbsp;that from a multi-brane solution, the backreaction of the probe
brane on the& amp;nbsp;weak warp factor isignorable
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Motivation

Cosmological constant problem

@ Cosmological observations show [perimutter et al: Riess et 2i(1997); Baheall et

al(1999); Spergel et al(2003)]

‘ (obs)

oy | ~ (10 3eV)* ~ 10 MpE. (1)

However, there is no known symmetry which could enforce a
vanishing vacuum energy and remain consistent with other
observations. One needs an enormous fine-tuning between all
contributions to the vacuum energy. [weinberg(1989): Carroll(2000)]

@ Why is the cosmological constant comparable to the present
energy density’

Op =075, Q,.—0.325, (2)

acsosors. WITh €; = p; /pe and p. the critical energy density. .




Motivation

Cosmic Microwave Background

@ Basic observed quantities

oy = (1.91+0.17)-10~°. n. = 0.960 +0.013
(COBE) (WMAP. BAO. SN)
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Motivation

Cosmic inflation

@ Cosmic inflation asserts a period that a slowly varying scalar
field dominates the dynamics of the universe.

@ Cosmic inflation solves the problems in Standard Big Bang
cosmology such as the horizon, flatness, relic problems.

@ Inflation predicts scale-invariant and Gaussian spectrum of
density perturbations.

@ Quantum fluctuations of inflaton provide the seeds for
structure formation.

@ How can we obtain a period of slow-roll inflation with large
vacuum energy’ How does inflation end?
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Motivation

Codimension-two brane

@ Codimension-two branes

Conical brane : & — function distribution

Non — conical brane : more singular than ¢ — function

@ The tension( T) of a conical brane deforms the geometry of
extra dimensions by a deficit angle without curving the 4D
spacetime: locally, ds® ~ dr® + 3%r?d@?, with a deficit angle
A =27(1 — 3) = T. [ChenLuty.Ponton(2000)]

@ For the Standard Model fields living on a conical brane, one
may make brane-localized vacuum energy not to gravitate the
4D spacetime by adjusting a deficit angle such that a late
cosmological constant is made small.
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Motivation

@ A natural question is then “ls it possible to have an early
inflation on a codimension-two brane?”

@ An answer is that inflation may occur on “a non-conical
brane’, the localized vacuum energy of which gravitates along
four dimensions.

[Aghababaie Burgess Hoover, Tolley( 2005)]

@ We consider a possibility of having an early inflation on a
codimension-two brane in a 6D chiral gauged supergravity.

@ We also address how the early inflation period is linked to the
late universe with a small cosmological constant.
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6D supergravity

6D chiral gauged supergravity

[Nishino.Sezgin(1984); Salam, Sezgin(1984)]

@ [he 6D chiral gauged supergravity is composed of

—gravity ef,f . Um, B;:f N
—temsor : ¢, X, By
—vector : Ampm. A

@ The R symmetry (U(1l)g) is gauged.

@ T he bulk anomalies are cancelled for ngy = ny + 244.

@ Anomaly-free models: U(1)g with hyperino 245¢;
E; x Eg x U(1)g with hyperino (912, 1)g; E7 x Go> x U(1)g
with hyperino (56.14)q; F4 x Sp(9) x U(1)g with hyperino
(52.18)g; models with products of U(1) and SU(2).
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6D supergravity

[Lee. Papazoglou(2007)]

@ Without hyperscalars, the bosonic part of the 6D supergravity
action with supersymmetric branes is S = [ d°x,/—g /L with

S | )= e K dp= -
= /dﬁ'xv”g(f? — 7 (Om0)* —4g e Ze%“’FMNFMN
]. k. i 52 — ¥
. GMNPGMNP ik T!.‘ ¢ (y ) )
12 &
with FMN — IAN — ()NAM — r"zf}f"ﬂ}i ‘*;W, and
Gunp = 39mBrpy + 3 5> FimnApy — 387,000 By §iA, 0}, Here,
A - P—%) and the localized Fayet—lllopoulos term (or

magnetic couplings) are & = 1354% with n; = =1 depending on
the 4D chirality of the brane SUSY.
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]
@ Setting Byny = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal
symmetry Is

1, R 5 _
d.‘52 — EEILG(WE(-\'")”,L!UdX’L dx’ +A2(r)(dr2 5 Bj(r)dé’z))
~ I
 ——— /\qe_f""W_‘iEmn. O=0g+4In W,
with -
1+ 5 1 3
W= 'L e = gl
1+ 5 2¢g? q°
e W R I
T Here A = T2/ 5 — = and A\. g. ©og are constant. e




6D supergravity

[Lee. Papazoglou(2007)]

@ Without hyperscalars, the bosonic part of the 6D supergravity
action with supersymmetric branes is S = [ d°x,/—gL with

. P T .
L /dﬁxv”g(ﬁ’ — 2(9m0)* —4g e 2% _ Ze%“'FMNFMN
]. G o~ 52 SnLL I
Bt =t o~ (y — yi)
12 e
with FMN — AN — ()NAM — H‘E}r‘:ﬁ,} J;, ﬂ‘m, and
Gunp = 3O[MBNP] + 3 FunAp) — (MONO Py §iAuO - Here,
o —e. & (; Y1) and the localized Fayet—lllopoulos term (or

magnetic couplings) are &; = f;,-% with n; = =1 depending on
the 4D chirality of the brane SUSY.
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byny = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal
symmetry Is

ds> = e%”}“(Wz(r)r)m,dx“dx” + A%(r)(dr® + Bz(r)d/)z)).
!%mn — /\qe_%‘;’W_‘LEmn. O=0o0g+4In W,
with -
Wdzi: o 17,. rf:iz.
1+ 5 2g° q
—— Here A = TVF%E 5 — .%ﬁ; and A, g, ©og are constant. A




6D supergravity

[Lee. Papazoglou(2007)]

@ Without hyperscalars, the bosonic part of the 6D supergravity
action with supersymmetric branes is S = [ d°x,/—g /L with

— 1 L tem
e /dﬁmg(ﬁ) — 2(9m0)* —4g =3P Ze%“'FMNFMN
]. . i 52 — ¥
e GMNPGMNP i T;‘ € (}/ y )
12 =~
with FMN — IpAN — ()NAM . r"w ‘fj L, ’;;nn and
Gunp = 30[;14 Bnpy + 3 FpunApy — 397,00 Oy §iApuOmm,- Here,
e = (; Yi) and the localized Fayet—lllopoulos term (or

magnetic couplings) are & = r;,-%g" with n; = =1 depending on
the 4D chirality of the brane SUSY.
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6D supergravity

General warped solutions

[Gibbons et al{2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byn = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal

symmetry Is

ds® = e%@“(WZ(r)r)wdx“dx“ + A%(r)(dr* + Bz(r)df)z)).
!%mn — /\qe_%"‘“’ W,,. 6=0g+4InW.
with =
3
Wfl-_l_'_;f_ rE_ 1 ."’2_8
—— = 8 . =
1+ 5 2g> q?
0
Here A= - %W B = 22 and ). g. &g are constant
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6D supergravity

[Lee. Papazoglou(2007)]

@ Without hyperscalars, the bosonic part of the 6D supergravity
action with supersymmetric branes is S = [ d°x,/—g£ with

=t | (8 P i TSy
5 /df'xv”g(f? — 2(9m0)” — 4g =2 Ee%“'FMNFMN
| S5 - 2 (y — y;i
BT i o iy - 0~(y — yi)
12 &
with FMN — IOmAN — *')NAM — ”E;rf"h; L r‘m, and
Gune = 39 Bnpy + 3 FypunApy — 356,00 Oy i O, Here,
. ") and the localized Fayet—lllopoulos term (or

magnetic couplings) are & = r;,—% with n; = =1 depending on
the 4D chirality of the brane SUSY.
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byny = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal
symmetry Is

ds® = e%‘ﬁ”(Wz(r)r}m,dx“dx“ + A%(r)(dr* + Bz(r)dﬂz)).
!%mn — /\qe_%‘ﬁW_ﬂ'Emn. o=o0g+4In W,
with
e 5
Wle%;_- rg—zzgz. rf:?.
— Here A = HLy .:,:f , and A, g. ©g are constant. =




6D supergravity

@ [wo brane tensions must be located at the conical
singularities, r = 0 and r = oc:

Tz — ZalMi(1—))
2
 oagtfe P2
; e 2“M$(1 ”\rg)'

@ The localized Fl terms with & = T;/4g(i = 1.2) modify the
gauge potentials at the brane positions, being crucial for
showing that the football solution is supersymmetric.

[Lee.Papazoglou(2007)]

T]_ T2 — f-( T]_. &) ﬁj)

.

modulates warping
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byn = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal
symmetry Is

ds® = e%@”(Wz(r)-r)m,dx“dx“ + A%(r)(dr® + Bz(r)df;’z)).
!i_mn = /\qe_%‘I*W_‘LEmn. O=ao0g+4In W,
with =

W4:1+—?' e = 1:, rf:iz.

& 7 q

1
rﬂ
=
B
ik W X /
Here A= —5—.B = — and A, g. ©g are constant.

= 2
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6D supergravity

[Lee. Papazoglou(2007)]

@ Without hyperscalars, the bosonic part of the 6D supergravity
action with supersymmetric branes is S = [ d°x,/—g£ with

— ]. - L 1 s ~
5= /dﬁx\/’g(ﬁ’ — 2(9m0)* —4g =2 Ze%fﬂF,.,,wF"‘*"*"*’
]. s A 52 = I
" GMNPGMNP i T!.' € (y b )
12 &
with FMN — ImAN — ()NAM — OO & ﬂ;‘m, and
GM’NP = 3O[M BNP] 5 = F[MNAP] v‘ ~,rn E] &AL 0 . Here,
. = (; Y1) and the localized Fayet—lllopoulos term (or

magnetic couplings) are & = r;,-%g" with n; = =1 depending on
the 4D chirality of the brane SUSY.
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6D supergravity

@ [ wo brane tensions must be located at the conical
singularities, r = 0 and r = oc:

T = 2aM!(1— ),
r2

y 2wMj}(1—,\—12).
o

@ The localized Fl terms with & = T;/4g(i = 1.2) modify the
gauge potentials at the brane positions, being crucial for
showing that the football solution is supersymmetric.

[Lee.Papazoglou(2007)]

Iy I, =f(Ty,n/n)

-

modulates warping
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byn = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal

symmetry Is

ds? — e3% ( W2(r)nu dx* dx” + A%(r)(dr* + Bz(r)dﬂz)).
!i_mn = /\qe_%"‘“’W_‘Lfmn. O=o0g+4In W,
with E
W“:i; e = 1?. rf:iz.
Lt 2g~ q

el — W N %’} and A\, g. ¢g are constant.

= :
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6D supergravity

@ [wo brane tensions must be located at the conical
singularities, r = 0 and r = oc:

T: = 2aM1—))
r2

T erj}(l—,\—lz).
o

@ The localized Fl terms with & = T;/4g(i = 1.2) modify the
gauge potentials at the brane positions, being crucial for
showing that the football solution is supersymmetric.

[Lee.Papazoglou(2007)]

T]_ T2 — f(T]_ M ﬁj)

;

modulates warping
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6D supergravity

Supersymmetric football

[Papazoglou.Lee{2007)]

@ Warping breaks the bulk SUSY completely.
@ For a constant warping, the geometry becomes a football:

(dr* + X°r*do?).

Thatis, forg=4g, weget n=1and T; = To =27(1 — )
with arbitrary A.
@ 4D N =1 SUSY is given by P, = satisfying

0=0\ = i2V2g(Pge).

] ; f 2 b & gl
g b — I " 1+,\(1——) v ,\(——1 s
EQ [1‘9 2{ fg } '} ]% ) .\’2?-
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6D supergravity

@ [wo brane tensions must be located at the conical
singularities, r = 0 and r = oc:

T: = 2aM}(1—)N),
r2

T, = 2=Mi(1-23%).
'a

@ The localized Fl terms with & = T;/4g(i = 1.2) modify the
gauge potentials at the brane positions, being crucial for
showing that the football solution is supersymmetric.

[Lee.Papazoglou(2007)]

T]_ T2 — Ic(TI M ﬁj)

-

modulates warping
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6D supergravity

Supersymmetric football

[Papazoglou.Lee{2007)]

@ Warping breaks the bulk SUSY completely.
@ For a constant warping, the geometry becomes a football:

(dr” + X°r"d8%).

Thatis, forg—=4g, weget n=1and T; = To =27(1 — )
with arbitrary A.
@ 4D N =1 SUSY is given by P, = satisfying

0=0\ = i2V2g(Pge).

E ; i 2 Y g
g - — o ° 1!,\(1——) -,5+,\(——1)—
“6 |}H 2{ e fo } ! fo !21-7_
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6D supergravity

@ [ wo brane tensions must be located at the conical
singularities, r = 0 and r = oc:

Tx = ZaMI(1—)N)
2
 xaatfes 2
T reas 2“M$(1 ”\rg)'

@ The localized Fl terms with & = T;/4g(i = 1.2) modify the
gauge potentials at the brane positions, being crucial for
showing that the football solution is supersymmetric.

[Lee.Papazoglou(2007)]

T]_ T2 o ?C(T]_ 3 !’.::)

:

modulates warping
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6D supergravity

Supersymmetric football

[Papazoglou.Lee{2007)]

@ Warping breaks the bulk SUSY completely.
@ For a constant warping, the geometry becomes a football:

1
2
(L4+-=)

ds* = n,,, dxtdx” + (dr* + \°r*d6?).

Thatis, forg=4g, weget n=1and T; = To =27(1 — )
with arbitrary A.
@ 4D N =1 SUSY is given by P, = satisfying

0=0\ = i2v2g(Pge).

- I i 2 saki g
b — 1y ,\(1——) = ,\(——1) £
tg |:1’H 2{ = ﬁ;} } [ fb I2',-T_
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6D supergravity

Modulus stabilization with regularized branes

@ Bulk EOMs with the conical branes are scale invariant under
gun — €29 %gyn and & — ¢ + &g = a volume modulus
@ Replace the conical 3-branes by ring-like codimension-1 branes

capped with a regular sphere and introduce the dilaton
potentials on the ring-like branes.

[Peloso et al(2006); Papantonopoulos et al(2006); Burgess et al{ 2007)]
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6D supergravity

Supersymmetric football

[Papazoglou. Lee{2007)]

@ Warping breaks the bulk SUSY completely.
@ For a constant warping, the geometry becomes a football:

1
=el
1+
0

&=} X r-di).

Thatis, forg=4g, weget n=1and T; = To =27(1 — )
with arbitrary A.
@ 4D N =1 SUSY is given by P, = satisfying

0=0\ = i2V2g(Pge).

: ) i 2 — 71 g€
e — et 1+,\(1——) = ;\(——1 _ &
e [“3‘ 2{ 3 } “NE ) or
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6D supergravity

Modulus stabilization with regularized branes

@ Bulk EOMs with the conical branes are scale invariant under
gy — €%/ 2 d ¢ — ¢ - | dul
EMN € gMN and o @ + 0g = a volume modulus

@ Replace the conical 3-branes by ring-like codimension-1 branes

capped with a regular sphere and introduce the dilaton
potentials on the ring-like branes.

[Peloso et al(2006); Papantonopoulos et al(2006); Burgess et al{ 2007)]
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6D supergravity

Supersymmetric football

Pi

IIIII

[Papazoglou.Lee{2007)]

@ Warping breaks the bulk SUSY completely.
@ For a constant warping, the geometry becomes a football:

1
(1+ )2

Thatis, forg=4g, weget n=1and T; = To =27(1 — )
with arbitrary A.

@ 4D N =1 SUSY is given by P, = satisfying
0=0\ = i2vV2g(Pge).

: . i 2 Y g
O — 1+,\(1——) =5 ,\(__1) _ i85
g |:r9 2{ . } ; . ;2W-

: 09050070 == {-)'H ( P L = ) : Page 33/73

ds* = n,, dxtdx” + (dr™ + X°r"dt®).




6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byn = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal

symmetry Is

e - e%*ﬂﬂ(Wz(r)f};wdx“dx” + A%(r)(dr? + Bz(r)dﬂz)).

!%mn = /\qe_%‘ﬁW_‘iEmn. O=0o0g+4In W.
with =
1+ 5 1 8
W — r}.z; rg: 2 r12:—2'
i 2g° q
0

—= W N /
Here A — m. B — W2 and A. g. @g are constant.
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6D supergravity

@ [ wo brane tensions must be located at the conical
singularities, r = 0 and r = oc:

Tx: — ZalMi{1—))
2
. o patfy ~xTu
; o 24LM$(1 ’\rg)'

@ The localized Fl terms with & = T;/4g(i = 1.2) modify the
gauge potentials at the brane positions, being crucial for
showing that the football solution is supersymmetric.

[Lee.Papazogiou(200T7)]

T]_ T2 — f-(T]_ M :"Ca)

-

modulates warping
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byn = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal

symmetry Is

ds® = e%@ﬂ(Wz(r)r}de“dx” + A%(r)(dr* + Bz(r)dﬂz)).

A = e
e — Age W . . O=0g+4InW.
with ;
| IE
4 R 3 1 » 8
W:—rz' f0:22. ."'1:—2.
s g g
o
= W —Re y
Here A = ~——~.B = &%, and A. g. ©g are constant.
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6D supergravity

General warped solutions

[Gibbons et al(2003); Aghababaie et al(2003); Lee Papazoglou(2007)]

@ Setting Byn = 0 and assuming the axial symmetry of extra
dimensions, the general regular solution with 4D maximal

symmetry Is

ds? — e%fﬂﬂ(wz(r)wdxﬁdxif + A2(r)(dr? + Bz(r)dﬂz)).

'&mn — /\qe_%‘ﬁW_‘iEmn. O=0g+4In W.
with :
1+ 5 1 8
wt=_ 1. e = =
1+ 5 2g> q°

Here A= —Y _ B — 22 and \. q. oo are constant.
].—|— r~y F[j' w Page 37/73
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6D supergravity

Supersymmetric football

Pi

IIIII

[Papazoglou.Lee{2007)]

@ Warping breaks the bulk SUSY completely.
@ For a constant warping, the geometry becomes a football:

1
(1+ )2

ds* = n,, dxtdx” + (dr* + X°r*de?).

Thatis, forg=4g, weget n=1and T; = To =27(1 — )
with arbitrary A.
@ 4D N =1 SUSY is given by P, = satisfying

0=60\ = i2V2g(Pge).

i A A | ve | AR g8
0=0t1p = |:f)9_|_2{1—l—/\(1 fg)} +f;\(fb 1) fzﬁ-

: 09050070 — 1:'_)9 ( PL E ) . Page 38/73




6D supergravity

Modulus stabilization with regularized branes

@ Bulk EOMs with the conical branes are scale invariant under
g/ 2 J J ;
gun — €Y “gyn and © — o + ©g = a volume modulus

@ Replace the conical 3-branes by ring-like codimension-1 branes

capped with a regular sphere and introduce the dilaton
potentials on the ring-like branes.

[Peloso et al(2006); Papantonopoulos et al(2006); Burgess et al{ 2007)]
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6D supergravity

Pi

IIIII

@ T he ring brane action is given by

: 09050070

5= / d>x\/—; [V(n) 4+ — U(r))(Dﬂcr,D“cr,.)}

with ﬁ-‘,&f} the induced metric on the branes, V;. U; dilaton
couplings to the branes and o; brane Goldstone fields.

The modulus of the ring radius is stabilized by the U(1)
current induced by the brane Goldstone field.

[See “superconducting string” by Witten(1985)]

The volume modulus can be stabilized as seen from 4D
effective action ., [Burgess et al{2007)]

S —7n /ddxg—";[(ﬁ—Fdef) _1(&_20‘%)‘%&}3;‘?] .

2 do 2\ 2 do
where k; = k; — eAg with k; given by o; = k;6. i




6D supergravity

Modulus stabilization with regularized branes

@ Bulk EOMs with the conical branes are scale invariant under
dg/ 2 | |
guN — €Y “gyn and © — O + ©g = a volume modulus

@ Replace the conical 3-branes by ring-like codimension-1 branes

capped with a regular sphere and introduce the dilaton
potentials on the ring-like branes.

[Peloso et al(2006); Papantonopoulos et al(2006); Burgess et al{ 2007)]
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6D supergravity

Pi

IIIII

@ T he ring brane action is given by

: 09050070

55— / d>x/—; [V(n) 4+ — U(u)(DnJ,D’“JJJ

with 'A",E-lf?’ the induced metric on the branes, V;. U; dilaton
couplings to the branes and o; brane Goldstone fields.
The modulus of the ring radius is stabilized by the U(1)
current induced by the brane Goldstone field.

[See “superconducting string” by Witten(1985)]

The volume modulus can be stabilized as seen from 4D
effective action, [Burgess et ai(2007)]

samr f ] (2 3Gy go]

where k; = k; — eAg with k; given by o; = k;6. Saaleoifs




6D supergravity

Modulus stabilization with regularized branes

@ Bulk EOMs with the conical branes are scale invariant under
gy — €70/ d ¢ — ¢ - | dul
EMN € gun and © — @O + Og = a volume modulus

@ Replace the conical 3-branes by ring-like codimension-1 branes

capped with a regular sphere and introduce the dilaton
potentials on the ring-like branes.

[Peloso et al(2006); Papantonopoulos et al(2006); Burgess et al{ 2007)]

Pirsa: 09050070 Page 43/73




6D supergravity

Pi

IIIII

@ T he ring brane action is given by

: 09050070

S: = / d>x/—; [V(n)+ U(n)(Dhcr,D’“J,.)}

with 'A-',éf} the induced metric on the branes, V;. U; dilaton
couplings to the branes and o; brane Goldstone fields.

The modulus of the ring radius is stabilized by the U(1)
current induced by the brane Goldstone field.

[See “superconducting string” by Witten(1985)]

The volume modulus can be stabilized as seen from 4D
Effec'tive action , [Burgess et al(2007)]

= f ot (34 250) -3 (325 ]

where k; = k; — eAg with k; given by o; = k;6. e
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© The probe brane inflation
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The probe brane inflation

The probe brane action

@ [ he background solution is 4D flat before adding another
brane.

@ Add one non-BPS codimension-two brane moving in the
warped background with regularized branes.

@ Consider the added brane to inflate on its worldvolume
without backreaction.
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The probe brane inflation

@ The DBI action for a probe brane is

4 Ge /f . . 5 ¥ S
5:3b:_T3/d X & o — Ve 541:»:—7_4/6’ X € nf — Vb

@ We consider a 3-brane or a ring 4-brane with small radius for
slow-roll inflation.

@ We choose scale-invariant dilaton couplings: (3 = 0 and

=T 1
2= 3

@ A non-conical probe 3-brane should be taken as a small radius
limit of a ring 4-brane. When scaling symmetry is violated

slightly at a ring 4-brane, the non-conical probe brane can be
approximated by a conical brane.
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The probe brane inflation

@ [ake the metric and dilaton ansatz as

ds? = e ¥ W2(r) & (x)dxt dx” + e’ ) A2(r)(dr* + B3(r)d6b
o = 4lnW + 2¢(x) .

@ Choosing the embedding coordinates for the probe 3-brane,

XM — [x*.R(t).©(t)], the induced metric is

Yoo = 8oo T gn—F\’ » 3’896- Yii = 8ij-
@ For vZ = W2(R(t))|gmng®®X™X"| < 1, we get

— |1
Sprobe ~ /ddx \/_g |:2 T3V2 i Vprube} :

Vo= BWHRE""—1; L Re™
_|_
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The probe brane inflation

@ Integrating out heavy modes and considering the slow radial
motion only, we get the effective action as

L,

=11 3 > |
Seff — /d4x — |:2M%R4(g4) — ME(C)}H E_"..‘)z — Emﬁ-,(h‘ — E._‘g)'

—%Tg,AE(R)WZ(R)(&)# R — 7T W“(R)ez*‘].

@ When the inflation scale is lower than the scale of the modulus
stabilization, we can consider ¢’ to be fixed during inflation.
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The probe brane inflation

Slow-roll inflation

@ [ he slow-roll parameters are

M3 _ e I, — T
€ ~ F;sz. e rz%—lz 24 =
2X5 X0 i 2rM: — Tz

@ For weak warping |4| < 1, i.e. close to SUSY football
vacuum, we get a slow-rolling.

R

o

probe brane potential becomes Vi ope =~ T3 [l + & sin? (3—{})] .

@ For canonical field, vy ~ yg arctan™ with yo = o/ T3, the

A

e I
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The probe brane inflation

@ Integrating out heavy modes and considering the slow radial
motion only, we get the effective action as

L 5

—|1 s S |
Seg = /d4x —g {2M%R4(g4) — Mg(d#e_ff)z — gmﬁ_(s; — U )

3 TR RWAR)@,RY — TaW*(R)e .

@ When the inflation scale is lower than the scale of the modulus
stabilization, we can consider ¢’ to be fixed during inflation.
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The probe brane inflation

Slow-roll inflation

@ T he slow-roll parameters are
ME) = 2M2 = = rg T2 = T]_
€ ~ S, RPreo— @ — —F— = .
2X5 Xo i 2nM: — Tz

@ For weak warping |4| < 1, i.e. close to SUSY football
vacuum, we get a slow-rolling.

@ For canonical field, y ~ y¢ arctan

R

= with yo = oV T3, the.

probe brane potential becomes Vj,;ohe =~ T3 [l + § sin? (ﬁ)] .

V(x)
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The probe brane inflation

@ Observations:

1 vi/2

s __ ~191x10".
V1507 M3 €'/2

n—1—6e+2n~ 0.960. 5y —

@ COBE normalization fixes the energy scales to be
ol ~1013GeV, M, ~10GeV, T,;/* ~ |4]Y/*10°GeV.

@ For the spectral index, we need 6 < 1 and |§| < 1072,
Inflationary parameters are given by

The =~ —0.02. € = 0.005|0|, Ncoge = 50 |n(R]r R,)

@ Other observables:

: dn
r ~ 0.06|d|. ~ 17 ~ 1074
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The probe brane inflation

Graceful exit

@ When the probe brane hits the background brane at the other
end, the background solution should settle to another flat
solution reducing the vacuum energy to zero and reheating
the brane.

@ Close to collision, assume the inflation to be altered to a
hybrid type with (x. ). Adding a (bulk) real scalar field &

with a coupling to the probe brane, the effective potential

should be
Veeg = (T3 + t}zgz)Wd(\) I h(:-fz = ~52)2 — hg*.

@ For a?W*(x) < 2h3?, the waterfall field starts rolling down
to a minimum with nonzero VEV, thus ending the inflation as
aosoe WEIl @s reheating the brane. e




The probe brane inflation

Slow-roll inflation

@ [ he slow-roll parameters are
M3 2 2 M?2 = e - Bk
€ ~ 07, N~ — 0, 0=—5—1= :
B . % i 2r M2 — T

@ For weak warping |4| < 1, i.e. close to SUSY football
vacuum, we get a slow-rolling.

@ For canonical field, y ~ yg¢ arctan

R

= with Yo = v T3, the.

probe brane potential becomes Vb = T3 [1 + J sin? (ﬁ)] |

V(x)
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The probe brane inflation

@ Integrating out heavy modes and considering the slow radial
motion only, we get the effective action as

1

—|1 = _ |
Ss — /d4x —g {QM%R;@(gé;) — M,Z;.(dﬂe_i')z = Em?(s — )

5 TsR(R)WA(R)(9,R — TsWH(R)e 2",

@ When the inflation scale is lower than the scale of the modulus
stabilization, we can consider ¢’ to be fixed during inflation.
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The probe brane inflation

Slow-roll inflation

@ [ he slow-roll parameters are

M2 p, | 2 B—TF
€ ~ F;.f)z. P ——y O rﬁE%—lz = =

@ For weak warping |4| < 1, i.e. close to SUSY football

vacuum, we get a slow-rolling.
R
o

probe brane potential becomes V;ope = T3 [1 + & sin® (l)] .

@ For canonical field, Y ~ yg arctan™ with yo = o/ T3, the

X0
A

¥ie)l e
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The probe brane inflation

@ Integrating out heavy modes and considering the slow radial
motion only, we get the effective action as

L,

—1 1 i i |
S — /d4>< — {2M§R4(g4) — M3(9u)” — 5”’?&--(*’-‘ — o)

—%E,AQ(R)WZ(R)(E)# ] ey W“(R)ez*‘].

@ When the inflation scale is lower than the scale of the modulus
stabilization, we can consider ¢’ to be fixed during inflation.
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The probe brane inflation

Slow-roll inflation

@ T he slow-roll parameters are

€ Mgrﬁz. r]m-—2M2f5' fzﬁ—lz L. i :
2 X6 = A 2r M2 — T

@ For weak warping |4| < 1, i.e. close to SUSY football
vacuum, we get a slow-rolling.

R
ro

probe brane potential becomes V;ope = T3 [1 + & sin? (L)] |

Vo=
|

|
| X

> Page 59/73

@ For canonical field, Y ~ yg arctan™ with yo = o/ T3, the
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The probe brane inflation

@ Observations:

1 V 1/2

bl __~1.01x10 "
V150 M2 €l/?

n—1—6e+2n ~ 0.960. 5y —

@ COBE normalization fixes the energy scales to be
ol ~103GeV, M, ~105GeV, T;’* ~|4|Y/410%°GeV.

@ For the spectral index, we need 6 < 1 and |4] < 1072
Inflationary parameters are given by

Mhe =~ —0.02. € = 0.005‘{5‘, Ncoge == 50 In(Rf R,)

@ Other observables:

2 dn
r ~ 0.06/|9]. ~ % ~107%.
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The probe brane inflation

Slow-roll inflation

@ [ he slow-roll parameters are

M3 Pl S 2 I— T
€ ~ F;rjz. PO r)Er%—lz 24 = -
2X5 Xo i 2nM: — Tz

@ For weak warping |4| < 1, i.e. close to SUSY football
vacuum, we get a slow-rolling.

R

o

probe brane potential becomes V;ope =~ T3 [1 + J sin? (*}_m)] |

@ For canonical field, vy ~ yg arctan™ with yo = g/ T3, the
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The probe brane inflation

@ Observations:

1 V']_;z
n=1—6e+2n~0.960. oy = —— — ~1.91x107".
V4 ].SOTM;‘; Lz

@ COBE normalization fixes the energy scales to be
ol ~103GeV. M, ~105GeV. T;’* ~|4]Y/410%GeV.

@ For the spectral index, we need 6 < 1 and |§| < 1072,
Inflationary parameters are given by

e ——002 q,.—~ 0.005‘{5‘, Ncoge == 50 In(R,rR,)

@ Other observables:

- dn
r ~ 0.06|0]. ~ 1% ~ 107
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The probe brane inflation

Graceful exit

@ When the probe brane hits the background brane at the other
end, the background solution should settle to another flat
solution reducing the vacuum energy to zero and reheating
the brane.

@ (Close to collision, assume the inflation to be altered to a
hybrid type with (x. ). Adding a (bulk) real scalar field &

with a coupling to the probe brane, the effective potential

should be
Veg = (T3 + o> 0?)W*(x) + h(* — 3%)> — hp*t.

@ For a®W*(x) < 2h3?, the waterfall field starts rolling down
to a minimum with nonzero VEV, thus ending the inflation as
ooe WEIl @s reheating the brane. =s1




Backreaction issues - Conclusion

@ Backreaction issues - Conclusion
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Backreaction issues - Conclusion

4D dS space vs non-conical probe brane

@ [ here must be at least one non-conical 3-brane in 6D
solutions with de-Sitter 4D foliations:

) 1 3
P— InW——@)' H? \/
Zf: £ (-):OI ( - Pi.0 5

 On
where p; are the local radial coordinates adapted to the brane.
For o; ~ 4In W; + 2A3;In p;, a non-conical brane contributes
to H2. [Aghababaie Burgess.Hoover, Tolley(2005)]
@ lake a probe ring 4-brane with small radius pg centered at

R(t), the DBI action of the conical probe brane is a good
approximation,

Virobe(R) = Tag W*(R)(1 — ~In W(R))

rsaososos. Where T3 .g = 7 Tapg and 7 < 1 for a small scale violatiaps:




Backreaction issues - Conclusion

Backreactions

@ [ he volume modulus must be stabilized at a scale higher than
the inflation scale:

HFrecm—>Ta< M =6l <107~

@ Slow rolling requires a tuning of the background brane
tensions, | T; — T2| ~ |d| T1 2. On the other hand, the probe
brane tension is determined to be T3 ~ |§| M. For
Tio ~ M} < M2+, we require T3 > |T; — T>|, so a
dangerous backreaction on the warp factor would be expected.
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Backreaction issues - Conclusion

Multi-brane solutions with backreactions

[Lee. Liideling(2005)]

@ [ he general static multi-brane solution has the 4D Minkowski
space and it is determined by a holomorphic function V/(z) to

be
W4 = %(Wf + W) + %(Wf‘ — Wy) tanh E(W{‘ n Wé‘)\]

: 4 4 1 _2;
with eW1X 1 eMox — (WP — W)e28™¢ and
((z) =5 J* dw/V(w) + c.c. in complex coordinate z.
@ Conical branes are located at either zeros or poles of V(z);

nontrivial tensions are allowed only at zeros.

@ T he warp factor lies in the finite range, Wb < W < W4,
e osee INdependent of V(z).
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Backreaction issues - Conclusion

@ Eg for V(z2) = —ﬁ(l + z—.‘—fj_l) with 3 > 0, additional

tensions are two fixed brane tensions [.; = —_2:Mf at
z = +i and two nontrivial tensions at z = —5(3 = /3% + 4):
2 3
T — 2 M1—|BIX), Ta= 2nmj(1—\b\,\”—12); L
o 32 4+ 4

@ [ he relation between the additional brane tensions is

2nM* — T, r2 )
= 4—i:l—|—0.

2TM::1 — T3 o r]_z
ooy 3 does not change 71 — T> needed for |6 < 1.
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Backreaction issues - Conclusion

@ [ he probe brane inflation ends when it hits the background
brane at z— 0 and z— co.

@ Then the background brane solution settles into another flat
solution with two brane tensions only,

1=Ti+ Tz =2aM}(1 —X) and
=T+ Ta=2xM}1L - NZ)with X' —2x—1.
"o
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Backreaction issues - Conclusion

@ Eg for V(z)= —5(1+ Z;j_l) with 3 > 0, additional

=
tensions are two fixed brane tensions T ; = —27M? at

z = +i and two nontrivial tensions at z = —5(3 £ /3% + 4):

- 8]

— 2 M*(1—1bl) e metfy f"”_1_ =
T — 2 MPO—IBIA), Ta—2 Mi(l \b\\rg), bl = ——-

@ [ he relation between the additional brane tensions is

2xM2— T, - E
= : — % —14-0.
2IM:} == T3 rq

ooy 3 does not change 71 — T> needed for |0 < 1.
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Backreaction issues - Conclusion

@ [ he probe brane inflation ends when it hits the background
brane at z—0 and z = occ.

@ Then the background brane solution settles into another flat
solution with two brane tensions only,

2= Th+ I3=—2xMi{1—X) and
s— Lt ils— Ml /\’%) with M’ =2\ — 1.
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Backreaction issues - Conclusion

Conclusion

@ We identified the position of a probe codimension-two brane
moving in 6D warped background as the inflaton.

@ Slow-roll inflation is realized, being close to SUSY football
vacuum with |§| < 1072,

@ COBE normalization fixes the compactification scale to be
ru_l ~ 1013 GeV, in turn the 6D fundamental scale at
M, ~ 10*° GeV.

@ Backreaction on volume modulus can be avoided by lowering

the bound on the warping to |§| < 1072. Thus we need to
tune the background brane tensions, |[AT| ~ |0] T12.
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Backreaction issues - Conclusion

@ Even if the probe brane tension is larger than [AT],
multi-brane solutions may guarantee a small backreaction on
the warp factor.

@ Angular motion might lead to an interesting effect on the
observations, e.g. isocurvature perturbations.

[Langlois, Renaux-Petel Steer, Tanaka(2008)]

@ DBI inflation may be possible for a relativistic
codimension-two brane moving in the strongly warped
background.

[Lee. Papazoglou(in progress)]
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