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Motivations

Cosmological data

-

We are leaving in the solden age of

observational cosmology:

o

e
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Cosmological data
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Motivations

Cosmological data

We are leaving in the solden age of S
st connaliae: CORE e o=
L UEDS o HTLH -l":ll"llll. 1;‘._1[:\];' ;+11.| S - - —~

now Planck:“The satellite was successfully Inunched at 13:12:02 on 14
Mayv 2009...7
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Motivations

UV-sensitivity

EFT approach: learn about higher scales studying UV-sensitive

o [u particle physics, e.g. proton lifetime constrains o

(1=

barvon-number-violating higher-dimension operators.

Page 11/141




Motivations

UV-sensitivity

EFT approach: learn about higher scales studying UV-sensitive

H=ETVA -|' =,

o3

o [n particle phvsics. e.g. proton lifetime constrains
barvon-mimber-violating higher-dimension operators.

o Analocously. inflation is a UV-sensitive mechanism. E.¢g.
Planck-suppressed dimension 6 operators (with natural
coefficients) can and _411L-~rh-;_111v do S 1l slow roll.
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Motivations

UV-sensitivity

EFT approach: learn about higher scales studying UV -sensitive

st t"-{i-'l' o,

o [n particle physics. e.g. proton lifetime constrains &
barvon-mimber-violating higher-dimension operators.
o Analogouslv. mflation is a UV-sensitive mechanism. E.g.

Planck-suppressed dimension 6 operators (with natural
coefficients) can and ;_;t*u-*l‘lt';lﬂ" do S il slow roll.

o [f we invoke a symmetry. e.g. shift symmetry. we are sensitive to

how and where it is broken.
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Observations
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Maotivations

Observations

Numbers that we want to reproduce:
e COBE normalization
' Az = (2.445+0.096) - 10~ and
L

spectral filt ny = 0.960 £ 0,013

e Y
£
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Observations

Numbers that we want to reproduce:

e e COBE normalization
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Motivations

Observations

Numbers that we want to reproduce:

e e COBE normalization
- _\;’C — (2. 445+ 0.096) - 10~ and

‘,\ spectral tilt ns = 0.960 + 0,013

ole Numbers that we want to predict /measure

I..
‘ e fensor mode fi‘“lz}]“_l'llt‘ r < (0.2, tensor

mode tilt

'S
‘

CLOC

e non-Gaussianity —4 < | S0
. —151 < ¥ < 253,
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Motivations

Observations

Numbers that we want to reproduce:

e o COBE normalization

\ : A% = (2.445 £ 0.096) - 10~ and

‘ spectral tilt ne = 0.960 £ 0,013

e Numbers that we want to predict/ measure

L
“ e tensor mode amplitude r < 0.2, tensor
mode tilt
@ [ +11—-{j1'.'lll.‘*hii'll_”_1' _“l' JLIHI L dU
| . —151 < f* < 253,

e features in the scalar spectrum
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Phepome=nclogy

Outline

0 Phenomenoloev of the effective model

3
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Phenomenclogy

The effective potential

[nflation is driven bv a real scalar
feld with [lu'l'hfi;ll

flr‘
Tﬁ ()] :r'fl}u:—'hl,n .'FHHIT]
\ J
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Pheromenclogy

The effective potential

[nflation is driven bv a real scalar
feld with poTe ntial

‘|'_ -1 ; V : il.1l

{ F — N e 'Il . —

¥ {()] _;I i MiL | 1ll"\( ;]
\ J

@ b <1 = monotonic potential

Iy

Y
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Phenom=nclozv

The effective potential

[nflation is driven bv a real scalar
feld with POt ntial

/ \
X7 = 3 g v

? I > l — ‘_un'l[h'l'i-l]i-‘ I]I]_l ]lft:‘ll

@ 0 > | gives large-field inflation. With g =6 ;'|_4-1|‘*rr"' il

Oin = 11M; one fits COBE. We will not discuss reheating.
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Phenom=nclozy

The effective potential

[nflation is driven bv a real scalar
field with Ina"i'hfi;ll

| . (O
TI- ()] :‘:fliuﬂ—'IJI{J.Fi'lbﬁ‘—_J

\ } / - I

@ b <1 = monotonic potential
@ © > | gives large-field inflation. With y =6 '_“_4_1:,.: and
0ir. = 11M; one fits COBE. We will not discuss reheating,.

o [ < My many short wripples. Different from the superplanckian
case that seems to be hard to achieve in string fhtirL‘ff.
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Phenome=nclogy

The effective potential

[nflation is driven bv a real scalar
field with potential

f

NZELN 8 b p 0.2

L',-_—rflﬂ_'lklfj IﬁiliH(TJ =
"n..J J 4y

@ b <1 = monoctonic potential

@ 0 > | gives large-field inflation. With g =6 '_“_4_1142.—' and

Qi ™ ll‘l[?-‘ one fits COBE. We will not discuss reheatinge.
o [ < My many short wripples. Different from the superplanckian
case that seems to be hard to achieve in ‘.-Tl'ih'_; r}l“*l','*-'-

o | '.“*l'iillliirl'bll'ﬁ per e-fi lllzi“'_ P s ;_II_*. f
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Phenomenclogy

Background evolution

111 ﬂtJVM rjv e.0.111. [“11Iu+utfh11ﬂ'ih b

zeroth order

i
= \ 2/3
'( ) \
3/ 2 VI i
0 — "' E= s
‘)
\ - J
e ; s
first order
E - == 5 [r[-'
p Dy =~ —.:fl_f"' n S T
g or | Lo
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Pheromenclogy

The effective potential

[nflation is driven bv a real scalar
feld with porte ntial

d 1 f () ) :
Vi -f:f‘f'i.:—'i;l,n'I'rnh{T] 7 :
\J J >
@ b < 1 = monotonic potential
@ © > | gives large-field inflation. With y =6 '_!|_4_1if,.-' and

0in = 11M; one fits COBE. We will not discuss reheating,.
o f < My many short wripples. Different from the superplanckian

case that seems to be hard to achieve in string theory.

e Osciallations per e-folding 7,4 ~ 1072/ f
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Phenom=nclozy

Background evolution

“_i- "'\lllri' r:_ji'- e.0.1. ["'l'T'll‘}-:l_Ii‘.'i ‘a il b

zeroth order

= \ 2/3
"{ 3/ 2 VI g ]
=19 )
*)
\\ = F
3 3 M
first order
- - = +: .’::H..
o D] =~ —30] " Opsin | —
= eF | e
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Phenomenclogy

Background oscillations

The (Hubble) slow-roll parameters oscillate

H r"nk)

€ — = " — '” T 'F--'.l-vr"." Cus

205  Oin j
= f L . [ op) T
= T = 1o T Nosci SN 't\ T; | i
.j.uj . ,

~ i,'—}—l..‘-;.;i'l” " il
s Fi

and can resonate with the i*t'l‘Tlll'L.-:l'iH'_l:« P
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Phenomenclogy

Background oscillations

T'he (Hubble) slow-roll parameters oscillate

€ — (/a0 Geatiib)

H ""Hk)
H~ \ [,

et COS| —
) A2 p £
- m J
£ . [og) nitthag
F = — ™ 1o T Nosei SIN | — |
-_'H I,|l g ) = | ¥
ST 3 i '
~ (+6Ghsin | — |
X £
and can resonate *.l‘ifl] Tll' l'“l'T1ll'|---!fiH=_Lr- .
Notice that 7 > € so one can not use slow-roll formulae to compute th

TTUrbations.
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Phenomenclogy

Spectrum of scalar perturbations

I'he oscialltions in the potential induce osciallations in the spectrim:

- -

v Mag—1 /

. f - :Iil
P,‘H;J:_—Ll—) l—?—.-".u{n'-r-(—_)
Vs .y
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Phenomenclogy

Spectrum of scalar perturbations

I'he oscialltions in the potential induce osciallations in the spectrim:

,-’f \ ns—1 r 1 ,!.i.‘_ﬁ
D\r]: —L|—] [—-—.—‘“.U\.t'l-:- —)
\ k. ! f]l

_
3
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Phenomencloey

Spectrum of scalar perturbations

I'he oscialltions in the potential induce osciallations in the spectrmm:

1 £k ng—1 r :  n -
pw':"":-‘l~|!—) l+r".u\n-.-(—.)

\,r'rl,

[ B\ " T\ 7 =
—A_| —) F
\ k.

e The frequency is simply o/ f
: @ We have ['u]ulrllﬁ'il I
alvtically at leadine order in b
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Phenomenclogy

Solution of the Mukhanov-Sasaki equation

Slow roll is not enough! We solve Mukhanov-Sasaki equation
perturbatively i b.
I'U 1[11["““1-1&‘ llt-il_‘-vi i“: f10Mms 1N T;lt‘ ﬁ';u CTTUI 1S

.l _\_T ['ll'rl‘ ( F,—“I_- ) .j;r )1

= I: | KI f- =

\J i J_ B I-jfr i |-,I ) g

Valid for @ > M. f < My and b < 1. Excellent agreement with
Nnerics.

JiR
(1.2 . l
if
J
1%
]
']
i s — permpil 0.03 0.06
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Phenomenclogy

Spectrum of scalar perturbations

I'he oscialltions in the potential induce osciallations in the spectrm:

- ¢

] f JFI\ | = "i.h
pﬁiﬁ.]:_—l_‘|—) 1!+r~._,,,\i.l.+(_]

&
3

e The frequency is simply o/ f
; e We have computed dn.
alvticallv at leading order in b
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Phenomenclogy

Solution of the Mukhanov-Sasaki equation

Slow roll is not enough! We solve Mukhanov-Sasaki equation
perturbatively in b
The '1111['““1-1&* of oscillations in the ﬂ}ii'r‘flllll IS

|
E = [ o= ) -
: _:[llrl‘(_—ll jﬁf-’.-i_;
- 1 ¥ 1 \ '-'r 'I"-':L ¥ 3 ¥ ._-
M. = —120\| ~ ~ 0y | P

\J ‘ J‘ T 'i'! 'in 1<)

Valid for ¢ > M. f < My and b < 1. Excellent agreement with
Nerics.

i1}
12 i
/
'
!
r
017
L
]
i —r it 0.03 0.06
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Phenomenclogy
Tensor modes

Large field model = detectable tensor modes

For 6 = 0 and using slow roll

r~ 0.0 R

This is within Planck sensitivity!
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Phenomenclogv
Tensor modes

Large field model = detectable tensor modes

: \ wsw For b = 0 and using slow roll

rr~ () U Ah
-y

' 9

This is within Planck sensitivity!

Oscillations

Oscillations in the tensor spectrum

are suppressed w.r.t. those in the € ~ €Q+ €oeci COS(Q/ )
scalar spectrum due to a hierachy N~ 10+ Nosei Sin(d/ f)

in the slow-roll parameters | — 1 ¢
”’JS{I oo asc: ¥/ o Page 38/141




Phenomenclogy

Solution of the Mukhanov-Sasaki equation

Flu‘l’ I 'H 15 IOt e "lf:_*ll! V\T[‘ ~ ll‘,'+- j\[111{3121[11r'{--.{";.'-lh.'i.,{i r‘[l'l:lfinil
perturbatively i b.
The amplitude of oscillations in the spectrum is

; _“T coth (r;\) .f;’ i
i, = —us.\\j

- ol l?-'\ f iy
= = |:'j N ]2 ) e
1 3] O )™ )

Valid for 0 > M. f < M, and b < 1. Excellent agreement with

..Ir]lr ]
NIINerics.
1]
.2 : ‘
/
/
Irf
0.1}
T
}
- ven L - - 0.03 0.06
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Phenomenclogy
Tensor modes

Large field model = detectable tensor modes

For 6 = 0 and using slow roll
r~ (.07 &

This is within Planck sensitivity!
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Phenomenclogy
Tensor modes

Large field model = detectable tensor modes

For b = 0 and using slow roll

r~ ()L (:'

This is within Planck sensitivity!

(s lllLT 100S

Oscillations in the tensor spectrum

are suppressed w.r.t. those in the € ~ €9+ €paciCOS(0/f)
scalar spectrum due to a hierachy  ~ 10+ Nosei sin(d/ f)

in the slow-roll parameters Yy
p ”'L"-Efj . 'E::'Sf'i oy f Page 41/141




Phenomenclogy

Bispectrum of scalar perturbations

Canonical single-field slow-roll inflation gives
undetectable. In fact
f
L )Ckz (). Hil #‘jl

|:|M;1_ 1|‘ :h'\-,h".f:l > = / I.Ilrl i -.“l--l : ||l ]tq..hlli !'-u..ﬁ'
4 Lo

where the intaractine Hamiltonian at order O is

B 'S ] +) -. I ; ,
/lrf--\‘kq_lrf"k"f__,“‘_'- _-—}i—'\, I'_jlk_l f_".k |

r "-l P E S . - 1'} f‘ : ._. : :
e .-:ir;"'--""- —t— —l l_h\- | '.','llll | r_-'l- \1. il _+_ e '--i-'\.. :I "_;\ = .
_? :;Ilr ll’
) iy
= il £0) \
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Phenomenclogy

Resonant enhancement of non-Gaussianity

Condition for the resonance

Schematically

3

‘-l-'lli']z-‘ E'H 'lllr — / 'l'(,- sinf wT e LT
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Phenomenclogy

Resonant enhancement of non-Gaussianity

Condition for the resonance

S ']Lli'llii-i B '.'-lli\‘

o3

*-;.‘il.-;n]:_-* M .'ln]* — /‘"f‘.- **i.ll T )i LT

L

The modes of the ['|+~1‘Fil}r:-ﬂii.-11
oscillate with a frequeney which is
stretched by the expansion from
M, until they leave the horizon H.
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Phenomenclogy

Resonant enhancement of non-Gaussianity

Condition for the resonance

Schematically

l-lli' L'HHli“."w of an [""I'Til}h‘-l_ril-ll
oscillate with a frequency which is
stretched by the expansion from
-U_,,.' until thev leave the horizon H.

where w is the (instant) frequency
of oscillation of €, .
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Phenomenclogy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the numerical computations is

— (NS, B 21
YW1 SkaSkg —'-)-l“' [\,hmn I | — T Fr—

3
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Phenome=nclogy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the numerical computations is

> - )2 . .
. —_— .‘}*‘ j fr f 11 = )
-“'ih_“"-h_f“"wh'; i Fay | | i) I"L lT:_I , a8 e —

3

“_li' HiZl Hf '"1-.“ resonant
non-G is

J]" £8 = e > '\ 2/
I ! .I -
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Phenomenclogy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the numerical computations is

‘ . — ‘) i il -;-’-l: i & f c =~ l =
= l\h-t‘hjtﬁh_; ; _— -.L] .1' ["L imn - 118
Iy

Large non-G?

I'he size of the resonant
non-G is @ Liner in b as for the Sp« yCETIIL

o Inversely proportional to f*/*

: ') h
Jr'r'_u — E‘f 3 ;I-
H \ 3 2
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P -ﬂer;ﬂm 'leOE‘I'

Resonant enhancement of non-Gaussianity
Size of the effect

A _'!nm’ fit to the numerical l‘TJIIl[llrhTi- s 1S

S j[\t I]- f _<in 2 log

= 1)
. - - rrp. Oon- .
non-G is P [_ill* T in b as for the spectrim
9 | e Inversely proportional to /=
. 4
JI.-.—_«. — I‘ f "|'.3' 3 9 {_}"\{j:l“rl-]llh “I}I”.\_u- rll ;l]_l '-.l‘_fl_l_} S Iujrli
‘) : : 1/9 I Spr etrium and in the hih[rl*{'fl‘llm
= ;f} ( : 1|I =
4 \H/
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Phenomenclogy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the numerical computations is

- 'I__"
< ; = '--'}-_1 :i.j \rl;— f =111
~ SK1SK2NKg are [- (k1kok3)? -

3

Large non-G?

I'he size of the resonant
non-C is @ Liner in b as for the spectrum

e Inversely proportional to f*/=

0 h
Jrew = 11 f \3/2 @ Oscillations appear aft all scales. both
) | _ 1/9 I spectriim and in the hih[n'{'rl‘llm
n— -_F lk i -4 | ' * * 1
=~ d H I.i @ Such non-scale-invariant signal has

not vet been co Jll.ll“ll'i‘it with the data.
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Phepomenclozy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the nmmerical computations is

< Gk Glplles > = (27

The size of the resonant

@ Liner in b as for the spectrum

non-G is
a 2 /9
e Inversely proportional to f*/<

4 h
Jres = 4(f6)32 o Oscillations appear at all scales, both
0 : 370 in spectrim and in the bispectrum
f W \ =
= —“(—] Rkl e R
1 \H) @ Such non-scale-invariant signal has

not vet been compared with the data. |
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Pheromenclogy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the numerical computations is

S Gk SkaSks - = | ZA

“_li' Hi}il Hf '"Lr' resonant

non-C is @ Liner in b as for the spectrum
() A e Inverse =]j.' pProp rtional to f /2
Jres = Eﬁ e Oscillations appear at all scales, both
= ; L 3/2 in spectrum and in the bispectrum
= EF (E' @ Such non-scale-invariant signal has

not vet been {*{JII_lllHll'i‘it with the data.
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Phenomenclozy

Resonant enhancement of non-Gaussianity
Size of the effect

A good fit to the numerical computations is

< Gk SkoSks -~ -

The size of the resonant

non-G is

@ Liner in b as for the spectrum

= 2/
e Inversely proportional to f*/=

4 h
Jres = 1(fo)32 o Oscillations appear at all scales. both
e in spectrum and in the bispectrum
7 RS S
i ( T_J e Such non-scale-invariant signal has

not vet been compared with the data.
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Phenome=nclogy

Resonant enhancement of non-Gaussianity
Size of the effect

A _'_‘l-ml fit to the numerical l'HLu[rll-*nTi- s 1=

- _ )2 ' \
— (25 6K ) B F..... sin [ 22842

{ k ,:‘-_L-,I \L J

~ Sk Sk SAg

l-]_ll' HiZl Hf 'lir' resonant

non-G is @ Liner in b as for the T‘]'i""'i'rl"'llll
r e Inversely proportional to f*/~
: . ) - .
Fres = | “f 413/2 e Oscillations appear aft all scales. both
9 179 in spectriim and in the bispectrum
e 7 sl i X P | e
s i | ( H* fl o -‘f"[{'h non-scale-1mmvariant signal 11“5

not vet bheen {*ululmrm[ with the data.
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Phenomenclogy

Comaparison with the data

J Ii NS0T oM l- . T e, W 'ﬂ'ﬂi SO0 1{111 QY F']i:-!m'k . {_}ari'_lzlfl'- M=

are 1!»1'- :i -;|] l‘ LI l [ ot li rl{‘.
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Pherome=nclogv

Comaparison with the data

@ lensor modes: r = 0.07. we will soon know (Planck). Osecillations
are probably undetectable.

@ Spectrum of scalar modes: n, = 0.975, in good agreement with
WMAP.

3
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Phenomenclogy

Comaparison with the data

@ lensor modes: r =~ 0.07, we will soon know (Planck). Osecillations
are probably undetectable.
@ Spectrum of scalar modes: n; = 0.975, in good agreement with

WMAP.
@ So far there is no evidence for oscillations in the scalar spectrum.

Jh

Data vield an upper bound bHf < 10~ for f ~ 10—2, “
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Phenomenclozy

Comaparison with the data

@ lensor modes: r = 0.07, we will soon know (Planck). Osecillations
are probably undetectable.

@ Spectrum of scalar modes: n; =~ 0.975, in good agreement with
WMAP.

e So far there is no evidence for oscillations in the scalar spectrum.
Data vield an upper bound hf < 10~ for f ~ 10-2 &

o non-G can be large for small f. No one has put bounds from the

1Lilr.'l.
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Pheromenclogy

Summary of the phenomenology

@ [he effective P tential is [lhi‘ll-rilr_l’Il-:li'__',it':f“.'.' Very appe i'li[lﬁl-
Agrees with current data and implies potential exciting signals:
tensor modes r =~ (.07, oscillations in the scalar spectrum and

non-GQ. o
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Phenomenclogy

Comaparison with the data

@ lensor modes: r = 0.U7. we will soon know (Planck). Osecillations
are probably undetectable.

@ Spectrum of scalar modes: n, = 0.975, in good agreement with
WAMAP.

@ So far there is no evidence for oscillations in the scalar spectrum.

Data vield an upper bound bf < 10~* for f~10"2. @

@ non-G can be large for small f. No one has put bounds from the

1[;1T.'I.
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Pheromenclogy

Summary of the phenomenology

@ The effective potential is phenomenologically very appealing.
Agrees with current data and implies potential exciting signals:
rensor modes r =~ (.07, oscillations in the scalar spectrum and

non-G. 1
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Phenomenclogy

Summary of the phenomenology

@ The effective potential is phenomenologically very appealing.
Agrees with current data and implies potential exciting signals:
tensor modes 7 ~ 0.07. oscillations in the scalar spectrum and

Tl |l[v[;_1:, o

e

e If this model is correct. what do we learn about the high energy

-
¥

E I[J_'\. "‘-"ii \"‘
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Phenome=nclogy

Summary of the phenomenology

@ [he effective P tential is IJ}J,'E‘II*rlhl‘ll'!li'_;it':i“;‘ VEry appe aling.
Agrees with current data and implies potential exciting signals:
rensor modes r = .07, oscillations in the scalar spectrum and
non-G. o

@ If this model is correct. what do we learn about the high energy
! hvsics”

o Which svmmetry protects the flatness of the potential for

superplanckian range of vanation of o7
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Phenom=nclozy

Summary of the phenomenology

@ [he effective Pt rential is [lhf‘ll-rlli_l’IE-:l:n,.',it':l“l'.' Very appe; llll“
Agrees with current data and implies potential 1-.x.{-1r11|_-_~ signals:
rensor modes r = .07, oscillations in the scalar spectrum and

non-G. -

@ [f this model is correct. what do we learn about the high energy
| hvsics”
o Which symmetry protects the flatness of the potential for

superplanckian range of variation
¢ At which scale and how is this symmetrv broken’
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Phenomenclogy

Summary of the phenomenology

@ [he effective potential is phenomenologically very appealing.
Agrees with current data and implies porential exciting signals:
tensor modes r =~ .07, oscillations in the scalar spectrum and

non-G. _\ﬂ

-

@ [f this model is correct. what do we learn about the high energy
phvsiecs”

o Which svmmetry protects the flatness of the potential for
superplanckian range of variation of o7

o At which scale and how is this symmetry broken”

o How generically are the wripples! Which seale sets the frequency

and amplitude?

Page 66/141




Pheromenclogy

Summary of the phenomenology

@ The effective porential is phenomenologically very appealing.
Agrees with current data and implies potential exciting signals:
rensor modes 7 = .07, oscillations in the scalar spectrum and

non-G. -

@ [f this model is correct. what do we learn about the high enerev
physics”

o Which symmetry protects the flatness of the potential for
superplanckian range of variation of o7

o At which scale and how is this symmetrv broken”

o How generically are the wripples” Which seale sets the frequency
and amplitude?

We are going to present a possible embedding of this effective model in

string theorv and address the above questions.
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Phenomenclogy

Axions in field theory

@ Axions are scalar fields with only derivative couplings and might
arise e.g. from the breaking of a U(1) svmmetry

3
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Phenomenclogy

Axions in field theory

@ Axions are scalar fields with only derivative couplings and might

arise e.¢. from the breaking of a U(1) svmmetry

@ Hence they enjov a continunous shift symmetry at all orders in
perturbation theory

o\r ) — o\r) + constant
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Phenomenclogy

Axions in field theory

@ Axions are scalar fields with only derivative couplings and might
arise e.¢. from the breaking of a U(1) svmmetry

@ Hence they enjov a continnous shift symmetry at all orders in
P rturbation the orv

o

Y

o\x ) — ol.r) + constant

o Continuous shift symmetry is broken to a discrete shift symmetry
bv non-perturbative effects
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Pheromenclogy

Axions in field theory

@ Axions are scalar fields with only derivative couplings and might

arise e.g. from the breaking of a U(1) svmmetry

@ Hence they enjov a continuous shift symmetryv at all orders in
perturbation theory

oh

olr — alr + constant

o Continmous shift symmetry is broken to a discrete shift symmetry
bv non-perturbative effects
@ The axion decay constant | determines the periodicity of the
canonically normalized axion
| . : { @

L —{do "-i-_"itr-ih. — | = O\.r —-'”:_."I—'}._._f.
= \J.
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A string thecrv model of axion monodromy

Outline

3
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A string thecrv model of axion monodromy

Axion in string theory

String theorv seen from a low energy 4D observer has in general many
AXIONS:

e \odel independent axions such as dualizing B, or C,,
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A string theorv model of axion monodromy

Axion in string theory

String theory seen from a low energy 4D observer has in general many

AX1011S.
o \lodel independent axions such as dualizing B, or C,,

@ \odel dependent axions aring from integrating a p-form over a
Iy

h )

p-cvele of the compact manifold
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A string theorv model of axon monodromy

Axion in string theory

String theorv seen from a low energv 4D observer has in general many
AXIONS:

@ \Model independent axions such as dualizing B,,,, or C,

@ \odel dependent axions aring from integrating a p-form over a
' N

-

p-cyele of the compact manifold

@ Lhe shift symmetry is valid at all order in perturbation theorv but
broken non-pertubatively, e.g by world-sheet instantons or brane

nstantons
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A string theorv model of axion monodromy

Axion in string theory

String theorv seen from a low enerev 4D observer has in general manv
AXIOTIS:

@ \odel independent axions such as dualizing B,,,, or C,

o \Model dependent axions aring from integrating a p-form over a
Iy

£

I'_* F‘_‘-l“ OL TEU‘ 'lILI"-Tl'T ill.‘ll]i:l |ll

o [he shift SVInnietrv Is valid at all order in e rturbation theorv but
broken non-pertubativelv, e.g by world-sheet instantons or brane
instantons

@ [he axion decay constant [ is determined bv geometrical data of

the compactification
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A string theorvy model of axion monodromy

Shift symmetry

Consider the 4D axion b(x) from B;; = (1 )w;; for some internal
two-form w. In (bosonic) closed string theory, the vertex operator for b
particles at zero momentum integrated over the world-sheet 1s

'l‘ | ’.1_ = IJ. = / h;'_ _TL_J_- ':‘-j.t *\- I_J'-_,‘\-.. *.f.’i-’ — / E _?"!1
of s L8

[n perturbation theorv the world-sheet wraps a topologically trivial
cvele in the target space. hence V(0) = 0. i.e. no non-derivative

coplings.
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A string theorv model of axion monodromy

Shift symmetry

Consider the 4D axion b(x) from B;; = b(x)w;; for some internal
two-form w. In (bosonie) closed string theory. the vertex operator for b
particles at zero momentum mtegrated over the world-sheet 1s

3

.l . | !‘.1. — IJ' — / h.r: -T"'.“.f .}‘.'J.t _.\_. r_j_.'_\-ll .-f..r'rr'lﬂ:j == / B
of s ‘ o r"'
In |:'-'L‘T1]1'I|.':_tiuil thes TV the world-sheet wraps a In[:--rli-,;i{':-u_'.' rrivial
i".'i'lt* 111 Tllvr' T.‘H'}_‘;*'T h['-;lt'[', l]l'“('i' I'IU = II: o []1n1]—1]+ -'L‘!_‘i';tl"i*-.'w
coplings.

Breaking of the shift symmetry

Two ingredients can invalidate the above arewment:

o Non-perturbative effects
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A string theorv model of axmon monodromy

Shift symmetry

Consider the 4D axion H(x) from B; F — h(a Wi for some infernal
two-form w. In (bosonic) closed string theory. the vertex operator for b
particles at zero momentum integrated over the world-sheet 1s

¥ik=0)= /

o I3

hl.'i 'TL"': }Il'_-,l *Y J'_j : ‘\- J __;"'{. .h == / E h

In perturbation theorv the world-sheet wraps a topologically trivial
cvele in the target space. hence V(0) =0. i.e. no n~-u-t]*-‘r.‘a‘r:lrlrw
& -I}lil.lj.!_.‘-.

Breaking of the shift symmetry

T'wo ingredients can invalidate the above arenment:
o Non-perturbative effects

@ World sheet with boundaries. i.e. D-branes
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.'.'l StﬁnE thE': TV ]]11}1'1&[ j-f AXTOn II-IJI:I':I‘II'GII‘.'

A cartoon of the model

We consider Type IIB (orientifolds) because moduli stabilization is

Hore -It Vi h|n. 'I”‘l-

Ih

T
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A string theorv model of axion monodromy

A cartoon of the model

\‘.‘i' [‘l'l]_f"'rj.'l T:_l‘l- I_-."'..']nl [IB I: -}]_'i_ll_- ]_”-]_f:l 1}_[::-.} I“‘“I-‘.‘.IL"" TNOH hlll "‘rtl'hl_l.{lrll n i_\
more developed.
o [n the N = 1. 4D effective theory there is an axion ¢(z) coming

:11' I'.I.--]- l||EF |"_ '; lLlrlﬁ-il‘:?ri |l OV 1— a '-T_I'r‘] ."“-..".'{L-ll' E e
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A string thecrv model of axion monodromy

A cartoon of the model

We consider Type IIB (orientifolds) because moduli stabilization is
Hiore dev ‘I' '[Htl.

@ In the N = 1. 4D effective theorv there is an axion ¢(z) coming

from 10D ' inteerated over a two-cvele X -
o Wrapping a 5-brane over X induces a potential for ¢(x

world-sheets with boundarv).
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A string thecrv model of axion monodromy

A cartoon of the model

We consider l-_'x']"' [IB (ortentifolds) because moduli stabilization is
Hiore { Ii Vi 'li. Jal 1[_
o In the N =1. 4D effective theorv there is an axion ¢(x) coming
from ].l.”j C 1; Inteoratt 'Il OVeT a TWio=( '_'-,'{'lt E

Iy
N

o Wrapping a 5-brane over ¥ induces a potential for ¢(x
world-sheets with boundary).

2 [ffhr 5-1 rane IS a w 1'r eelonl. T'Lil‘ [H-T-.‘LlTi;ll |;‘:u {‘- to "‘;.'.lllli‘
inflation (COBE normalization
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A string theorv model of axion monodromy

A cartoon of the model

We consider Type [IB (orientifolds) because moduli stabilization is
more developed.
@ In the N = 1. 4D effective theory there is an axion ¢(x) coming
from 10D (5 integrated over a two-cyele X =
@ Wrapping a 5-brane over ¥ induces a potential for ¢(x
’,;nl‘lr}-ahw s “.T._;Tli IJ-H”:IIE.'II'T }.
e If the 5-brane is a warped region. the potential leads to viable
inflation (COBE normalization
@ The moduli stabilization 4 la KKLT does not spoil the shift
svmmetry.
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A string theorv model of axion monodromy

A cartoon of the model

We consider l-_'f]'-:' [IB (orientifolds) because moduli stabilization is
lHore -It Vi .].. e 1[_
o [n the N =1. 4D effective theory there is an axion ¢(z) coming

from 10D ¢ 1; iLHl**_’_L‘;tr: d over a twi H'_Ti'l& ) J =

@ Wrapping a 5-brane over ¥ induces a potential for ¢(z
world-sheets with boundary).
e If the 5-brane is a warped region. the potential leads to viable

inflation (COBE normalization

@ The moduli stabilization 4 la KKLT does not “1'”” the shift
SVIINerry,

@ _\\-Hil-;u*l‘ﬂn‘?aaiTiT-' corrections (e.z. to Fh+ I‘;f‘tld['l' DOTH _Hiul] 1T hl{'q-
spall Wl'i[i[:ﬂ-w
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A string theorv model of axion monodromy

Linear potential for the inflaton

The shift svmmetry ean be broken in the presence of boundaries.

(_II il;‘*ill"l' il D-h--' ralle 11'1"1['-[11-11 Ol & H‘i'n-t".'rlf‘ S

The DBI action

i

_‘.!-.! / 'I'FF' Fi _'I) k{ :_ l{' .(':"_'v'.’m' = = B."Hlj' 3k
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A string thecrv model of axion monodromy

A cartoon of the model

We consider Type [IB (orientifolds) because moduli stabilization is
more developed.
@ In the N = 1. 4D effective theory there is an axion ¢l z) coming
from 10D 5 intesrated over a two-cvele ¥ =
o Wrapping a 5-brane over ¥ induces a potential for ¢(z|
world-sheets with boundary).
o If the 5-brane is a warped region. the potential leads to viable
inflation (COBE normalization
o The moduli stabilization 4 la KKLT does not spoil the shift
svmmetry.
o Non-perturbative corrections (e.g. to the Kihler potential) induce

?*lll-?l“ ﬁ‘l‘ilil]:.sﬁ
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A string theorv model of axion monodromvy

Linear potential for the inflaton

The shift svmmetry can be broken in the presence of boundaries.
Consider a D5-brane '&'1"1["[“"1 on a two-cvele Y.

['he DBI action

= I., / i:; - i _'I) \_Il :-. |{' | ,'I:.‘_"i””l e B.'.'H-I‘ ' T:h
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A string thecrv model of axmon monodromy

Linear potential for the inflaton

The shift svmmetry can be broken in the presence of boundaries.

':_lu il:“*ilL‘l‘ l D»-i--'}l':-l“i‘ 'ﬂ.'l"lll[}i-ll 011 a T\‘.'ll-f".'l'h‘ E

['he DBI action

Fe

_J__.’ / ||; - Fi _II) ," __-I{ L._ -1' .,":-;-'-Hff - B.'."HJ' | *h
¥

The shift bixr) — blzx) —const of b(z) = ),_ B_

stores some potential energy.
VD) =TsV I+ ~Tsh for larve b

['his generates the linear inflaton potential (and
break SUSY). COBE normalization and control
require to red-shift [ 0
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A string thecoryv model of axion monodromy

4D N =1 data

X7

ywe are ij_lrl_‘l'- ~-«rm| ill ()3/( )T '-I.1iil}li-\'.'1"l

orientifolds ({2 = —{}).
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A string thecrv model of axmon monodromy

4D N =1 data

We are interested in O3/07 Calabi-Yau
orientifolds [a{) = —(}).
| o We assume complex structure moduli
tipkt =1 and the dilaton have been stabilized

by fiuxes at a higher :-{':_1_[l',$n

! . -

Page 91/141




A string theorv model of ascon monodromy

4D N =1 data

TI"

We are interested in O3/07 Calabi-Yau
orienrifolds (¢{) = —{1).

| | o We assume complex structure moduli
stiple! 28 _ and the dilaton have been stabilized

}_]T._ ﬁ]_[x'_r S at a [_U..tll' T 1-""'[.“[“';‘!1

i i 1
I i L -y

T J_.I - = s g '+
e h, orientifold-even Kahler moduli from two- /four-evele volimes
¢H[[_}_I[-':":1ji‘ii ilT ’.f I_;
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A string theorv model of axion monodromy

4D N =1 data

We are interested in O3/07 Calabi-Yan
orientifolds ({2 = —(}).

| o We assume complex structure moduli
B =3 and the dilaton have been stabilized
by fluxes at a higher s 'H[l'._.ﬂ

-

A, = e :
e i, orientifold-even Kiahler moduli from two-/four-cvele volumes
complexified by _f.f 4

o ™ ortentifold-odd Kahler moduli from | By and | (s
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A string theorv model of axion monodromy

4D N =1 data

We are imterested in O3/07 Calabi-Yan
orientifolds (a{) = —(}).

o We assume complex structure moduli
] | and the dilaton have been stabilized
by fluxes at a higher h{':_ih'.ﬁ

-

e 22 .
e h orientifold-even Kiahler moduli from two-/four-cvele volumes
complexified by 'f.f 4

I J_l . - i iy 1 I’ Y
o ™ ortentifold-odd Kahler moduli from | By and | (s

Supermulfiplets

: 52 \
il S Ca i
( = 3 ¢ — 11— ’
ls /
= = -l-"' . ' N ( AN
_ll ¥ — IH] T ._)I I.-l._" % '_f',-._l'}..-(_l |(_f — L7
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A string theorv model of axion monodromy

4D N =1 data

The tree-level Kahler potential and superpotential
n = —flw;l_,t;:—:’luj; —Caf~T .G {f.{_r]-' (1.G)

)

W = W

* and b* enjov a shift ssmmetrv (world-sheet argument). N&rseale
SErcetTire ot I\: — f;-: are not -«“.‘-i.-]'“;fui_
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A string theorv model of axion monodromy

4D N =1 data

T""'

We are interested in O3/07 Calabi-Yau
orientitolds (a{) = —(}].

| o We assnme complex structure moduli
T — and the dilaton have been stabilized

' by Huxes at a higher scale.

I | ' )il ' T iy

T l.l - =) e 1 £ '+
o i, orientifold-even Kahler moduli from two-/four-cvele volhimes
complexified by [ Cy

T

A . . 1 B - ( f P
o " ortentifold-odd Kahler moduli from | By and | (s

Supermultiplets

E ’{f \
v} Tt "5, i =
f_r == 3 L — ’ .
/
ll
2 s i Js 3 ’ =
J_* — {2 i m :f Te ' | -1 _I",-.j-}..{_l |(_I = ‘f_rf
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A string theorv model of axion monodromy

4D N =1 data

The tree-level Kéhler potential and superpotential

= . 1 T T :
n = —_}ll__lf-:: _;}[l"_. —Lai v (T.Glw Llfrr' (1.G)

]

-

W = W

¢* and b enjov a shift ssmmetrv (world-sheet argument). N

Né&éseale
SEcnre oL ]\: = f:.: are not -.“;-}_«j“;fnl_
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A string thecrv model of axion monodromy

4D N =1 data

The tree-level Kahler potential and superpotential

P,
1
-
Yy
[—

—21 44 l*f-: = —2 ll!_',_'_l —C it v (1.G f'-{ .G il-'ﬁ ': I.G)

W — W

¢ and b* enjov a shift ssmmetrv (world-sheet argument). Nérscale
structure of A = I, are not stabilized. Non-perturbative corrections,

from ED3 or gaugino condensation on D7's. lead to

l

W=Wo~) A %l

Ho—_

which stabilize I
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A string theorv model of axion monodromy

4D N =1 data

The tree-level Kahler potential and superpotential

K = —2logVg=-2log |—Cos,v" (1.G)v"(I.Gp'(1,G)
i

-

>

¢ and 6" enjov a shift SYImmetTv (Wi rld-sheet argument). N&rscale
structure of A = T, are not stabilized. Non-perturbarive corrections,
from ED3 or gaugino condensation on D7's. lead to

1

h,
W=Wy+) A

—1

which stabilize [,

1

Non-perturbative breaking of shift symmetry

Non-perturbative effects could spoil the shift symmetry. In fact they
., induce an n-problem for %, analogous to D3-brane inflation. S—




A string theorv model of axion monodromy

Moduli stabilization

I he supersvmmetric conditions ensuring a minimam are

O
8 =— ILW——4~A.08. B W —
2VE
e i | tf:,-f'” 'E}
0 = DW=W -—_— P
VE -

o D W =0 fixes T}, (complex equation)
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A string theorv model of axion monodromy

Moduli stabilization

I'he supersvmmetric conditions ensuring a minimum are

-
g — fl,.,[’.':—_—l,..f,“ P _H_ﬂ‘
~VE
P
0 = D H‘:[T.'-""l—
: Vg

o D, W =0 fixes I, (complex equation)

9 [}”H' — | ﬁ_’{-‘-w Onv ht = ()
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A string theorv model of axion monodromy

Moduli stabilization

I'he supersymmetric condifions ensuring a minimuam are

DW =—-A4_a,e %' — -

== — — A ——
ZVE
E - _f.l.-l '!l
TR Y N el ”

@ DWW =0 fixes T, (complex equation)
2 [}”H' = () fixes onv % = ()

® ° ‘ril_ ‘ “1 \ "_Li[.'f SYININetTy

Non-perturbative breaking of shift symmetry
It is cruecial to know what. how and when breaks the shift svmmetry.
Moduli stabilization a la KKLT is incompatible with 5 shift symmetry.
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A string thecorv model of axmon monodromy

The axion decay constant

Which values can f take? Direct KK reduction from Cs =2 /27

'_*ii't -

)
’,_‘ G | 1_4. " L.‘
—— == : -‘t“\_
. *
Uk Ve \(2r)0(@')* ] Vi
.5“'"':1
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A string theorv model of axion monodromy

The axion decay constant

|

Which values can f take? Direct KK reduction from Cs = ¢(x)w

oIvVes

f‘j (s —J [ ‘. i L ) I.::
—s = = . = ——
\ ': WVE \ i a’ ) Vi

5

2@ = C MEKggloGP
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A string theorv model of axion monodromy

The axion decay constant

Which values can f take? Direct KK reduetion from Cs = ¢(x)w/2

oIves
_)rj U\—: / ,..4.. G \) L:l
Uk We \2r)%')? /]  VE

3

Axion decay constant in string theory

The axion decav constant is given in terms the infersection nmnbers,
, geometrical data of the compact manifold. e




Constraiots and phenome=nclogy

Outline

[ T‘-H

@ Counstraints and phenomenology
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Constra:nts and phenomenclogy

Constraints from the moduli stabilization

A series of constraints follow from consistency and computability
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Constra:ots and phenomenclogy

Constraints from the moduli stabilization

A series of constraints follow from consisteney and computability

small coupling = ¢, <1

JO

{ : e

small world-sheer instantons = —
v 5s
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Constra:mts and phenomenclogy

Constraints from the moduli stabilization

A series of constraints follow from consistency and computability

small coupling = ¢ <1
small world-sheer mstantons = ® > —
NP
no higher instantons = f \T with _1\-., E D 7-branes
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Constraiots and phenomenclogy

Constraints from the moduli stabilization

A series of constraints follow from consistency and computability

small coupling = ¢, <1

small world-sheet instantons = o > —=
no higher instantons = T, > = with N, < 50D 7-branes

LA l‘ ST ' ']_l_L':-‘-Tl' 11 — ‘ j OCMB ) < z{”:‘_'ﬂ-‘f
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Constra:iots and phenom=nclozy

Constraints from the moduli stabilization

A series of constraints follow from consistency and computability

~
4
—

small coupling

small world-sheer mstantons = " > —
.2 - L. e : \ NT G )
no higher instantons = | S with Nag S k) 7-branes
destabilization = V(i 'CMB ) < “nn,‘uf
High scale inflation and KKLT stabilization lead an upper bound on

‘-:. i li l'”ﬁ-tl |" ]I.]....I ]. ITe g -l-"rj'i"rr
( YT /s
_;! 4 v — % [y ( v j ]
. r 11.1) —4 o N
1’!‘_: = h_ -,..I _'_II:C J_.t\' l'} &
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Constra:ots and phenome=nclozy

Constraints on the axion decay constant

I'vpically f < My. no "Natural inflation™ in string theory.

Page 112/141




Ceonstra:ots and phenome=nclogy

Constraints on the axion decay constant

I'vpically f < M. no "Natural inflation™ in string theory.
A large vev of ¢(x) corresponds to a large amount of flux | Ca. Hence
llll' -jwl-l.ﬂlt CaITIes f\_,. — f“f units of D3 t'h'-ll“_*i : 'I_hi:ﬁ "h:il_"_'f‘ does

not drasticallv chance the backeround when A
J_]l—__ I .“}; v
W J . 49Gs
\ Th X — — 1
lT'r,'s. .\I.l R_
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Constra:nts and phenomenclogy

Constraints from the moduli stabilization

A series of constraints follow from consistency and computability

|
L
—

sinall ¢ rll}ﬂillj___

|
|

small world-sheer instantons

e = \ . AT -l }™ |
no higher instantons = I, > == with N, < 506D7-branes
| (BN l‘ ST I Ilﬁl‘f.‘tﬂl i1 — ‘ ! OCMB ! < gr”;,',f

High scale inflation and KKLT stabilization lead an upper bound

the volume (lower bound on m, /Ay )
f o 4 e i
= {3
> g — ]
i 9
\ <£Ys
VE < A" Jg:1.8-1 A
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Constrants and phenomenclogy
(Constraints from the moduli stabilization

A series of constraints follow from consistency and computability

|

small coupling gs < 1

:'-Hlilﬂ ‘ﬁ'nl’lt_l-ﬁhi‘i“T i_lle;!_IlTllLlh — O - —

no higher instantons = T, > Y= with N, < 50WD7-bramnes

no destabilization = r"-?'f_'_UB' < E*fmod

High scale inflation and KKLT stabilization lead an upper bound on
the volume (lower bound on m,/AMy)

(v®11. /0,
T < _r'_'Hllll.l'( M"..Sj
P ~ ) u )~ .
\ —JJ.- J
LNy — o
.l'_E h “ ",j_\_- _L.:" 1')4
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Constraints and phenomenclogy

Constraints on the axion decay constant

Tvpicallv f < M. no " Natural inflation™ in string theorv.
: [
A large vev of ¢(x) corresponds to a large amount of flux | Cs. Hence

flll' -'J—Ifl'.'tm 1':l‘.‘1‘ir*- ,\_, =9 '}"f lllii,t"" of D:" t'll'—ll‘*_*i - flll"h ( l Alroe ti' s

not drasticallv chanee the backeround when
R+ f ) e
J | i ="
N, =
; |~"‘,'~. .1[}--.: R

Lower bound from absence of backreaction

A lower bound from the above constaint 1s T l”-.'!.
LW :.}g &4 o>
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Constra:nts and phenomenclogy

The amplitude of modulations

In general there are non-perturbative corrections that break the
contimonus shift svmmetrv of ¢(x) to a discrete shift svmmetryv. They
superimpose wripples on the linear potential

3
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Constra:ots and phenomenclozy

Constraints on the axion decay constant

Typically f < M. no "Natural inflation™ in string theory.

A large vev of ¢(x) ¢ r['u-n[u.-m':h to a large amount of flux | Cs. Hence
the 5-brane carries N, = o/27f units of D3 charge. This charge does
not drasticallv change the bac L--nlLul when &
e 5o F N
¥y — — :
{ I',‘». .\1}.1 E?_.

Lower bound from absence of backreaction

A lower bound from the above constaint is ! - >
L
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Constra:nts and phenomenclogy

The amplitude of modulations

In general there are non-perturbative corrections that break the
contimious shift svmmerrv of ¢(x) to a discrete shift symmetrv. Theyv
superimpose wripples on the linear potential

€3
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Constraints and phenomenclogy

The amplitude of modulations

In general there are non-perturbative corrections that break the
contimious shift svmmetrv of ¢/x) to a discrete shift svmmetryv. Thev

superimpose wripples on the linear potential

£
-

@ F-term corrections (A ) are S 1 U rically present. Ihev need
instantons with four fermionic zero modes. e.g. non-BPS
instantons. Few is known due to the lack of holomorphicity. We

malke the educated guess

= -

P

[\::—jl“}_‘;[l,i!f_"—}—f =L cosle) :—'jiu'_i l‘}d'—}—;_x"" COsLC)
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Constra:nts and phenomenclogy

The amplitude of modulations

In general there are non-perturbative corrections that break the
contimious shift svmmetrv of ¢/x) to a discrete shift svmmetrv. Thev

superimpose wripples on the linear potential

o
-y

e F-term corrections (K') are generically present. Thev need
instantons with four fermionic zero modes. 6.0 non-BPS
instantons. Few is known due to the lack of holomorphiciry. We
make the educated guess

— 1

[’1:—_}111'_,[14-“}_\‘ “=UL cosle) :—'_;Jiuﬂ_l L‘_;:'—}—r_‘-"" COsL )

o D-term corrections (W) should be holomorphic. They can arise
from instantons with two fermionic zero modes It is still
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Constra:nts and phenomenclogy

The amplitude of modulations

The result of the moduli stabilization is

4 2%

/ -
7 = XFT}
vSIUUGRA — f{r}ruw:— | 1 T ¢ e
\ Ve +/Os

-.I'I_
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Constraints and phenome=nclozy

The amplitude of modulations

The result of the moduli stabilization is

f . 4 P \
]; S :JU_‘i — f{i’?.'r'#‘: ! I +‘ TUEDL _'-_"I.—. '”-I- s )
\ ( (g J _
L _?11?
Hence the estimate size of the w |_,:_,|,.ﬁ IS
r Sepy 3 2%
;?r'( — { = _— L-_ .F'_+_
{ iri'i v/ r!'l-- =
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Constra:mts and phenome=nclogy

The amplitude of modulations

The result of the moduli stabilization is

(, : 1 '_': \
1; ST :;J_". — f{r}ruwf i l + { ChERLL __1— |"+ {im={ }
& " ”I\' r,
: N J J":..
Hence the estimate size of the w ] -_.|,.ﬁ IS
r S 4 2=x
;’.’F — 3 - *_'__:*Jr-. O
1 "11"| 3 rli-»

o Exponentially suppressed in
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Constra:nts and phenomenclogy

The amplitude of modulations

The result of the moduli stabilization is

f - 4 2% \
1; Q] 'i':.':..l — f{”“_ﬂ: | I + { e = 1 _:,u'_ |"+ COS }
I". U, ”I-: J .
v 3:5,
Hence the estimate size of the w i :_.[,.‘ IS
f s 4 2n
;;‘,i‘-: - e ‘d-q—_":"l." L4
I.r' _L ';1{1 'u'r!,'h

o Exponentially suppressed in »™.

e Enhanced bv hich moduli stabilization barrier.
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Constra:nts and phenomencloey

Higher derivative terms

As our background solution involves rapid oscillation, one might ask if

=

hicher derivative terms are under control. The answer is affirmative
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Constra:ots and phenomenclozy

Higher derivative terms

As our |liil'l\l;ﬁjl’llllllil solution involves l'-'l]riil oscillation. one ;lli;h' ask if
higher derivative terms are under control. The answer is afirmative
Known string theory higher derivative corrections (similar to
Riemann®) lead to

where M, = m.L* and Mg =m L[>~
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Constraints and phenomenclozy

Higher derivative terms

=

As our background solution involves rapid oscillation. one might ask if
higher derivative terms are under control. The answer is affirmative
Known string theory higher derivative corrections (similar to
Riemann®) lead to

€3

o t"u‘—-L‘;‘w.:_.,:nrr

3 (1 ) )2 l_“ll \
4 ( : g | L il
a I —'nrw‘f'—I Q) T Ca 3 1 ( L] e o
/ ¥ M1z | i /

where M, = m,L* and Mg =m,L[>*.
Evaluatine these on the oscillatinge solution one finds that thev are

suppressed bv powers of
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Constraints and phenomenclogy
Higher derivative terms

As our backzround solution involves rapid oscillation, one might ask if
higher derivative terms are under control. The answer is affirmative.
Known string thes v hi;.‘.ht'l‘ derivative corrections {q_imﬂur to
Rif--mr_-muj‘ ) lead to

S = Sp+ -Slh:ghc*r X
- 1 1 ; _ (do)* ~ (Oe)? \
— . —'-J: (4 } iy — | G | ( '_ = :

where M, = m,L? and Mg =m, 32
Evaluating these on the oscillating solution one finds that they are
Hl.lppl‘l"hﬂ"{l }ﬂ POWETS ¢ ]f

~— < M
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Outline
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Conclusions

Conclusions

o Cosmology offers a lot of new data about energy scales that we

Cal Dot I ‘:!-'-11 - lT]lr],"ﬁ.‘i*-ne'.

h

Page 132/141




Conclusions

Conclusions

o (i hllalrl-r'_"j.' offers a lot of new data about energy scales that we
Can not l't":n'-jl -JTl]r],"'u.Ti-w_
o Embedding axion monodromy inflation info string theory provides
o

some insight into the origin of the Hatess of the pofentia® i.e. shift

svmmetry.
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Conclus:ons

Conclusions

o r-‘uiul-r-_'-‘*.' offers a lot of new data about energy scales that we
Can not 1'&‘:!-_'-;1 'Itllt'i-_ﬁ._"._i"ﬁi‘_

o Embedding axion monodromy inflation info string theory provides
some insight into the origin of the Hatess of the potentiaf i.e. shift
svmmetry.

@ We have studied the non-perturbative breaking of the shift
symmetry and its phenomenological consequences.
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Conclus:ons

Conclusions

@ Cosmology offers a lot of new data about energy scales that we
can not reach otherwise.

e Embedding axion monodromy imflation info string theorv provides
some insight into the origin of the Hatess of the potentia®l i.e. shift
symmetry.

o We have studied the non-perturbative breaking of the shift
svmmetry and its phenomenological consequences.

e Axion monodromy inflation can fit existing data.
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Conclusions

Conclusions

o Cosim rl-r-_'-_‘.' offers a lot of new data about energy scales that we
can not reach otherwise.

o Embedding axion monodromy inflation into string theory provides
some insight into the origin of the Hatess of the potentia® i.e. shift
SYmmetry.

o We have studied the non-perturbative breaking of the shift
svmmetry and its phenomenological consequences.

o Axion monodromy infilation can fit existine data.

@ [t suggests exciting signal for the near furure:

@ [ETi~ modes, r — i‘i
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Conclusions

Conclusions

2 [_.-,I L] DL rl-u_‘*_‘.' 1-'Ifi [S A ]ljf -rf iew -[.‘l‘.'- .'||'m|1‘-‘ energy -.1_'.'-111 - Th;iT we
can not reach otherwise.

o Embedding axion monodromy inflation into string theory provides
some insight into the origin of the Hatess of the potentia® i.e. shift
svmmetry.

@ We have studied the non-perturbative breaking of the shift
svmmetry and its phenomenological consequences.

o Axion monodromy inflation can fit existine data.

o [t snggests exciting signal for the near furure:

o TeTiS4 L1Ie -;--—_ !‘|
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Conclus:ons

Open questions

It would be verv interestine to

@ Develop an estimator for resonant non-G and compare this shape
with existing data
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Conclusions

Open questions

It would be verv interestine to
@ Develop an estimator for resonant non-G and compare this shape
with existing data
o Consider other string theorv realization. e.g. with perturbative

modnli stabilization -
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Conclusions

Open questions

It would be verv interesting to
@ Develop an estimator for resonant non-G and compare this shape
with existing dara
@ Consider other string theory realization. e.g. with perturbative

moduli stabilization @

hE ¥

2 Ef{]'“t'ih'f_‘.‘ l‘lllulﬂir‘i- Thf- 1+ J-:.'.]ill‘_' corrections to HH' ij'_[‘i;ar.pu
potential
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Conclusions

Open questions

It would be verv interestine to
@ Develop an estimator for resonant non-G and compare this shape
with existing data
o Consider other string theory realization. e.g. with perturbative
moduli stabilization =

o Explicitely compute the leading corrections to the inflaton

ks!
ot

potential
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