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Abstract: We estimate the size of loop corrections in various inflationary systems and determine the region of parameter space where the
perturbation theory around a quasi de Sitter background is strongly coupled. In some models, we argue that backreaction to the inflatonary
background become important before the erturbations become strongly coupled while in others, there seems to exist a legitimate strongly coupled
but still inflating regime. We also demonstrate that oop effects could be dominant in the bispectrum while still having awell controlled perturbation
theory and we explore the phenomenological implications.
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Motivation

(G} =

#®From observation: Planck and other data set are coming. We want to calculate
more precisely the primordial curvature 2-pt and higher.

< From theory: Holographic description of the early universe (dS/CFT), eternal
inflation... Anomalous dimensions of some operators in quasi-de Sitter.
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Motivation

(G} =
/
2.74 x 10~° - O -
(on CMB scale) M

#®From observation: Planck and other data set are coming. We want to calculate
more precisely the primordial curvature 2-pt and higher.

+*From theory: Holographic description of the early universe (dS/CFT), eternal
inflation... Anomalous dimensions of some operators in quasi-de Sitter.
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Precision cosmology = Loops”?

@ Dissecting the 1-loop, there are 3 main parts IR Iog

/
Pe =P (1 + A(ln(kL) + B))

Amplitude UV constant

+Q: When does the perturbative regime breaks down? For log of order 1, A~-1.
+Q: Can we have large loops effect?

+Q: Renormalization? Resummation of Logs?
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Precision cosmology = Loops”?

«Dissecting the 1-loop, there are 3 main parts IR log

/

Pe = Pé”e (1 + A(In(kL) + 3))

Amplitude UV constant

€ Q: When does the perturbative regime breaks down? For log of order 1, A~1.
+Q: Can we have large loops effect?

#*Q: Renormalization? Resummation of Logs?
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2 examples, 4 numbers:

# Single field, general sound speed. (e.g DBI & Ghost inflation)

1 |
S = 5/(141?\/ —( (ﬂIPQR QP(X @))
1 2, dP R.‘C

...-

e - o = o=
A== PR & = P 2iPxx

*Many uncoupled fields (e.g. N-flation type or 1 inflaton and N spectators
massless fields)

o = /d4$\/§ Z %Qf — V()
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Effective Field Theory of Perturbation

@®Expand around a FRW inflating background. (set the tensor modes to zero).

0o(z,t) C(,t)

S=50+ 52+ 53+ ...

Sa > 5 Gradient Energy Condition
o . 0 53 Perturbative Regime

c.f. Nicolis

very simplified, power counting
Burgess, Lee & Trott



2 examples, 4 numbers:

# Single field, general sound speed. (e.g DBI & Ghost inflation)

1 |
S = 5/(14.’1?\/ —q (ﬂ[gR QP(X.. G)))
1 i ! "

...-

o =——=
= 29 auqbavé ©s dp Px +2XPxx

*Many uncoupled fields (e.g. N-flation type or 1 inflaton and N spectators
massless fields)

5 — / tr g (3 %éf — V()
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Effective Field Theory of Perturbation

@®Expand around a FRW inflating background. (set the tensor modes to zero).

00(Z,t) C(,t)

S=5+52+535+...

S > S Gradient Energy Condition
L i oot el o Perturbative Regime

c.f. Nicolis

very simplified, power counting
Burgess, Lee & Trott



Explicit -- single field

Acquaviva, Bartolo, Mattarese, Riotto
Maldacena,

SO =l V(Qf’) i, H2.A/I§ Seery Lidsey,

Chen, Huang, Kachru, Shiu

So = M,}f /dtd3x (a?’;—z e ae(@()z)

o — ﬂfg /dtd3:z:—(e — 25+ 1 — 2)¢(8¢)* +

2

Neglecting interactions and solving EoM

H tml/H

over time
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Effective Field Theory of Perturbation

*Expand around a FRW inflating background. (set the tensor modes to zero).

0o(Z,t) C(7,t)

S=50+S52+53+...

S > 5 Gradient Energy Condition
5> 5. o n>3 Perturbative Regime

c.f. Nicolis

very simplified, power counting
Burgess, Lee & Trott



Explicit -- single field

Acquaviva, Bartolo, Mattarese, Riotto
Maldacena,

SO 4 V(Qf’) ~ H 2]\/[3 Seery Lidsey,

Chen, Huang, Kachru, Shiu

Sy = Afg ]dtd3:1: (a?’;—z e ae(é‘()z)

S3 = M /dtd%ﬁ(e — 25+ 1 —2)¢C(8¢)* + . ..

2
Cs

Neglecting interactions and solving EoM

H tml/H

over time
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SR

Cx o |

N> 1

Backreaction
S2/S0 < 1

Perturbative
(S3/S2 < 1)

Loop
Calculation
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Explicit -- single field

Acquaviva, Bartolo, Mattarese, Riotto
Maldacena,

SO g V(fb) ~ Hzﬂ/lg Seery Lidsey,

Chen, Huang, Kachru, Shiu

Sy = Z\Jﬁ/dtd?’:z: (a?’;—z e ae(é‘()z)

Sz = M / dtd3r—(e—2s+1—c 2)C(9¢)* +

62

Neglecting interactions and solving EoM
t~1/H

( C2>1/ z H over time /
N mces JeceM - and size Nx ~ —




SR

Ce < |

N> 1

Backreaction
S2/S0 < 1

Perturbative
(S3/S2 < 1)

Loop
Calculation
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Explicit -- single field

Acquaviva, Bartolo, Mattarese, Riotto
Maldacena,

SO e V(Qf’) . Hzﬂ/[s Seery Lidsey,

Chen, Huang, Kachru, Shiu

Gy = l\/fgfdtdg’x (a?’c% 2 ae(é‘C)z)

S3 = M? /dtd%—(e — 25+ 1 — 2)((9C)? +

c2

Neglecting interactions and solving EoM

H tml/H

over time

8 Jecs M * and size A1 ~ mmﬁ




SR

c: < 1

N>1

Backreaction
SZ2/S0 < 1

Perturbative
(SSZ < 1)

Loop
Calculation
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SR G N>
Backreaction| H° = H* — H2N =
M, e BF
S2/S0 < 1 M M; M2
Perturbative
(S3/S2 < 1)
Loop

Calculation
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o<1 N >1
2 AT
Backreaction H=<N
- < 1 < ; 1
SSh<t | M . M?2 =
Perturbative | H?2¢ H?Ne
(S3/S2 < 1) M?
Loop

Calculation
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Explicit -- single field

Acquaviva, Bartolo, Mattarese, Riotto
Maldacena,

SO s V(Qf’) . Hzﬂ/lg Seery Lidsey,

Chen, Huang, Kachru, Shiu

Sy = J\Jg/dtd?’x (a?’;—z e ae(@()z)

Sz = M /dtd3;1:—(e — 25+ 1 — &)¢(9C)? +

c2

Neglecting interactions and solving EoM
t~1/H

< C2>1/ o= H over time /
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SR

o

N>1

Backreaction
S2/S0 < 1

Perturbative
(S3/S2 < 1)

Loop
Calculation
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SR " N>1
. H?2 H? ; H2N
Bg;t/(éeoactlfn Ea s e c: =< 1
< Vi S ‘A[P
Perturbative
(S3/S2 < 1)
Loop

Calculation

Pirsa: 09050062



SR o) N >1
Backreaction H_z <1 H~ = H*N -
S2/S0 < 1 VK Ve o Ve
i wew e
Perturbative | H2¢ Pe H?Ne
(88/82<1) A T2 <1 _'_'i"'(l \[3 =1
:\Iﬁ CS 4 p
Loop

Calculation

Pirsa: 09050062



SR C€ | N >1
| H* H~ s | H-N
Bg;t;éeoacn;)n — <1 g ot ; T
i 2 [p « [p ‘A[P
Perturbative | H?e P H?*Ne
Syl = <! . vz <1
A‘[}; Cs ] P
Loop
Calculation




SR o, A 1 N >1
2 2 2 N\
Backreaction H2 <1 Hﬁ) < C: H 2\ 1
82/80 <1 ﬂfp ﬂ[i; AIP
Perturbative & <1
(S4/S2 < 1) ‘<
Loop

Calculation (A)
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SR C. << 1 N>1

2 2 2N
Backreaction| 1~ =1 - <& wisitn =< 1

A2 A 2 L. WY E
S2/S0<1 | M M Mp
Perturbative | 1° <3 Pe <1 2
(S4/82 <1)| M3 <
Loop

Calculation (A)
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SR e N>1
- H? H2N
Backreaction S < 1 iy ; — <1
S2/S0 < 1 M s M e M P
2
Perturbative | 1 =<1 & 9 2>
(S4/S2 <1)| M3 i
Loop H~ &
Calculation (A) M f-;, e
= Seery/Sloth Gao & Xu

Dimastrogiovanni

Q BPAart~Al~



SR e ] N>1
- H* H? : H:N
Backreaction =5 <1 = < e -1
S2/S0 < 1 Vi, vy J.[P
ol HZ P
Perturbative T _f <1 ?7?
(S4/S2 < 1) | Mp &
Loop H~ & H_‘_\)I 6
Calculation (A) M j; " M p
- - Seery/Sloth Gao &Xu Wenberg/Adshead

= ogoscﬁlz.\‘lf\\/ﬂli Dim

astrogiovanni
Q BAartal~
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SR < N>1
2 2 2 NT
Backreaction| 1 =] H < 3 H~N < 1
2 A2 S f2
S2/S0 < 1 M M3 Mz
2
Perturbative | < & <1 > o
(S4/S2 < 1) | M3 e
5 Z
Loop H & H—
Calculation (A) M f; (‘f M p
7 | ﬂ
SN Seery/Sloth Gao & Xu Weé;if;i?i:ﬁ .
oooooooooooo V191, Dimastrogiovanni

Q BartAal~

if all fields participate In inflati



2 5, 9 T
Backreaction H — < 1 scfbel” (‘j H ;\ 2
oSl < 1 ﬂ[p ﬂ[l‘; *'MP
2
Perturbative | 1 b Pe¢ <1 29
(S4/S2 <1) | M3 ct
Loop

Calculation (A)
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SR A el N>1
2 2 2 N
Backreaction| 1 <1 H < 3 H~N i)
2 A2 °S 12
S2/S0 < 1 M M3 Mz
_ 2
Perturbative H = <1 & P <)
(S4/S2 <1)| M3 s
Loop H~ P¢ Hﬂ \) :
Calculation (A) M f;, (.";L-. M p
. : Seery/Sloth Gao &Xu Wenberg/Adshead
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SR Ce 1 N >1
2 2 2 NT
Backreaction H__ 2= H < 3 H"N < 1
12 M2 | M?
82/ SO < 1 A[ D g M p
; 2
Perturbative | £ < & < 1 77
(S4/S2 <1) | M3 ¢!
Loop H* & H-
: 1\ 7O
Calculation (A) M f) e M p
J , Weinberg/Adshead
s | SeewaIoth | Gao & Xu Casther & Lim
{3\'\/'/4 Dim isgfgfl:an i if all fields participate In inflati



These bounds are showing up everywhere,
In every talk...

* These are order of magnitude estimates which are not true in general. No huge
IR effect included, no cancellation of diagrams.

* For small sound speed, there might be higher derivative interaction besides X
but no new more dominant term seem to appear.

Shandera

+ Generic action at quadratic order also gets the same bound (including gravity

terms) for single field.
Pg Cheung, Creminelli, Fitzpatric

_4 < 1 Kaplan, Senatore

Cs
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SR A N >1
p. P 2 AT
Backreaction| 1 = H < 3 NN e f
2 72 °s T2
S2/S0 < 1 ﬂ'[p A[p A[P
. 2
Perturbative H <1 & < 1 27
(S4/S2 <1) | M3 ¢
Loop H* & ;&
Calculation (A) M [-; (‘f A2
-— I
N Seery/Sloth Gao & Xu  Weinberg/Adsheac
oooooooooooo N1, Dimastrogiovanni e

Q DPAartAal~
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Comments on Eternal Inflation

@®Eternal inflation occur when the quantum fluctuations of the inflaton
are of the same order as the classical motion. This translate to order

1 curvature perturbations .
Q e ]- PC ~J 1 Creminelli, Dubovsky, Nicc
Senatore, Zaldamaga

@For slow-roll, you can locally reach order one curvature in the weak

coupling regime 1
,PH - L
#*But for small sound speed €
Prce <1
c.f Shander
c.f. Nicolis

®There is no point locally, where one can eternal inflate in the
perturbative regime if the sound speed is small.
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SR & N>1
| 2 H? + 1 N
Backreaction T i —— <}
S2/S0 < 1 MZ M2 Mp
Perturbative
(S3/S2 < 1)
Loop

Calculation
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SR G €1 N>1
Backreaction| H° H?2N
- < 1 < € s 1
S2/S0 < 1 ﬂ[ﬁ M5
Perturbative | H?2¢ H?Ne
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S3/52<1) | 112 M
Loop
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>
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These bounds are showing up everywhere,
In every talk...

* These are order of magnitude estimates which are not true in general. No huge
IR effect included, no cancellation of diagrams.

* For small sound speed, there might be higher derivative interaction besides X
but no new more dominant term seem to appear.

Shandera

+ Generic action at quadratic order also gets the same bound (including gravity

terms) for single field.
PC Cheung, Creminelli, Fitzpatric

_4 < ]_ Kaplan, Senatore

Cq
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These bounds are showing up everywhere,
In every talk...

* These are order of magnitude estimates which are not true in general. No huge
IR effect included, no cancellation of diagrams.

« For small sound speed, there might be higher derivative interaction besides X
but no new more dominant term seem to appear.

Shandera

+ Generic action at quadratic order also gets the same bound (including gravity

terms) for single field.
PC Cheung, Creminelli, Fitzpatric

_4 < ]_ Kaplan, Senatore

Cs
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Comments on Eternal Inflation

@®Eternal inflation occur when the quantum fluctuations of the inflaton
are of the same order as the classical motion. This translate to order

1 curvature perturbations "
Q_ i ]- PC e 1 Cremineili, Dubovsky, Nicc
Senatore, Zaldarmaga

*For slow-roll, you can locally reach order one curvature in the weak

coupling regime 1
FP""‘* 43 -
#But for small sound speed €
Pl <1
c.f Shander
c.f. Nicolis

#®There is no point locally, where one can eternal inflate in the
perturbative regime if the sound speed is small.
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Large Loops Effect?

P
< All the A are very small. —
M2
#*The Gaussianity of CMB tells us that these effect have to be small
1 ¢
2 P -
‘fNL‘N—2<1O _4<]‘0 9
CS vi L.L. Shandera

Armendaritz-Picon, Lin
Khoury, Piazza
@ could get large loops on other scales than CMB. For example running of cs

<large logs?? Sloth, Riotto & Sloth

e most sensitive probe may be the running 7l g — 1

71+ AlnékL)






Loops from § N

t~1/H

@ For single field, this is just a gauge transformation and the curvature
perturbation is constant outside the horizon. For multi-fields there is new
physics in there.

Pec H " H .
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Large Loops Effect?

2
#All the A are very small. —
M2
#*The Gaussianity of CMB tells us that these effect have to be small
1 ¢
2 P —
[hexlor— <M — <1075
Z €a L.L. Shandera

Armendaritz-Picon, Lin
Khoury, Piazza
@ could get large loops on other scales than CMB. For example running of cs

®large logs?? Sloth, Riotto & Sloth

e most sensitive probe may be the running 7l g — 1

7 1+ AlnékL)






Loops from § NV

t~1/H

<+ For single field, this is just a gauge transformation and the curvature
perturbation is constant outside the horizon. For multi-fields there is new
physics in there.

Qe H * H i
N = —do ( =0N = ——0¢
irsa 09050062 (D * Gb CD Pagé'52/124




Loops from § N

t~1/H

classical evolution

((t, %) = 6N (t, T)

Sasaki & Stewart

@ For single field, this is just a gauge transformation and the curvature
perturbation is constant outside the horizon. For multi-fields there is new
physics in there.

e : | et =
irsa: 09050062 (}D < Gb @ Pagé 53/124




Beyond linear order C = adp + Bdd?

G i tp / R ©

\

-
-------

(Chr Cha )toop B / Pk k" (5én, _ i 6Dk 6Dk, 1 ODk

2)(2x2P.)°
G5’ k. / d"k’(
(Z ) lk k!|3k!3 s
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Loops from § NV

t~1/H

@ For single field, this is just a gauge transformation and the curvature
perturbation is constant outside the horizon. For multi-fields there is new
physics in there.

Pe " i
irsa: 09050062 (D < Cb | @ Pagé 55/124




Beyond linear order ¢ = adp + Bdp?

R e / e

\

CQ

(Ckl Ckz )anp
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-
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32 / K k" (¢, —r Ok dOpy— 1 O D

2Y(272P. )2
= 325 k; fd"k’(
(Z : |k — K']3k3



Loops from § NV

t~1/H

@ For single field, this is just a gauge transformation and the curvature
perturbation is constant outside the horizon. For multi-fields there is new

physics in there.

e H oy
N = / —dao G = 0LV

ag@ 57/124



Loops from § N

t~1/H

classical evolution

((t, %) = 6N (t, T)

Sasaki & Stewart

@ For single field, this is just a gauge transformation and the curvature
perturbation is constant outside the horizon. For multi-fields there is new
physics in there.

Pe ) H
N:/ = do (=6N = ——b¢
(}5* Gb @ Page 58/124
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Beyond linear order ¢ = adp + Bdop?

b —odde 0 / R T

\

w’
_______

132[d3k"d3k" (0K, —k’ 0Dk O Dy — k7" O D

2)(2n2P,)>?
3463 k; / d"k’(
(Z ) l k k.f|3 k.rS -

(Ck 1 Ckﬂ ) loop
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Note

+®delta N requires you to know the perturbation at horizon exit

H? H?
0Pk | 3 L.3+6

tree 1-loop

@+ you should include all loops (which may have large log and need to be
resummed). “** if you are given a lagrangian at some scale and initial conditions
such that there is no more than 60 efolds than the log is small

<*and then using delta N | get extra loops contribution
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Assuming no tilt, loop integral has two poles

~ 1
&k —— ~ In(kL
i (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

C =add + B +Kkdd> + - - -
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Note

@ delta N requires you to know the perturbation at horizon exit

H? H;
0Pk |« T L-3+06

tree 1-loop

@+ you should include all loops (which may have large log and need to be
resummed). “** if you are given a lagrangian at some scale and initial conditions
such that there is no more than 60 efolds than the log is small

+®and then using delta N | get extra loops contribution
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Assuming no tilt, loop integral has two poles

~ 1
&k ——— ~ In(kL
Rt o (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

( = adp + B6P? +K6¢> + - - -
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Beyond linear order C = adp + Béd?

(r = aby + / T

\

-
.......

B2 / d*K' d°k" (5dn, _ 1 Ok S py— 1 OO

2)(2m2 P, )2
348° k. / d3k"(
(Z ) lk 3= k.f|3k-!3 el

.
e
-
g
b
S
]

Q
o

|
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Assuming no tilt, loop integral has two poles

— 1
kK —— ~ In(kL
e — (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

( =add + B +KkdD> + - - -
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Beyond linear order ¢ = adp + Bép?

b / e

\

'
--------

ﬁz_/d%fdgk” 0Pk, —k’ 0Dk 0Dy — k7 O Dk,

2)(2m2P,)>?
348° k; / d3k’(
(Z ) I k’ k.f|3 k.rS et

(Ck 1 Ckﬂ > loop
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Note

@ delta N requires you to know the perturbation at horizon exit

H? H;
0Pk |+ =5 I-3+6

tree 1-loop

@+ you should include all loops (which may have large log and need to be
resummed). “** if you are given a lagrangian at some scale and initial conditions
such that there is no more than 60 efolds than the log is small

<*and then using delta N | get extra loops contribution
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Assuming no tilt, loop integral has two poles

~ 1
o ~ In(kL
| Lt (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

( = adop + BéP* +K6> + - - -
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Assuming no tilt, loop integral has two poles

- 1
d°k' ——= ~ In(kL
st (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

( = adp + B6P* +K6P> + - --
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Note

@ delta N requires you to know the perturbation at horizon exit

H? H;
0Pk | 3 ER

tree 1-loop

@+ you should include all loops (which may have large log and need to be
resummed). “** if you are given a lagrangian at some scale and initial conditions
such that there is no more than 60 efolds than the log is small

< and then using delta N | get extra loops contribution
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Assuming no tilt, loop integral has two poles

~ 1
& ——— ~ In(kL
| i — (kL)
And converge rapidly for k’ > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

C =add + B> +KkdD> + - - -

irsa: 09050062 Page 71/124



What is the IR cutoff?

<@ For these delta N loops, one can argue that the cutoff is limited by

observations. Lyth/
Bartolo, Matarrese, Pietr
0p = ¢’(-’L'-.r t) e, . (t) Enqvist:ON:rmi, Podolsk
Rigopoulos

2 procedures that gives
the same answer

+ Measure the real zero mode on L
and do loop up to L

* Oor measure the zero mode on M

(~1/HO) do loops up to M, average
over all position of M into L




Assuming no tilt, loop integral has two poles

Sttty
[d?’k T ~ In(kL)

And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

¢ :aéczﬁ+ﬁ5¢)2+hwﬂ



Assuming no tilt, loop integral has two poles

— 1
&’k —— ~ In(kL
(kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

# The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

C =add + B +Kkéd> + - - -
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What is the IR cutoff?

<@ For these delta N loops, one can argue that the cutoff is limited by

ohessvalions Lyth/
Bartolo, Matarrese, Pietr

5‘?5 - ‘?5(-’3 3 t) = ‘?5 (t) EnqvisF’:jol:tt?rii,sgceg;Isk
Rigopoulos

2 procedures that gives
the same answer

+ Measure the real zero mode on L
and do loop up to L

* Oor measure the zero mode on M

(~1/HO) do loops up to M, average
over all position of M into L




Note

@ delta N requires you to know the perturbation at horizon exit

H? H?
0Pk | T L.3+6

tree 1-loop

+®you should include all loops (which may have large log and need to be
resummed). *** if you are given a lagrangian at some scale and initial conditions
such that there is no more than 60 efolds than the log is small

< and then using delta N | get extra loops contribution
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Assuming no tilt, loop integral has two poles

~ 1
&k —— ~ In(kL
| ¥ (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

( =add + 8% +Krdp> + - -
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What is the IR cutoff?

<@ For these delta N loops, one can argue that the cutoff is limited by

observations. Lyth/
Bartolo, Matarrese, Pietr
— Riotto & Seery/
00 = ‘35(55-.» t) = (t) Enqvist,lONL?rmi. Pogolsk
Rigopoulos

2 procedures that gives
the same answer

* Measure the real zero mode on L
and do loop up to L

* or measure the zero mode on M

(~1/HQ) do loops up to M, average
over all position of M into L




Assuming no tilt, loop integral has two poles

~ 1
R —— ~ In(kL
L (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

# The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

C =add + Béd% +Kdd> + - - -

irsa: 09050062 Page 79/124



What is the IR cutoff?

@ For these delta N loops, one can argue that the cutoff is limited by

observations. Lyth/
Bartolo, Matarrese, Pietr
0p = ¢($s t) ¢ (t) EnqvistjoNL?rmi, Podolsk
Rigopoulos

2 procedures that gives
the same answer

+ Measure the real zero mode on L
and do loop up to L

* or measure the zero mode on M

(~1/HO) do loops up to M, average
over all position of M into L




Explicit Example
Tachyon Mediated Density Perturbations

*In Hybrid inflation
Curvature

Hidden

We are not generating
. _ density perturbations from the tachyon.
"' f_ (assume that contribution from tachyon
/ / preheating for example are small)

18 |

i = : L
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What is the IR cutoff?

<@ For these delta N loops, one can argue that the cutoff is limited by

observations. Lyt
Bartolo, Matarrese, Pietr
- Riotto & Seery/
00 = ¢(Z,t) — ¢ () Enqvist,ION:rmi, Podolsk
Rigopoulos

2 procedures that gives
the same answer

* Measure the real zero mode on L
and do loop up to L

* or measure the zero mode on M

(~1/HQ) do loops up to M, average
over all position of M into L




Assuming no tilt, loop integral has two poles

~ 1
&k ——— ~ In(kL
S (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

¢ =add + Béd% +Kb> + - - -
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What is the IR cutoff?

<@ For these delta N loops, one can argue that the cutoff is limited by

observations. Lyth/
Bartolo, Matarrese, Pietr
00 = qb(:c, t) — ¢ (t) Enqvist.lowa?rmi, Podolsk
Rigopoulos

2 procedures that gives
the same answer

* Measure the real zero mode on L
and do loop up to L

* or measure the zero mode on M

(~1/HO) do loops up to M, average
over all position of M into L




Assuming no tilt, loop integral has two poles

- 1
&’k —— ~ In(kL
 Em — (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

C =add + B +KkdD> + - - -
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What is the IR cutoff?

<@ For these delta N loops, one can argue that the cutoff is limited by

observations. Lythv/
Bartolo, Matarrese, Pietr
g Riotto & Seery/
00 = ¢(Z,t) — ¢ () Enqvist:ONL?rmi, Podolsk
Rigopoulos

2 procedures that gives
the same answer

* Measure the real zero mode on L
and do loop up to L

* Or measure the zero mode on M
(~1/HO) do loops up to M, average
over all position of M into L




Explicit Example
Tachyon Mediated Density Perturbations

*|n Hybrid inflation
Curvature

-
e i ==

Visible Hidden

We are not generating
. : density perturbations from the tachyon.
'J ,_ (assume that contribution from tachyon
/ ’ preheating for example are small)

LR

E -
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Basic ldea

#® Couple Hybrid inflation (2 fields) to an extra field. (Here Tachyon = Waterfall
field)
| V'mf(ffﬁ) . 3 Vhid(X) + Vmess((pe X T)]

@ There is no direct coupling between qﬁ and X . They couple only through the T
which is very massive during inflation.

@®|nflation ends at a critical value of the inflaton for which the mass of the
tachyon is zero.

CbC(X) A 7

modulated by
quantum fluctuation
of the hidden field @ == = === === = === ==

Horizon exit

w__
= Inflation ends

St

¢
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Explicit Example
Tachyon Mediated Density Perturbations

*|n Hybrid inflation
Curvature

T

Visible Hidden

We are not generating
density perturbations from the tachyon.
] , (assume that contribution from tachyon
al / / preheating for example are small)

8 .f'

v | 'y
3 =
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Basic ldea

#® Couple Hybrid inflation (2 fields) to an extra field. (Here Tachyon = Waterfall

field)
V = Vinf((fﬁ) - - thd(X) + aness((f)a X T)]

@®There is no direct coupling between (b and X . They couple only through the T
which is very massive during inflation.

@ |nflation ends at a critical value of the inflaton for which the mass of the
tachyon is zero.

dec(X) A s .54

modulated by
quantum fluctuation
of the hidden field @ == = === === = = = = = =

: 09050062 2 2 -.-1..L:--‘2 I ';2 -
my——t+A @ FA X

Horizon exit

“_
= Inflation ends

c
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From field perturbations to curvature.

o De (X ) The new field only

b ET change the end
N = —do of inflation
o @ * = horizon exit
: H H 0o, . 1 H 6. ,_ . 2 -
ON = ————O(D + — LO\- o : (O\"— < oY >) + --
/. : fo Ix I, 2¢ X ~
Usual Note sign Assurnption
ontribution difference ~ .
Do, e dbinig

“transfer function” 7 I

Page 91/124

De



2-pt to 1-loop

P‘(k) = N"”P.[1+~*++”P.In(kL)]
7;27:)*
gt y2P. Inkl

n,— 1 =

# Constraints from ns

) B e |

We cantake 1 > 7-’273* ~ ,.-},2

Pirsa: 09050062



From field perturbations to curvature.

R s e(X) The new field only
D H change the end
N = —.dc;b of inflation
& (b = horizon exit
S H H do, . 1 H o, ,_ n .
oN —f———do : ¥ —5 E® 0 = +§ (;f) 92 (o:)\ — O >) #
Usual Note sign Assumption
ontribution  difference e
I Sesan . postitn
“transfer function " =Seriiar
Pirsa: 09050062 X (D,_ Page 93/124
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2-pt to 1-loop

P‘(k) = N”P.[1++*++”P.In(kL)]
,YJQP*
L 4+92+92P. InkL

n,— L =

* Constraints from ns

Yo <101

We cantake 1 > »y-fzp* > ,.-},2

Pirsa: 09050062



Local shape NG

o 12

S

Can push this up but limited by the spectral index

/2 2

5 (7" Px)?2
6 b |
Nf'P*z

* So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

fnL| = In(kL) < 100 In(kl)
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2-pt to 1-loop

P‘(k) = N"”P.[1+~*++"”P.In(kL)]
,YIQP*
L+ y* - y2P.InklL

n,— 1 =

* Constraints from ns

D e |

Wecantake 1 > AP, > ~°

Pirsa: 09050062



Local shape NG

5 b S0 12
fnL = 67N’f (1 e ln(kL)P*)
N
LN

Can push this up but limited by the spectral index

/2 2

5 (7 Px)?2
6 b
NI'P:E

# So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

L]l = In(kL) < 100 In(kl)

irsa: 09050062 Page 97/124



From field perturbations to curvature.

s % (X ) The new field only

de Ig change the end
N = —-.—dt,‘b of inflation
Y ¢> * = horizon exit
- ) C ¢ 1 2 e re9 -
ON = —E{)(D —I—E{(D 00X —1——H0 - (é\"’—f::jy' >~) s
f c ') 0\ e (;) d\‘ &
Usual Note sign Assumption
ontribution  difference AL
2 99, e Jaals
“transfer function it
Pirsa: 09050062 X (f),_- Page 98/124




2-pt to 1-loop

P‘(k) = N"”P.[1+~*+~”P.In(kL)]
,}/127;)*
Ity P.InkL

n.,—Fi=

* Constraints from ns

T o ||

Wecantake 1 > ~"%P, > ~°

Pirsa: 09050062



Local shape NG

2./ 12

™

Can push this up but limited by the spectral index

72 2

5 (7" P«)?2
6 1
Nf'P*z

# So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

fnL| = In(kL) < 100 In(kl)

irsa: 09050062 Page 100/124



2-pt to 1-loop

P‘(k) = N"”P.[1+~*++”P.In(kL)]
,}(;2'}5)*
LEg E9“Po.imkL

N, F =

9 Constraints from ns

D . ||

We can take 1 > fy-’QP* ~ 72

RIS A0 0 050 (0 = R e o) ) e K1 0 1/



Local shape NG

. 12
JNL = sk (1 | 12 111("7L)7:’*)

.

Can push this up but limited by the spectral index

12 2

5 (7" Px)?2
6 b 3
Nf'P*z

# So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

L] = In(kL) < 100 In(kl)

irsa: 09050062 Page 102/124



So what? So things run.

@ Loops tends to give a large blue running.

R Giny. i

TG I ek elEL)

L ~ 1/Ho and k CMB IN

Local shape NG with very large running!!

Pirsa: 09050062
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Local shape NG

5 ,}(.2,.}{! 7_!2
_ 1+ — In(kL)P.
fNL 6 N’ ( 72 Il( )P
. ¥
Can push this up but limited by the spectral index
5 IQP* =
fnL| = P Lul In(kL) < 100 1In(kl)

6 N"P*%

# So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

irsa: 09050062 Page 104/124



From field perturbations to curvature.

B De (X) The new field only

De H change the end
N = —do of inflation
é. @ * = horizon exit
02
N = —EO@ —I—E{){D‘ dX 1-~1—H() = (Ox*— < dx° > +--
f - @ '()\ s C) ()X- g
Usual Note sign Assumption

ontribution  difference €. X € f
* S

: o
“transfer function” 7 o

Page 105/124
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Explicit Example
Tachyon Mediated Density Perturbations

#In Hybrid inflation

0pservdauons.

—

Bartolo, Matarrese. Pietr

" Riotto & Seery/
0p = ‘?5(1'-.» t) = (t) EnqvisthN:rmi, Pogolsk
Rigopoulos

2 procedures that gives
the same answer

* Measure the real zero mode on L
and do loop up to L

* or measure the zero mode on M
(~1/HO) do loops up to M, average
over all position of M into L




Assuming no tilt, loop integral has two poles

~ 1
K —— ~ In(kL
L (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

C =add + B +KkdD> + - - -
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Basic ldea

#® Couple Hybrid inflation (2 fields) to an extra field. (Here Tachyon = Waterfall

field)
V. = V(@) + Vhid(X) + Viness(®, x, T)]

#®There is no direct coupling between (;5 and X . They couple only through the T
which is very massive during inflation.

@ |nflation ends at a critical value of the inflaton for which the mass of the
tachyon is zero.

dec(X) A A

modulated by
quantum fluctuation
of the hidden field @ == = === === = === ==

Horizon exit

L
= Inflation ends

g

)
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From field perturbations to curvature.

S % (X ) The new field only

de Ig change the end
N = —.d(,‘b of inflation
b, qb * = horizon exit
. 2
ON = —Edo _|_£f)m‘o %H() O; (5\2— < ox? >) =
/ 3 fo dx 5. 20 dx~- &
Usual Note sign Assumption
ontribution  difference s
She ., < i
“transfer function T =
Pirsa: 09050062 8 X @E Page 109/124




Local shape NG

5 A / 12
fnL = 2] (1 | :};2 111(]‘3[4)73*)
S

Can push this up but limited by the spectral index

/2 3

5 (7 Px)?2
6 ¥ 3
Nf'P*z

# So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

InL| = In(kL) < 100 In(kl)

irsa: 09050062 Page 110/124



So what? So things run.

@ Loops tends to give a large blue running.

S . el

NG = g dink  In(kL)

L ~ 1/Ho and k CMB IN

Local shape NG with very large running!!

Pirsa: 09050062
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Local shape NG

Lot 2

.

Can push this up but limited by the spectral index

/2 3

5 (V“Px)>2
6 "
Nf'P*z

#So even before actually constructing a model, a loop dominated fNL is limited
by the running it induces in the spectral index.

L]l = In(kL) < 100 In(kl)
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2-pt to 1-loop

P‘(k) = N"”P.[1+~*++"P.In(kL)]
7;2P*
1 +9y2+9“P.InkL

ne—1 =

+ Constraints from ns

vopL < 10"

Wecantake 1 > ~"“P, > ,-},2

Pirsa: 09050062



From field perturbations to curvature.

e o% (X ) The new field only

de g change the end
N = —.—d(;b of inflation
& qb * = horizon exit
= ) = e )? c ~ 9 = 9
IN = —g—d@ —I—E{(D OX EH() C: (()\"‘—{()\* }) .
/ . & dx s 2o Ox i
Usual Note sign Assumption
ontribution  difference —~—
ZEe S, i A
“transfer function T =
Pirsa: 09050062 8X (;_)C Page 114/124




Basic |ldea

#® Couple Hybrid inflation (2 fields) to an extra field. (Here Tachyon = Waterfall

field)
V. = Viae(®) + Vhid(X) + Viness(9, x, T')]

#®There is no direct coupling between (;5 and X . They couple only through the T
which is very massive during inflation.

@® |nflation ends at a critical va ue of the inflaton for which the mass of the
tachyon is zero.

Dc(X) A pame- - -

modulated by
quantum fluctuation
of the hidden field @ == = === === = === = =

2 232 , 2
May=—F AT +AX

Horizon exit

" __
= Inflation ends

P
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Explicit Example
Tachyon Mediated Density Perturbations

% |n Hybrid inflation
Curvature

T

Visible Hidden

* Measure the real zero mode on L
and do loop up to L

* or measure the zero mode on M
ER— (~1/HO) do loops up to M, average
over all position of M into L




Assuming no tilt, loop integral has two poles

- 1
&’k —— ~ In(kL
L= (kL)
And converge rapidly for k' > k. It is UV finite. (good
since this formalism is not valid inside the horizon)

#The series can truncate and in general each coefficient could be completely
independent of each other. If the higher order term are not there (or much
smaller) one can consistently have large 1-loop coefficient while neglecting 2-
loops and higher

( = adp + B6¢* +Kb5° + - -
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2-pt to 1-loop

P‘(k) = N"”P.[1+~*++”P.In(kL)]
7;27:)*
I 4+9y2+9“P.InkL

”n., —§k =

% Constraints from ns

Vo < 10

Wecantake 1 > ~"%P, > ~°

Pirsa: 09050062



2-pt to 1-loop

P‘(k) = N7”P.[1+~*++”P.In(kL)]
,YJQP*
L+ 9* 4+ 92P. InkL

n.—1 =

+ Constraints from ns

2 ||

Wecantake 1 > ~"*P, > ~°

Pirsa: 09050062



So what? So things run.

@ Loops tends to give a large blue running.

M
NG S dE " -inlhL)

~ 0.2

L ~ 1/Ho and k CMB n ~95

Local shape NG with very large running!!
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Conclusion

H-*Ne &

@ L oops are usually small.
A2 4
M2 c

S
*|n spite of additional complexities of in-in formalism, one can estimate their

size in the usual effective field theory way.

*|n some cases, inflation clearly stops before reaching the strong coupling
regime but for small sound speed, the bakcreaction appear to be under

control.

*We can have large loop-like (delta N loops) effects dominating the bispectrum.
The main phenomenological signatures is a large positive running of NG.
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Open questions

@ Link between the two kinds of loops calculations, in-in and delta N, need a
better understanding. Claim is that delta N is a resummation of large time log
in in-in. Large effect here is just like having large log

#® Model has some flaws must have a very flat potential for things at the end of

inflation to be important enough. P Ef

*Can we get ns ~ 0.967 D-term with cosmic strings might give a better
fit?

Battye, Garbrecht, Moss
Bevis, Hindmarsh, Kunz, Urestille

@erealize these kind of things in string theory? D3/D7 or brane at angles
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Conclusion

H*Ne &

@ Loops are usually small. _
M7 e

S
*|n spite of additional complexities of in-in formalism, one can estimate their

size in the usual effective field theory way.

@ |n some cases, inflation clearly stops before reaching the strong coupling
regime but for small sound speed, the bakcreaction appear to be under

control.

*\We can have large loop-like (delta N loops) effects dominating the bispectrum.
The main phenomenological signatures is a large positive running of NG.
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Open questions

@ Link between the two kinds of loops calculations, in-in and delta N, need a
better understanding. Claim is that delta N is a resummation of large time log
in in-in. Large effect here is just like having large log

#® Model has some flaws must have a very flat potential for things at the end of
inflation to be important enough. €. = 'Ef

*Can we get ns ~ 0.96?7 D-term with cosmic strings might give a better
fit?

Battye, Garbrecht, Moss
Bevis, Hindmarsh, Kunz, Urestille

erealize these kind of things in string theory? D3/D7 or brane at angles
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