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nflation at Zeroth Order

Zeroth order scalar field inflation very successful, solves all of the classic
cosmological problems;

@ Horizon

@ Monopole

@ Flatness @
@ Entropy

Quantum fluctuations about the classical trajectory provide the (nearly)
scale invariant spectrum of perturbations that seed structure/, CMB
anisotropies.

Unfortunately, implementation is not unique;

@ Many ways of implementing an inflationary scenario,

@ Nearly scale invariant spectrum of (almost) gaussian fluctuations is
generic.
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nflationary Models at Lowest Order.

At lowest order, in field theory language, we think of the power spectrum,
or 2-pt correlation function as the propagator;

P(k) ~ o

@ Generated by QM fluctuations of inflaton during inflation

@ Amplitude and shape constrained by CMB data

Gravity couples to all forms of energy density

@ Beyond lowest order, modes will couple, evolve non-linearly...
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Diagrammatically:

1980’s
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Diagrammatically:

1990's - 2002 (Maldacena, ...)
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Diagrammatically:

2006 (Seery, Sloth, Lidsey, ...)
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Diagrammatically:

- + .
+
s e

(Seery, Sloth, Weinberg...)
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Diagrammatically:
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Outline

B The ADM Formulation of GR and the “in-in” Formalism

@ Operator Formalism

B Loop Corrections in N-Field Inflation: Bounds on N?
@ N-Field Inflation
@ Radiative Stability and Loop Corrections
@ Inflation with N-Spectator Fields
@ Coherent Field Description

B) Conclusions
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The ADM Formulation of GR and the “in-in” Formalism

The ADM Formulation of GR and the

“In-in” Formalism
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The ADM Formulation of GR and the “in-in” Formalism

he ADM Formulation of GR

Perturbing fields in the ADM metric:
ds® = —N?dt® + h;;(dx' + N'dt)(dx! + N dt)

N and N' Lagrange multipliers, hj metric on spatial hypersurface

@ Not all {h;, N'. N} lead to unique field configurations

@ Specify a gauge, i.e. a spatial slicing and a threading

Spatially flat gauge;
hfj — 82(1')((55 = e fj)- (_'J(X. l') — f;(t) = 5 fjfﬂ(x. f)

a(t) scale factor.
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The ADM Formulation of GR and the “in-in" Formalism

ADM action:
S = / d3xdtvV hN [R(3) — 2NVi(oy) + N"HEYE; — E> +='m))
—i—h’j(@,-o;ajo; )] :

‘Gravitational momentum:’

E; = hj — VN,

Field momentum: _
o = ot — N 8:0'

@ N and N’ have no dynamics; they do not propagate, and are

constraints.
@ Once known, substituted back into the action.

@ Action contains only dynamical degrees of freedom.
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The ADM Formulation of GR and the “in-in” Formalism

he “In-In" Formalism

Calculation of cosmological correlation functions differs from usual QFT:

@ Not interested in elements of a S-matrix, or transition amplitudes, but
in expectation values of fields at fixed times,

@ Conditions are imposed on the fields at very early times - only have
“In-states,”

Can formulate as a path integral (Seery, Collins, Holman) or using
operators (Weinberg).
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Use the operator formulation of the “in-in" formalism of Schwinger;

@ Expand the action in powers of the fluctuations 6¢ and v; and
discard the zeroth and first order pieces.

9L  and construct the

@ Define conjugate momenta, e.g. m5, = =
@

Hamiltonian.

@ Work in an interaction picture, divide the Hamiltonian into a
quadratic piece, Hy and a higher order piece, H;,;.

@ Hjy evolves the fields.

@ H, evolves the states.
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

The interaction picture fields are free fields;
Sor(x.T) —= / a3k el [ak Ur(7) + a*_kU;*;(r)]

Ui (7) are solutions to the equation of motion:

Z(alh) + [ —PH (2+e—mH)]alp = 0
4 VF’
m :m = T}

@ de-Sitter limit (and taking the fields to be massless):

U i (1 + ikT)e &
— IKT )€
c \/2(2:)3,!(3
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Quantization of Theories with Derivative Interactions

@ [ he interactions generically contain derivatives of the fields
@ Schematically;

£ — %5;;.2 — V(39) + (Veied® +36° ) 56+ % (Veso +d67) 5o + %5@@}33 1

e )+ Neoo ) + oo
N5 TP L 3 5,55

@ What is H? Is Hipe = —Lint ?
@ Recall:

H(x.86) = d&(m)m — L(=, 56).
@ But, 7 = 06 + O(/€d0?) + O(662)dd + ..
@ So,

§ 7 — JH{J — .C‘mt + O(F (504) — - (?(JQS).
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

orrelation functions

(Q(¢)) = <[Te"' S Hiﬂt“’)dﬂ‘ Q(t) [Te_" Jq Hiﬂt(*”)dt”]> .

@ Q(t) is some product of fields.
Nothing mysterious about “in-in,”

= [dad3(0| (Te /s ”iﬂt“*}“‘f’)* a){a] Q(1)|3)(3] (Te—f' o ”iﬂ*“””*”) 0)
— [ da d3{a|Q()3)(8 Te_f,_;‘% Hins(t")dt” 0 ((a Te_;,_f;; Hint{r”}dr-’f:g_} ;
J | M | 0

N-pt function (66™V) is simply the sum over ways of obtaining a final state
witha+3=N
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

ime Path Interpretation:

(Q(r)) = <[Te"f}; Him(r’)dr’] Q) {TE;,;; Him(rﬂ)drnb _
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The ADM Formulation of GR and the “in-in” Formalism

Operator Formalism

At second order: (Q(t7))> =

s >
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The ADM Formulation of GR and the “in-in" Formalism Operator Formalism

Rather than inserting states explicitly, use the Dyson solution;

ekl rr i’ & ~T 01 ~TN—1
y e Z(_;)N/ dtl/ dtz,../ dey H(t1)H(22)... H(ty)
N=0 4 Ip < Ig <+ Iy
(i fT o)\ | N . TIN—1
(Te e ) === W / dn/ dtz..,] diyH(tn)...H(2)H (&)
. N=—0 g m m

Then, expanding

(Q(t)) = (Q(1)o +{(Q(1))1 +(Q(t))2 + -,
where
(@) — 29 / dtr (Hine(t1)Q(2)) .
to
A L7}
(Q(t))2 = —2R K/ dfl[ dtzHim(fz)Hint(fl)Q(f)ﬂ
oy = 17

4 </r; dty Hine (£1) Q(¢) Lr drszt(tz)> :

Page 21/87
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The ADM Formulation of GR and the “in-in" Formalism Operator Formalism

At tree level, the two point correlation function is:

{rj‘(_?};()‘r};:} — U;;d(k = k")

@ Contraction of two fields:

rﬁofkdoé — rjo{(doé— : rioliffol‘; :
@ Propagator:
(861(T)865 (7)) = Un(7)U;(r")8" (k + p)

@ Operator ordering matters.
@ Wightman functions instead of Feynman propagators

@ Wick's theorem follows in the usual way.

@ Disconnected diagrams cancel by unitarity:

< [Te_" = H-mn{r;ﬂ | [Te_" = Hint{ryer =
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Q(t) == < [Te_" J“l'.; H'Lnr_.(f}df] : Q!( t) [Te_jjr; th:{t}dr}> ‘
To calculate:

@ Assume the initial (infinite past) conditions are adiabatic vacuum,

@ Computationally this amounts to allowing a small amount of
evolution in imaginary time in the far past: —o>c — —oc(1 + i€)

@ Left and right time integrations (vertices) no longer equivalent, but
conjugates of each other.

@ Implementation:

@ Active: Redefine integrations to run over a complex interval

@ Passive: Analytically continue the time variable to include a small
iImaginary plece.
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Temptation: use

,1r

ey =3 M /tc din _/rﬂ $ drN_l_,,_/: dts ([Hine (£1), [Hine(£2). - [Hine(tn ). @ (O]-TID).

N=0

@ Physical terms are broken up into unphysical pieces
At 2nd order:

e T :
/ ot / 8" (Hine (£) Q(E)Hins () = / dt’ / de’’ / dadB(0|Hine (£7)|) (a] Q(£)]8) (3]
Ly < I J Iy J g ;
24 -t
L ] dt’ / dt” (Hine () Q(E)Hint (£”) + Hine (") Q(£)Hins ()
& J g
T -t
— 2R / dt’ / It (Hin (1) Q(E) Hint (£))
< 1 « I
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Q1)) = < [T o] 1) [T % Hm(r}er |
To calculate:

@ Assume the initial (infinite past) conditions are adiabatic vacuum,

@ Computationally this amounts to allowing a small amount of
evolution in imaginary time in the far past: —oc — —oc(1 + i€)

@ Left and right time integrations (vertices) no longer equivalent, but
conjugates of each other.

@ Implementation:

@ Active: Redefine integrations to run over a complex interval

@ Passive: Analytically continue the time variable to include a small
Imaginary piece.
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Subtleties:

Temptation: use

,1t'
. rg

Q) =3 M / dtN/ g dtN_l.,,/\zdtl ([Hing (£1), [Hine(£2). - [Hine(tn ). Q(D]--]ID.
N=0 0 “

@ Physical terms are broken up into unphysical pieces
At 2nd order:

o 4 o + - =
/ o’ / " (Hine (£) Q(E)Hims () = / ot / dt’" / dadB(0|Hims (£")|a) (a] Q(£)8) (3
% /g < g S 19 :
23 -t
—/ dr"/ dt” (Hint () Q(t)Hint (£) + Hine (£ ) Q(£)Hint (')
o J

-t -t/
— 2R / dt’ / It (Hire (£ Q(E) Hine (£))
< 1 < I
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Temptation: use

g

@y =3 N / din / 7 TR / it ([Hins (1), [Hine(£2). -..[Hine(tn ). Qi (O]
~ i =i

N=0

@ Physical terms are broken up into unphysical pieces
At 2nd order:

— AR h
/ dt’ / It (Hine (£) Q(8)Hins () = / dt’ / dt’” / dad B0 Hime (£7)] ) (o] Q(£)8) (3]
- I - t-:] < I . E:I .
23 -t
-y / dt’ / dt” (Hine () Q(E)Hine (£”) + Hine (") Q(£)Hine ()
ol < <

o -»r'r
= 2'=R/ dt’ / dt” if:Hint(f”]Q(f)Hint(f‘r)}
J Ty < T
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

; Q(t} — < [Te—f,_ﬂ; Hinr_.{f}dr] O!( f) [TE_“{’L thg(t}dr}> ‘
To calculate:

@ Assume the initial (infinite past) conditions are adiabatic vacuum,

@ Computationally this amounts to allowing a small amount of
evolution in imaginary time in the far past: —o>c — —oc(1 + i€)

@ Left and right time integrations (vertices) no longer equivalent, but
conjugates of each other.

@ Implementation:

@ Active: Redefine integrations to run over a complex interval

@ Passive: Analytically continue the time variable to include a small
iImaginary piece.
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Temptation: use

=
= rﬂ

Q) =3 " / dtN/ 3 dtN_l..,/1hdt1.':[Hint(t1).[Hint(tg)...,[Him{tN).Q;(t)].,,]]]},
N=0 0 "R

@ Physical terms are broken up into unphysical pieces
At 2nd order:

= e 1
j dt’ / It (Hine (£) Q(E)Hins () = / ot / dt’” / dad B(0] Hims (£7)]a) (o] Q(£)18) (3
0 < I < Iy J g :
24 -t
- / dt’ / dt” (Hine () Q(E)Hine (£”) + Hine (") Q(£)Hins ()
& J g
S -t
— 2R / o’ / dt” (Hins (£) Q) Hine (£))
+ T < I
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Subtleties:

Q1)) = < | Te "o MmO (1) | T Htmfﬂde |
To calculate:

@ Assume the initial (infinite past) conditions are adiabatic vacuum,

@ Computationally this amounts to allowing a small amount of
evolution in imaginary time in the far past: —oc — —oc(1 + i€)

@ Left and right time integrations (vertices) no longer equivalent, but
conjugates of each other.

@ Implementation:

@ Active: Redefine integrations to run over a complex interval

@ Passive: Analytically continue the time variable to include a small
imaginary piece.
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Temptation: use

}C _,\.r

(Q(t)) = Z i" /ror i -/fﬂ

Vdin g [t ([Hhnc (). [Hine(t2). - [Hine(tn). Qi (9] TID)-
N=0 ~ o

@ Physical terms are broken up into unphysical pieces
At 2nd order:
f ot / " (Hine (£) Q) Hins (£)) = / ot / dt’’ / dadB(0|Hins (£")|a) (a] Q(£)18) (3
0 < 1 < g J 1 '
— ] dt’ / dt” (Hine () Q(E)Hine (£”) + Hine (") Q(2)Hins (£))
0 J 1
— 2R / dt’ / dt’” (Hint () Q(£)Hins (£°))
< 1 < I
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The ADM Formulation of GR and the “in-in" Formalism

Operator Formalism

At tree level, the two point correlation function is:

(56180;) = U U 5(k — K')

@ Contraction of two fields:

JOL&@& = doli(’foé— : 50{‘{5(_‘)

@ Propagator:

{5(3{((?')(50';(?")} = Uk(T)U; (7")6" 5(k + p)

@ Operator ordering matters.

X .
p -

@ Wightman functions instead of Feynman propagators

@ Wick's theorem follows in the usual way.

Pirsa: 09050061

@ Disconnected diagrams cancel by unitarity:

<

|jTE_F fr; Hint{r}dtj| ! {TE_F

fr:} Hint

{r}er —
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

. Q( t) o < [TE—I Jr; Him:(f}dr] : Q,‘(f) [Te_jjr; th‘:{r}dr}> i
To calculate:

@ Assume the initial (infinite past) conditions are adiabatic vacuum,

@ Computationally this amounts to allowing a small amount of
evolution in imaginary time in the far past: —o>c — —oc(1 + i€)

@ Left and right time integrations (vertices) no longer equivalent, but
conjugates of each other.

@ Implementation:

@ Active: Redefine integrations to run over a complex interval

@ Passive: Analytically continue the time variable to include a small
iImaginary piece.
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Temptation: use

o

@) =Y M n, dtn / = ol s / ity ([Hine (£1), [Hone (2). ... [Hone (tn), Qi (O]-TID.
< I < I ~ I

N=0

@ Physical terms are broken up into unphysical pieces
At 2nd order:

— S :
] o’ / " (Hine (£) Q) Hins () = / o’ / " / dadB(0] Hime (£7)] @) (o Q(£)18) (3
% ol < Ig g '
't -t
_/ dr’/ " (Hins (') Q(£)Hint (£) 4+ Hine (") Q(£)Hins (£))
Jo  Ja

3 *r:
— 2"=R/ dt’ / dt” (Hint (t") Q(t)Hins(t))
- rﬂ - I]:.
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Subtleties:

Qt)) = <[Te_" e Htm(r}dr] i (D [Te_f'-'rf; thg{r}dr}> |

To calculate:

@ Assume the initial (infinite past) conditions are adiabatic vacuum,

@ Computationally this amounts to allowing a small amount of
evolution in imaginary time in the far past: —oc — —oc(1 + i€)

@ Left and right time integrations (vertices) no longer equivalent, but
conjugates of each other.

@ Implementation:

@ Active: Redefine integrations to run over a complex interval

@ Passive: Analytically continue the time variable to include a small
Imaginary piece.
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Subtleties:

Temptation: use

o

(Q(t)) = Z = /r{} sy /+ : dty—1.- x dty ([Hint(t1), [Hine(22). .- [Hine(tn ), Qi (2)]---]1D) -
: - i

N=0

@ Physical terms are broken up into unphysical pieces
At 2nd order:

e CEeat 1
j dt’ / dt” (Hins (t") Q(t)Hin: (t')) = / dt’ / dt”’ / dad3(0|Hint (t")|a) (] Q(2)|3) (3]
7y < I <4 Iy J g .
2 -t
L / dt’ / dt” (Hine () Q(E)Hine (£) + Hine (") Q(2)Hine ()
& J g
T -t/
— 2R / o’ / dt” (Hins (£) Q) Hine ()
4 g Y g
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Summary - Operator Formalism

@ Nothing mysterious about “in-in" formalism:

@ Simple interpretation via transition amplitudes.
@ Just ordinary QFT rigged to compute correlation functions.

@ Operator Formalism:

@ Fast, transparent way of doing “in-in" calculations.
@ Only one contraction.

@ One must be careful with derivative couplings.

@ One should avoid artificially splitting up diagrams.

Powerful technique for calculating correlation functions.
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The ADM Formulation of GR and the “in-in” Formalism Operator Formalism

Subtleties:

Temptation: use

. =

Q) =% jN,/n; dtn ,/;,,JN drN_l_,,_/; dt1 ([Hint (1), [Hine(22). ... [Hine(tn ). Q¢ (D]--1ID).

N=0

@ Physical terms are broken up into unphysical pieces
At 2nd order:

ot - > = :
j dt’ / dt”’ :j_:Hint(rH)Q(f)Hint{tf):;- — / dt’ / dtﬂ/ dﬂd.J-Ii:OfHjnt(t””r_'it:} ~‘J|Q{ f)| _'3 ( 3

L=y < I J g J e ,

..t' _t."

—/ df’/ dt”’ (Hint (') Q(£)Hint (") + Hine (") Q(t)Hint (t'))
& J
T ‘r"
— 2R / o’ / dt”" (Hine (£7) Q(£)Hsns (')
< I < I
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The ADM Formulation of GR and the “in-in”" Formalism Operator Formalism

Summary - Operator Formalism

@ Nothing mysterious about “in-in" formalism:

@ Simple interpretation via transition amplitudes.
@ Just ordinary QFT rigged to compute correlation functions.

@ Operator Formalism:

@ Fast, transparent way of doing “in-in" calculations.
@ Only one contraction.

@ One must be careful with derivative couplings.

@ One should avoid artificially splitting up diagrams.

Powerful technique for calculating correlation functions.
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Loop Corrections in N-Field Inflation: Bounds on N? MN-Field Inflation

Gravitationally Induced Loop Corrections
in N-Field Inflation:
Bounds on N?
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Loop Corrections in N-Field Inflation: Bounds on N? N-Field Inflation

Action: N-Field Inflation

Consider an action of the form with N scalar fields (participator fields), M
massless scalars (spectator fields):

N M
1 § e
5= 5 / d4x‘v-f"g [ R+ Z do; —2V(oy)) + Z C)(TJ)E
' =1

I—1

Potential:

N
V(or) =Y _ Vi(er)
I—1

Each V, depends on a single 0.
(Canonical example, considered here N copies of m?¢?.)
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Loop Corrections in N-Field Inflation: Bounds on N? MN-Field Inflation

-Participators: N-Field Inflation

Friedmann equation:
| e
U — Z (2(1.;2 =+ V;(r);))
I

Homogeneous Klein-Gordon equation:

dV/ (o)

Dy

=

o1+ 3Hop +

@ Each field feels gradient of its own potential.

@ Feels the Hubble friction of all fields.
@ Obtain inflation from a collection of potentials for which inflation

cannot occur individually.
Slow Roll Params:

B 2 IN
o mgl(_) =S

=1

- 2 N
= >
2
HMD I f—1 Page 42/87

Pirsa: 09050061




Loop Corrections in N-Field Inflation: Bounds on N7 MN-Field Inflation

hy N Fields?

@ Many candidate theories of the early universe contain many additiona
degrees of freedom, e.g. string theory

@ N-field inflation provides (theoretically!) a way of realizing chaotic
inflation consistently within an effective field theory.

@ i.e. It is a way of side-stepping the problem of Planckian vevs,

@ e— ¢ =€¢/N,

@ Ao — Ao/ vN.
@ Get significant gravity waves while respecting the Lyth bound.

@ N-copies of the Standard Model might solve the hierarchy problem
@ Novel solution to hierarchy problem if N ~ 10°2 (Dvali)
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L oop Corrections in N-Field Inflation: Bounds on N? N-Field Inflation

Simple Bounds on N

All approximately massless fields fluctuate with an amplitude set by the

Hubble scale:
H

—

il

r_i(‘_'} F

@ Fluctuations freeze out on scales larger than 1/H,
@ Each field contributes gradient energy, (Vo)?/2 .
Gradient energy scales like

N (36\* . H
2 \ dx 872

Given H, p = :*‘:IVISI H?. For self consistency:

N —
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

adiative Stability and Loop Corrections

Assume the form of the potential is radiatively stable for this work.
What about gravitationally induced loop corrections?

@ Graviton couples to everything

@ lLoop corrections from the potential — radiative corrections to the
slow roll parameters

@ Gravitationally induced loop corrections — radiative corrections to
the power spectrum.

@ N-degrees of freedom to run round the loops.
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Loop Corrections in N-Field Inflation: Bounds on N? N-Field Inflation

Simple Bounds on N

All approximately massless fields fluctuate with an amplitude set by the

Hubble scale:

@ Fluctuations freeze out on scales larger than 1/H,
@ Each field contributes gradient energy, (Vo)?/2 .
Gradient energy scales like

N (36\* . H
2 \ dx 872

Given H, p = 3M§1 H?. For self consistency:

Nz =
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

adiative Stability and Loop Corrections

Assume the form of the potential is radiatively stable for this work.
What about gravitationally induced loop corrections?

@ Graviton couples to everything

@ lLoop corrections from the potential — radiative corrections to the
slow roll parameters

@ Gravitationally induced loop corrections — radiative corrections to
the power spectrum.

@ N-degrees of freedom to run round the loops.
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L oop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

Density fluctuations:

Dy

N 2
IZ 7 3 Epenesrs
=

@ Can bounds be put on N from loop corrections to the power
spectrum?

@ One might expect an m-loop correction to scale like N™.

To one loop order

HZ 2
(00p00,) ~ =
2(27)3 M2, M2,
2
So might expect N < &
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

Leading order third and fourth order actions are, respectively,

3 3
a P - -] a — Ll e
sB3) — —/dtd3x [I V’"2E;f}rﬂ’*()rﬂ do + E\EQE;E'T)_ZO(;) Ao 0‘0@“’1 .
@ Coupling: ¢ = %%’z
(4) N3 T T T e
L = dtd>x a Yy 2();0(_‘) d:00" 0 (C)jf)@ ()jOO + 00 0700 )
, 3
| S ) s
+ 00 00 O~ %(8:00 8;6¢' + dd 3*50")
e O o R L o
+m0 ‘(C)jb@ (;}jr)@ +do J°0o )d ‘((‘)j(}rj @jé@ +do 0o )
1 =, Sl e
+13210 J;:n_j + 0o 3o;0;00 | .

1 o e e e N S -~ s
Ejg_j ~ g4 (ajako@ Nod' + 300 60" — 3760 8;60' — Andd F;0méd’ ) .
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

nteractions

@ Four point interaction:

H®) (£) ~ / e 9 (50! 60" o™ (6067 567)

@ [ hree point interaction

H(3](t) — /d3xiH\/27QfLifjfr_i(JJf.if3J
; =)

@ Loop corrections given by:

5636 @eav = 23 [ dn (H(@)e' (006 (0)).
and
!/ pt D :
50" ()60 () 1oy = —2R R / dts / drlH(E)(rl)H”-’(rg)fjo’[t)f_io"(t)>]
f ar“_d .'_ » \




Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

Diagrams:
i J J
g 2 ] I I i
r I J J

@ Not typical Feynman diagrams.

@ Time doesn’t flow through the diagrams - propagators have only
3-momenta.

@ [imes associated with vertices.
@ Diagrams useful for visualization.

@ Feynman rules can be constructed, but are cumbersome.
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Diagrams:
J J J
g 2 ; I I f
r I J J

@ Not typical Feynman diagrams.

@ Time doesn't flow through the diagrams - propagators have only
3-momenta.

@ [imes associated with vertices.
@ Diagrams useful for visualization.

@ Feynman rules can be constructed, but are cumbersome.
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

-Field Inflation: One Vertex One Loop

@ Biggest possible effect from | propagator corrected by J other fields.

@ Contribution of a loop of this form is given by:

r
1" =2 : dg . - = = ’
(00g(t)00g (E))1L1v D S /_ 5 ;_;2 (0™ (80p(t1)800 (£1))d0g(1)d0g (1)

N
%y / d3k / Pk (97" (5631 (11)ddi. (1))
=% i

@ Loop integral scale free - independent of the external momentum:
does not make a physical contribution.

Can any of the one-loop one vertex loops contribute?
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

@ Unlike Ao*, can sneak the external scale into the integral:

@ In Fourier space:

(567 (8)667 (11)) ~ —

(k+p)”

@ Contract [ fields with J fields, obtain

{3‘();: ( 1 )Joﬁ ( t]_)

=N St aes 1 : : |
d/ xale (0 (1)d 5 (£1)80(£)d4(1))

3 1 - . J U
L{/d / (k+k’)”(p+p) etialeltal

= 1
" ZO ( ) ./dkk:i(k_}_q)n—!—m

Me

-:1126@:;(1‘)6@;( t))iLv O

Tr
b_l

=

@ O " contracted across two fields yields an integral with a scale.
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

nteractions

@ Four point interaction:

1 o
H® (2) ~ / d3*x —9 (60’ 60" )™ (667 667)
@ [ hree point interaction

H(3)(t) ~ /d3XiHU 2E;{i{’jfrfrj‘frjfjj
} =

@ Loop corrections given by:

T F y
(66’ ()60 () 1Ly = —29 / dt: { HY(11)e'(1)d0' (1)) .
and
! ot 2 ‘
50" (0)6d () oy = —2R {(/ dfg/ drlH”)(rl)H”’(rg)dr._a’(r)f_ig’(r)ﬂ
\JS —ac J —ac

+ < /_m dtH) (t1)d0' ()6 (1) | /_x dt2H (¢ )\
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

@ Unlike Ao*, can sneak the external scale into the integral:

@ In Fourier space:

1
(k +p)”

@ Contract [ fields with J fields, obtain

9 "(do7 (t1)d0” (t1)) ~ dou(t1)dog(t1)

T & drl . - ) E |
“/ i (99w (1)06k (21)3 04 ()0 (1))

Ma

(5h(1)0h(D) 1y O
J—1

1 TR,
/ / Tk k’)” ) o ox(t)od(n)
: 1
S EO ( ) / d kk:}(k—}—q)n—km

@ O " contracted across two fields yields an integral with a scale.
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Loop Corrections in N-Field Infiation: Bounds on N? Radiative Stability and Loop Corrections

iIdden Gravitons

Non-appearance of the diagrams scaling with N can be understood clearly
as follows:

@ [ he one loop, one vertex diagrams considered above really have
gravitons secretly hidden inside them:

@ [ he four point interaction:

/ /

is really mediated by a graviton:
J J

Pirsa: 09050061 f ,\' Page 57/87




Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

In this gauge, the two one-loop one-vertex diagrams we drew above look

like:

J
é f
f ! *’ %-’
@ Diagram that might scale like N?, is a “balloon” diagram

@ [ he propagator can't change species in the 2nd diagram.
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

hat about the two vertex loop?

@ Expect to scale as N due to N species which can appear in the loop.

@ Cannot be cheated out of this loop, due to topology the external
momenta must flow through the loop.

@ Six distinct diagrams which must be summed:

[ g = \ HZ
(00! (£)00! () 1L2v = 2(27)3q3NF’[120 '"(qﬂ

@ Note: ¢ is the slow roll parameter of one of the fields.

@ [ he global slow roll parameter is:

e = N¢

Page 59/87
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In this gauge, the two one-loop one-vertex diagrams we drew above look

like:

J
I
@ Diagram that might scale like N?, is a “balloon” diagram

@ [ he propagator can't change species in the 2nd diagram.
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In this gauge, the two one-loop one-vertex diagrams we drew above look

like:

J
f
@ Diagram that might scale like N?, is a “balloon” diagram

@ [ he propagator can't change species in the 2nd diagram.
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L oop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

hat about the two vertex loop?

@ Expect to scale as N due to N species which can appear in the loop.

@ Cannot be cheated out of this loop, due to topology the external
momenta must flow through the loop.

@ Six distinct diagrams which must be summed:

HZ
{:rjr‘_‘.}f(t)r}?f_‘.:"(t):ﬁ 12V = Ne; [

@ Note: ¢ is the slow roll parameter of one of the fields.

@ [ he global slow roll parameter is:

€ = Ne¢
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

hat about more loops?

No matter how many loops one goes to, no factors of N;

@ Leading order 4-pt interaction is only non-zero for self interactions.
@ Coupling in the 3-pt interaction has a 1/v/N hidden inside of it.

@ 3-pt interactions must occur in pairs
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Loop Corrections in N-Field Inflation: Bounds on N? Radiative Stability and Loop Corrections

hat about higher order terms?

What about higher order terms?

@ Interactions must appear in the action as scalars with respect to the
field indices.

@ With flat target space, fields pair with other fields (same index) or

with background fields, i.e. o!do!dd!é0? or o' 0! K éo! 550K

@ Interaction like 66! 507 50, scaling like N3 is forbidden.

@ In terms of the background properties, o'. ol ~1/V/N

We can't do any better than the leading order scaling.
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Loop Corrections in N-Field Inflation: Bounds on N? Inflation with N-Spectator Fields

nflation with M-Spectator Fields: Loop Corrections

What about the other extreme:

@ Four point interaction:

M M
| 1 > e Tl 7 - =i . .
Ha(t) ~ /d3x Tz {f}‘_n({jf_ﬁ{_ﬁj—l— E 607 35”)O™ ™ (6ddd + E s’ 65")

: - J=1 K=1

@ [ hree point interaction

1 M
, e = > |
Ha(t) ~ d3x —/2€ 86 o~ OO
(t) | = JE_I

@ 4-pt generates only one loop
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hat about higher order terms?

What about higher order terms?

@ Interactions must appear in the action as scalars with respect to the
field indices.

@ With flat target space, fields pair with other fields (same index) or

with background fields, i.e. o!d0!d0?d0? Lol oK 50! 5 6K

00" do’ 0 or &' " O™ V' do

@ Interaction like 60! 507 50, scaling like N3 is forbidden.

@ In terms of the background properties, o/ . o! ~ 1/V/N

We can't do any better than the leading order scaling.
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Loop Corrections in N-Field Inflation: Bounds on N7 Inflation with N-Spectator Fields

nflation with M-Spectator Fields: Loop Corrections

What about the other extreme:

@ Four point interaction:

M M
1 e . g = "
Ha(t) ~ /d3)< I [a_n(fj(}{_]() | E th(TJf’)JJ)f:)_m({_](_?ﬂfj - Z S5k
: - J=1 K=1
@ [ hree point interaction
= 1 M
, g ST Sy
Ha(t) ~ | d>x —/2¢€ 8¢ do~ oo
(t) | o JE—1

@ 4-pt generates only one loop
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Loop Corrections in N-Field Inflation: Bounds on N? Inflation with N-Spectator Fields

hat about the two vertex loop?

@ One finds (Weinberg)

1 H-? r H?
. 1+ M In( k
P € Mp1 ( o OM’2 o ))

@ Gives a bound:
M._

s H2F

@ Weaker than the gradient energy bound by ¢

||||| : 09050061
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Loop Corrections in N-Field Inflation: Bounds on N? Inflation with N-Spectator Fields

nflation with M-Spectator Fields: Loop Corrections

What about the other extreme:

@ Four point interaction:

M M
1 e = o B . O - .
Ha(t) ~ /d3x S {fj_n({){jﬂfj — E fi):j'JOJJ)f'j_m(mJ{‘ch—i— E S5
' 12 N—1

@ [ hree point interaction

M

St S
Ha(t) ~ / d>x E»’Qg r}f:;-; do” 6o

@ 4-pt generates only one loop
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Loop Corrections in N-Field Infilation: Bounds on N? Inflation with N-Spectator Fields

hat about the two vertex loop?

@ One finds (Weinberg)

@ Gives a bound:

= H2F

@ Weaker than the gradient energy bound by ¢

||||| : 09050061
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

A Coherent Field?

@ Non appearance of any scaling of N in N-field inflation; really only
one effective degree of freedom.

@ Suggests that, effective degree of freedom: % = ZT:I r;}_%

@ For m?”o? potentials; Lagrangian is:

T 1 l
SO0 — SmPu? + SR (09,
@ Looks like one inflaton, v, and N — 1 massless scalars, (2.

@ Why don't we recover Weinberg's result?

| 1 H? = HP
e ( 10 M2 '”“‘))
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

@ Short answer: this isn't quite the same case as Weinberg

@ T he fields €2; are not completely free; they satisfy

N—1
s —1

=3

@ (V%) ~ (NE;)_I(Hz;..-"MSI)
@ (); are quickly damped to attractor; 92 =0

What about loop corrections to perturbations?
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

@ Short answer: this isn't guite the same case as Weinberg

@ T[he fields €2; are not completely free; they satisfy

N—1
o — 1

—1

e () ~ (NE;)_}‘(H%.-;M;)
@ (2; are quickly damped to attractor; 9€2 = 0

What about loop corrections to perturbations?
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

oop Corrections

1 1 1 )
E — E(Uf_f')z _— Emz / - —+ 53_"2({’3)9)2.
@ Perturb:
W — v+ Q
SRS OR

@ [hree new interactions generated: Q;QQIw;, QRAw;Ow; and
r_'Qc")-,,;;;(f)m,f
@ Choose, Q; = £1.0 .0} Q; QQdw; gives at most one loop
@ QQIw 0wy is scale free
sz o0soos1 @ Easily shown that w; x a—>; loops quickly redshifted away  rugeraer




L oop Corrections in N-Field Infilation: Bounds on N? Coherent Field Description

@ Short answer: this isn't quite the same case as Weinberg

@ T he fields €2; are not completely free; they satisfy

@ (v?) ~ (Ne ) H(H*/ M)
@ (2; are quickly damped to attractor; 92 = 0

What about loop corrections to perturbations?
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oop Corrections

1
E — E((_)f_ )2 — Emzf_'2 -+ Ef_'z(_)Q)z
@ Perturb:
W — v+ Q
Q, = Q,‘ + W

@ [hree new interactions generated: Q;QQIw;, QRAw;Ow; and
U QOwOwy
@ Choose, Q; = {116 .0} Q; QQdw; gives at most one loop
@ QQIw 0wy is scale free
sz oosoos1 @ Easily shown that w; x a—>; loops quickly redshifted away  rugeresr
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oop Corrections

1 1 1
[.: — E(Uf )2 == Emzf_'2 — 53_"2({99)2
@ Perturb:
b — v+ Q
Q, —3 Q,‘ —+ iy

@ [hree new interactions generated: Q;QQIw;, QRAw;Ow; and
s_‘Qé‘)&‘;rf)w';
o Choose, Q; = {1.0..._. 0}; Q; QQdw; gives at most one loop
@ QQIw 0wy is scale free
sz o0soos1 @ Easily shown that w; x a—>; loops quickly redshifted away  rage e




Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

@ Short answer: this isn't guite the same case as Weinberg

@ [ he fields £2; are not completely free; they satisfy

N—1
- — 1

I—1

o (U?) ~ (Ney) L (H?/M2)
@ (2; are quickly damped to attractor; 9€2 =0

What about loop corrections to perturbations?
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Loop Corrections in N-Field Inflation: Bounds on N7 Coherent Field Description

A Coherent Field?

@ Non appearance of any scaling of N in N-field inflation; really only
one effective degree of freedom.

@ Suggests that, effective degree of freedom: 1% = Zf,“:l r;:r_%

@ For m?o? potentials; Lagrangian is:

== %(dr) —%mzaz %E_“z(é’ﬂ)z.

@ lLooks like one inflaton. v, and N — 1 massless scalars, (2.

@ Why don't we recover Weinberg's result?

i 4 7 w H?
e ( In(k))

OM2
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

@ Short answer: this isn't guite the same case as Weinberg

@ T he fields €2; are not completely free; they satisfy

L lr2 ) ~ ( Ne I)_l ( H2 MSI)

o
o

@ (2; are quickly damped to attractor; 9€2 =0

What about loop corrections to perturbations?
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

A Coherent Field?

@ Non appearance of any scaling of N in N-field inflation; really only
one effective degree of freedom.

@ Suggests that, effective degree of freedom: 1% = Z.T:]_ r:;_%

@ For m?o? potentials; Lagrangian is:
1, 1 1 i
£ — (W)Y ——ard + (a0,
2 2 2
@ Looks like one inflaton, v, and N — 1 massless scalars, (2.

@ Why don't we recover Weinberg's result?

f 1 H? x HF
Ly ( 10 M2 '”“‘))
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Loop Corrections in N-Field Inflation: Bounds on N? Inflation with N-Spectator Fields

nflation with M-Spectator Fields: Loop Corrections

What about the other extreme:

@ Four point interaction:

Ha(t) ~ /d3 S {O (dddo —I—Z Jo’ b )r) "(6odo + Z 5555

S ==

@ [ hree point interaction

M

1 =
jHB(t) ~ / dBX E\f 2(: {’)UJZ_]-UU'JG(TJ

@ 4-pt generates only one loop
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Loop Corrections in N-Field Inflation: Bounds on N? Coherent Field Description

A Coherent Field?

@ Non appearance of any scaling of N in N-field inflation; really only
one effective degree of freedom.

@ Suggests that, effective degree of freedom: 1% = Zﬂ‘;l r_:r_%

@ For m?o? potentials; Lagrangian is:

i = %(rﬂe;')z — %mza_*z + %E;‘z(aﬂ)z.

@ lLooks like one inflaton, v, and N — 1 massless scalars, 2.

@ Why don't we recover Weinberg's result?
: 1 H? T H?
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@ Short answer: this isn't guite the same case as Weinberg

@ [ he fields €2; are not completely free; they satisfy

N—1
g — 1

=1

@ (V%) ~ (Ne) Y H;,-”MSI)
@ (2; are quickly damped to attractor; 92 =0

What about loop corrections to perturbations?
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oop Corrections

1
o E(Ut')z — Emzf_ S 3 . (9Q)2.
@ Perturb:
h — W+ Q
o — e

@ [hree new interactions generated: Q;QQIw;, QRIw;Ow; and
E‘_'Qavﬁf@uﬁ'f
@ Choose, Q; = $1.0 .. O} Q; QQdw; gives at most one loop
@ QQIw 0wy is scale free
sz o0soos1 @ Easily shown that w; x a—>; loops quickly redshifted away  rageeser




Conclusions

@ Bounds on N:

@ Gradient energy bounds provide a constraint on the number of degrees
of freedom in the early universe of:

2
MG,

N < 72

@ One loop quantum corrections to the power spectrum in

N-flation provide no bound on N
o N-field inflation can be recast as a coherent single scalar field

with one effective degree of freedom.

@ On the other extreme, single field field inflation with N spectator
fields yields a bound on N which is weaker than the bound
obtained from gradient energy considerations by e:

M3, 1

N < 02 ¢
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