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Abstract: This talk will discuss, illustrated by a toy example, how to construct "higher-algebraic" quantum field theories using groupoids. In
particular, the groupoids describe configuration spaces of connections, together with their gauge symmetries, on spacetime, space, and boundaries of
regions in space. The talk will describe a higher-algebraic "sum over histories’, and how this construction is related to usual QFT's, and particularly
the relation to the case of the Chern-Simons theory.
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A Topological Quantum Field Theory can be seen as a monoidal
functor:
Zs - nCob — Vect
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In particular:
Z(Mzo My ) = Z(Mz) o Z(Mh)

and
Z($1 11Sp) = Z(S1) @ Z(Sz) and Z(2) = C
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We'll see that for each (finite, or compact Lie) group G, there is an
Extended TQFT, namely a (monoidal) 2-functor:

Zs - nCob, — 2Vect

Z(X)

% e Z(M)
TRe N = £ Z(TS) Z(S'T)

- o
Z(Y")
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Cobordisms of cobordisms form a 2-category nCobs:
e ¥ N e y e
2 2
—— ——— ——
= = as &)
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Pi

Definition
A 2-Vector space is a C-linear abelian category generated by simple
elements. A 2-linear map is an exact C-linear functor.

Finite-dimensional 2-vector spaces are all equivalent to Vect”. 2-linear
maps then look like:

Vs == Wiy W, '@Tﬁ Viie W,
Wiy - Wia Wi @:(:1 Vi, W,

There are also natural transformations between 2-linear maps, which
look like matrices with components «;; : V;; — V’
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Groupoids and Moduli Spaces

A groupoid is a category in which all morphisms are invertible (a
“many-object group”, as a category is a “many-object monoid”). In a
Lie groupoid, Ob and Mor = Uy yhom(x. y ) are manifolds (and source,
target, identity maps are surjective submersions).

If X is a set, and a group G acts on X, there is an action groupoid
X .-":-:’; G with:

e Objects: elements of X

e Morphisms: triples (x.g. y) where gx = y This groupoid, up to
equivalence of groupoids. represents a quotient stack.
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Groupoids and Moalli Spaces

A groupoid is a category in which all morphisms are invertible (a
“many-object group”, as a category is a “many-object monoid”). In a
Lie groupoid, Ob and Mor = Uy ,hom(x. y) are manifolds (and source,
target, identity maps are surjective submersions).

If X is a set, and a group G acts on X, there is an action groupoid

X/ G with:

e Objects: elements of X

e Morphisms: triples (x.g. y) where gx = y This groupoid, up to
equivalence of groupoids. represents a quotient stack.
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Groupoids and Moalli Spaces

A groupoid is a category in which all morphisms are invertible (a
“many-object group”, as a category is a “many-object monoid”). In a
Lie groupoid, Ob and Mor = Ux ,hom(x. y) are manifolds (and source,
target, identity maps are surjective submersions).

If X is a set, and a group G acts on X, there is an action groupoid
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e Objects: elements of X

e Morphisms: triples (x.g. y) where gx = y This groupoid, up to
equivalence of groupoids. represents a quotient stack.
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Groupaids and Moalli Spaces

A groupoid is a category in which all morphisms are invertible (a
“many-object group”, as a category is a “many-object monoid”). In a
Lie groupoid, Ob and Mor = Uy ,hom(x. y) are manifolds (and source,
target, identity maps are surjective submersions).

If X is a set, and a group G acts on X, there is an action groupoid

X/ G with:

e Objects: elements of X

e Morphisms: triples (x.g. y) where gx = y This groupoid, up to
equivalence of groupoids. represents a quotient stack.
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Groupoids and Moalli Spaces

A groupoid is a category in which all morphisms are invertible (a
“many-object group”, as a category is a “many-aobject monoid”). In a
Lie groupoid, Ob and Mor = Uy yhom(x. y ) are manifolds (and source,
target, identity maps are surjective submersions).

If X is a set, and a group G acts on X, there is an action groupoid
X/ G with:

e Objects: elements of X

e Morphisms: triples (x.g. y) where gx = y This groupoid, up to
equivalence of groupoids. represents a quotient stack.
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Groupoids and Moalli Spaces

Two interesting moduli spaces:
e connections on a manifold M: A(M)
e flat connections on M: A,(M)

Both are acted on by gauge transformations. We will mostly consider:
Ao(M) /G

(M) has objects x = M and morphisms homotopy classes of paths.
The groupoid of flat connections is equivalent to the functor category:

Ao(B) = Fun(M(B). G)

(Gauge transformations are natural transformations between these
functors).
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Groupoids and Moalli Spaces

For example, if B = S', N4(S') ~ Z. A G-connection g is specified by
the holonomy g(1) € G. A natural transformation from g to g’ is given
by h € G, such that ¢ = hgh~'. So then:

Ao(S") ~ G/G

IS equivalent to the groupoid with:
e Objects: conjugacy classes [g] of G
e Morphisms: only isotopy subgroups Aut(g) for each [g]

irsa: 09050041 Page 14/83




2-Vector Spaces for Manifoids

Lemma

If X is a groupoid, the functor category Rep(X) = [X. Vect] is a 2-vectoi
space.

Later on, 2-Hilbert space structure will come from a "measure” on X,
given using groupoid cardinality

| 1
X| =
% Aut(x)

or the analog for differentiable stacks (Weinstein) from the “volume

form’™ %
vol(X) = / (/ ) el
Jx S autqpa)
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2-Vector Spaces for Manifolds

The methods used can also be used to apply to any theory whose
states and histories. and their symmetries give moduli stacks of finite
total volume. Here, these are connections and gauge transformations.
To build Z; : nCob, — 2Vect. use a topological gauge theory with
gauge group G (assume G finite, or compact Lie). Flat G-connections
on manifolds can be specified by holonomies along paths.

Then the 2-vector space Zg(B) is:

Zg(B) = Rep(Aq(B)) = [Ao(B). Vect]
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2-Vector Spaces for Manifoids
Suppose B= S'. We get Z5(S') = [A(S'). Vect] ~ [G/ G. Veet]. This
gives a vector space for each [g] € G and an isomorphism for each
conjugacy relation:

4 & %)
! _/ r _,/:
|| Vect
Vo V h
. ' s gt ] / r'l! .

I\ A\
L
o o |
-1k
G, G,

Z5(S') = | | Rep(Aut([g]))
gl

So that

“&erany 2-vector in this 2-vector space is a direct sum of irreductbke



2-Vector Spaces for Manifolds

A physically interesting case is G = SU(2). The irreducible (basis)
objects of Zgy2)(S') ~ [SU(2)/ SU(2). Vect] amount to a choice of
conjugacy class in SU(2) (i.e. o € [0.2=] and representation of
stabilizer subgroup (U(1) if m# 0, or SU(2) it m = 0).

SU(2)

A general object corresponds to some coherent sheaf of vector spaces
on SU(2)/SU(2) (i.e. equivariant).
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2-Vector Spaces for Manifolds

A cobordism between manifolds can be expressed as a diagram:
BLsLp

which gives a diagram of the groupoids of connections:

since both connections and gauge transformations on S can be
restricted along the inclusion maps / and /.
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2-Vector Spaces for Manifoids

So we have: ‘ ‘
Zs(B) = [Ao(S). Veet] ‘2 Z5(B)

where p* is the pullback 2-linear map, taking F : 4y(B) — Vect to

(F o p) : Ag(S) — Vect. Likewise (p/)* : Zg(B') —|Aq(S). Vect|.

To push a 2-vector in Zg(B) to one in Zg(B') involves a (direct) sum
over all “histories™ - i.e. connections which restrict to aand &', as in this
diagram:

P S e

®INININ

& o i o f}:.t_ﬁ_ -
-
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2-Vector Spaces for Manifoids

Then picking basis elements (a. W) € Zg(B) and (&. W') € Zg(B'), we
get
Zs(S)(aw).(z.w)

— @ homgeﬂ-,quﬂsn[ﬁ"( W).(p')"(W')]
[S]

for objects s with (p. p’)(s) = (a.&).
(By Schur’s lemma, this counts the multiplicity of the irrep W' in
(P')cop™ W)

So the adjoint 2-linear map

(0)- : [Ao(S). Veet] — Z(B)

pushes forward a 2-vector p*F = Rep(.Ay(S)) to the induced
representation in Rep( Aqy(B')).
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2-Vector Spaces for Manifolds

So we have: ‘ ‘
Za(B) = [Ao(S). Vect] ‘2 Z5(B)

where p* is the pullback 2-linear map, taking F : Ay(B) — Vect to

(F o p) : Ag(S) — Vect. Likewise (p/)* : Zg(B') —|Aq(S). Vect|.

To push a 2-vector in Zg(B) to one in Zg(B') involves a (direct) sum
over all “histories” - i.e. connections which restrict to aand &', as in this
diagram:

\OQQQ
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2-Vector Spaces for Manifolds

Then picking basis elements (a. W) € Zg(B) and (&. W') € Zg(B'), we
get
Za(S)aw).(a.w)
:@homﬁep{»ﬁutfsn[pt( W).(p)"(W)]
[s]

for objects s with (p. p')(s) = (a.&).
(By Schur’s lemma, this counts the multiplicity of the irrep W' in

(P ) op™ W)
So the adjoint 2-linear map

(0)- : [Ao(S). Veet] — Z(B)

pushes forward a 2-vector p*F = Rep(.Aq(S)) to the induced
representation in Rep(Aqy(B')).
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2-Vector Spaces for Manifolds

Suppose Y : S' + S' — S' is the “pair of pants™:

Then we have the diagram:

# %

(G/GY 'G/G

Zs(Y) sends a representation over ([g]. [g']) to one with nontrivial reps
~over [gg’] for any representatives (g.g’).
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Then we get:
Zg(M) : Z5(S1) — £5(S2)

a natural transformation whose components are /inear maps:
Za(M)((a.w) (2 @homﬁep{Auttsfll[fJ1 W).pz(W')]

—@homﬂmﬂ\unsg:][pj*t ). P (W)

Pirsa: 09050041 =2 Page 25/83




2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (21 w) - €D hOMaepaus,)) (07 (W). B3 (W')]

=

— @ hOM gep(aut(s:)) [P’ (W). /2 (W')]

[s2]

has components which are given by:

Zs (M) (a. w).(21.w").(s.52) (F) = [(51- S2) Z gfg™’

e

where (s;. S) is a subgroupoid of Aq( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao(M)
{'_’_, = p‘ : ~ .,
4(S1) Ao(S2)
‘\ =
p P . = P >
Ao(B) 40(B')

Then we get:
Zg(M) : Z5(S1) — £5(S2)

a natural transformation whose components are /inear maps:
4 (M){[ai wW).([2’]. W) @homgm{AUHST”[p‘I W) pz(wf)]

£

_@homﬁepnﬂ\uﬂsﬂ:][p!‘r Pe W’)]
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2-Vector Spaces for Manifoids

A cobordism between manifolds can be expressed as a diagram:
BLsLp

which gives a diagram of the groupoids of connections:

since both connections and gauge transformations on S can be
restricted along the inclusion maps / and /.
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Groupaids and Moalli Spaces

Two interesting moduli spaces:
e connections on a manifold M: A(M)
e flat connections on M: A,(M)
Both are acted on by gauge transformations. We will mostly consider:

Ao(M) /G

Iy (M) has objects x « M and morphisms homotopy classes of paths.
The groupoid of flat connections is equivalent to the functor category:

(Gauge transformations are natural transformations between these
functors).
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Cobordisms of cobordisms form a 2-category nCobs-:
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x>
A Topological Quantum Field Theory can be seen as a monoidal
functor:
Zs; - nCob — Vect

";. * \ | S Z(S)
I'-..\\_//J. \\\_‘———j//, (
N P = .
M /”) ZiM)
"/‘/’_\\\n #
[ ! .
A / S: Z(S )
N oL

In particular:
Z(Mz o My) = Z(Mz) o Z(My)

and
Z(51 1S;) =2Z(S1) 2 Z(Sz) and Z(2) = C
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s
Cobordisms of cobordisms form a 2-category nCobs-:
F .,-"_."'-..H e e e i
i NS NELA NS A N
;-—__:_-F" -u._,_,_.-ﬂ' e
2 = =
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ks
We'll see that for each (finite, or compact Lie) group G, there is an
Extended TQFT, namely a (monoidal) 2-functor:

Zs - nCob, — 2Vect

Z(X)

‘ Z(M)
e T T Z(TS) Z(ST)

; e
Z(Y'")
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Pi

Definition
A 2-Vector space is a C-linear abelian category generated by simple
elements. A 2-linear map is an exact C-linear functor.

Finite-dimensional 2-vector spaces are all equivalent to Vect”. 2-linear
maps then look like:

Y == Wy W, .@f{:1 Viie W,

Vis - Wi Wi @:(:1 Viio W,

There are also natural transformations between 2-linear maps, which
look like matrices with components «;; : V;; — V’

||||| : 09050041 Page 35/83



Groupods and M:I:l{}ﬁpaces

For example, if B = S', MN4(S') ~ Z. A G-connection g is specified by
the holonomy g(1) € G. A natural transformation from g to g’ is given
by h € G, such that ¢ = hgh~'. So then:

,—10(31 ) ~ G/G

IS equivalent to the groupoid with:
e Objects: conjugacy classes [g] of G
e Morphisms: only isotopy subgroups Aut(g) for each [g]
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2-Vector Spaces for Manifolds

So we have: ‘ ‘
Zs(B) = [A0(S). Veet] ‘2 Z5(B)
where p* is the pullback 2-linear map. taking F : 4y(B) — Vect to
(F o p) : Ag(S) — Vect. Likewise (p/)* : Zg(B') —|Aq(S). Vect|.
To push a 2-vector in Zg(B) to one in Zg(B') involves a (direct) sum
over all “histories” - i.e. connections which restrict to a and &', as in this

diagram:

\QQQQ

_.rr"‘”fxx_.f
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2-Vector Spaces for Manifoids

Then picking basis elements (a. W) € Zg(B) and (&. W') € Zg(B'), we
get
Zs(S)aw).(a.w)

— @ oM gep aut(s) [P (W). (') ( W]
[s]

for objects s with (p. p’)(s) = (a. &).
(By Schur’s lemma, this counts the multiplicity of the irrep W' in

(P')cop™ W)
So the adjoint 2-linear map

(). : [Ao(S). Vect] — Z5(B')

pushes forward a 2-vector p*F = Rep(.Aq(S)) to the induced
representation in Rep( Ay(B')).
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2-Vector Spaces for Manifolds

Suppose Y : S' + S' — S' is the “pair of pants™:

Then we have the diagram:

(G/GP G/G

Zs(Y) sends a representation over ([g]. [g']) to one with nontrivial reps
~over [gg’] for any representatives (g.g’).
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Then we get:
Zg(M) : Z5(S1) — Z(S2)
a natural transformation whose components are /inear maps:
Za(M)(ja1.w). (). w) - €D hoMaepiaus,)) (07 (W). ps (W)

£

— @ hUmRep:Auns;,_u[p!;( W). pjg( W)l

[s2]
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2-Vector Spaces for Manifolds

Then picking basis elements (a. W) € Zg(B) and (&. W') € Zg(B'), we
get
Za(S)aw).(z.w)

— @ NOM gep Aut(s)) [P ( W). ()" (W]
[s]

for objects s with (p.p’)(s) = (a.&).
(By Schur’s lemma, this counts the multiplicity of the irrep W' in

(P)cop™W)
So the adjoint 2-linear map

(0)- : [Ao(S). Veet] — Z5(B)

pushes forward a 2-vector p*F = Rep(.Aq(S)) to the induced
representation in Rep(.Aqy(B')).
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2-Vector Spaces for Manifolds

So we have: ‘ ‘
Zs(B) = [Ao(S). Veet] ‘2 Z5(B)

where p* is the pullback 2-linear map, taking F : Aq(B) — Vect to

(F o p): Ag(S) — Vect. Likewise (p')* : Zg(B’') —|.Ag(S). Vectl

To push a 2-vector in Zg(B) to one in Zg(B') involves a (dlrect) sum
over all “histories™ - i.e. connections which restrict to aand &', as in this
diagram:

‘QQQQ

_.rr""/r ""-L.r""'
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2-Vector Spaces for Manifolds

Suppose Y : S' + S' — S' is the “pair of pants™:

Then we have the diagram:

(Gx G)/G (1)

(G/GP 'G/G

Zs(Y) sends a representation over ([g]. [g']) to one with nontrivial reps
~over [gg’] for any representatives (g.g’).
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao (M)
v p R W
Ao(S1) Ao(S2)
= = |
D+ [+ 4 i H\h; [o %
/ k v
Ao(B) 40(B')

Then we get:
Zg(M) : Z5(S1) — £5(S2)
a natural transformation whose components are /inear maps:
Zo(M)(ja1.w).(21.w) - @ NOM gep(aut(s,)) [P (W). p2 (W')]

51

— @ hOMgep(aut(s,)) (01 (W). o2 (W)
=
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2-Vector Spaces for Manifolds

The natural transformation

Z(M)(ia.w) (21 w) - D hoMaepauts,)) [P7 (W). p3(W')]

[5!

_@homﬁemaluﬂsﬂ ]W‘T ” wr)]

has components which are given by:

Zg(M) a1 w).(121.w").(s,.5)(F) = (1. 52) Z gfg~’

geAut(s)

e

where (s1. s2) is a subgroupoid of 4y( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao(M)
a'.:"’.r F ';’I ““‘-,
1(S1) Ao(S2)
T
pr Py { P>
- / -
Aqo(B) T Aq(B)

Then we get:
Zg(M) : Z5(S1) — Z(S2)

a natural transformation whose components are /inear maps:
Za(M)(ja1.w).(12).w) - €D hoMaepaus,)) (07 (W). p3 (W)

r5]

_@homRmAun}J]WT pjz W’ ]
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2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w).(21.w) - €D hoMagpaus,)) (05 (W). o3 (W')]

s:]

= @homﬁemmns;n[ﬂ!;( W).p's (W)

has components which are given by:

Za(M)(ta.w).(jz1.w").(s,.5)(F) = [(S1-82)] Y gfg™

.—'-A-'--

where (s;. S3) is a subgroupoid of 4,( M), the “essential preimage” of
(s1.S2) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification”.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Then we get:
Zg(M) : Z5(S1) — £5(S2)

a natural transformation whose components are /inear maps:
Za(M)(ia.w).(z).w @ homgep(aut(s;)) T (W). p2(W')]

_@ homﬁeplAuns;JJW*r( W).p’ 2( w’ )]
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2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (21 w) - D hOMaepaus,)) (07 (W). B3 (W')]

S1]

=+ @ hoM gep(aut(s:)) [P’ (W). P/ (W')]

S2)

has components which are given by:

e

Zs (M) (a. wy.(121.w").(s.50) (F) = |(S51- S2) Z gfg™’

geAut(s)

where (EE) is a subgroupoid of Ay( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and

Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifoids

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Then we get:

Za(M) : Z5(S1) — Z5(S2)

a natural transformation whose components are /inear maps:

Zg( M){ [al.w).([]l.w’) - @ homﬂepmunsdl[p{( W).pa( Wr)]

S

— GB hUmRmAuns;n[p’;( W)plé( W)l
5]
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2-Vector Spaces for Manifolds

The natural transformation

Z(M)((a1.w) (21w - D hOMagnauts,)) (05 (W). p3 (W)]

5]

— €D homaepaus)) 01 (W). o2 (W)

[s2]

has components which are given by:

e .

Zs(M)(a.w).(z1.w).(s.5)(F) = |(S1.82)| D gfg™’

—— e

where (s;. S) is a subgroupoid of Aq( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push™ operation: cf Baez and
Dolan, “Groupoidification”.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

-40(M)
{hfj 2 pﬂ ; N .‘-‘.H
Ao(Sy) Ao(S2)
*\H = =2 |
P P — P2
- / "“u___%‘ '
Aq(B) 4o(5')

Then we get:
Zg(M) : Z5(S1) — £5(S2)

a natural transformation whose components are /inear maps:
Zg( M){ [al.w).([]l.w") - @ homﬁep{AunsfH[p;( W). b2 ( Wf)]

sj

—@homﬁepnﬂuﬂsﬂ]](p!‘r 102 (W]
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2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (21 w) - D hOMaepaus,)) 107 (W). B3 (W')]

=

_@homﬂemmns-;nw;( W).p'5(W')]

has components which are given by:

- e

Zo(M) (2. w).((21.w") (s .52)(F) = |(51- S2) Z gfg~’

geAut(s )

.-"-A--"-

where (s;. s») is a subgroupoid of 45(M). the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifoids

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

-40(M)
Ao(S1) Ao(S2)
‘\‘%—H Do -
D+ D ‘"“\_; [+ 5%
- / , v
Ao(B) ‘R'Ao(B’)

Then we get:
Za(M) : Z5(S1) — £6(S2)
a natural transformation whose components are /inear maps:
Za(M)(ja1.w). (). w) - €D hoMaepaus,)) (07 (W). p5 (W)

r 1
1S1]

= @hUmRmAunsgnw;( W)pjé( W)l
£3

irsa; 09050041 i Page 54/83



2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (21 w) - 6D hOMaepaus,)) (D7 (W). B3 (W')]

fsi

_@homﬁemhuﬂs-w [pj‘f 102 W’)]

has components which are given by:

where (s1. S3) is a subgroupoid of 4y( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao (M)
{'-i; p * ;:l:x Y ‘\H
A(S1) Ao (S2)
‘\M—a Do -
P o = P 2
& / —— :
Ao(B) - Ao(B')

Then we get:
Za(M) : Z5(S1) — £a(S2)
a natural transformation whose components are /inear maps:
Za(M)((a.w) (2. w) - & hOMagaus,)) [P (W). o2 (W')]

[

151]

— @ homREﬂAUﬂ%”[p!;( W). Jd;( W)l

I 1
Sz
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2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (z1.w) - D hoMagyaus,)) (05 (W). B3 (W)

S1)

=3 @ homgep(aut(s:))[P'1 (W). p'o( W)

[s2]

has components which are given by:

e .

Zs(M)(a.w).(z1.w)(s.5)(F) = |(S1.82)| D gfg™

geAut( s )

e

where (s;. s2) is a subgroupoid of Aq( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao(M)
" il pf ﬂx -
4(S1) Ao(S2)
o) |
P Py % P2 o 5
- / e v
Aq(B) 7 Ao(B)

Then we get:
Zg(M) : Z5(S1) — £5(S2)
a natural transformation whose components are /inear maps:
Zo(M)(ja.w).(21.w) - @homﬁemurmmm[ﬂ{(w)ﬁé(Wf)]

[S1]

— @ hoM gep(aut(s,)) [P’ (W). p'o(W)]
[s2]
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2-Vector Spaces for Manifolds

The natural transformation

Zo(M)(a.w) (z1.w) : @ NOMgep(aut(s,)) LPT (W). p2 (W')]

£

= @ hoM gep(aut(s:)) [P’ (W). p'o(W')]

r 1
| S2)

has components which are given by:

e

Za(M) (o w).(z1.w")(s,.5)(F) = [(S1-82)] Y gfg™

geAut(s)

where (EE) IS a subgroupoid of 4g( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and

Dolan, “Groupoidification”.)
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2-Vector Spaces for Manifoids

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao(M)
J-* ”}D. n ~
10(S1) Ao(S:)
ey
o2 o, ] o >
. / -
Ao(B) T Ay(B)

Then we get:
Za(M) : Z5(S1) — £a(S2)
a natural transformation whose components are /inear maps:
Zo(M)(ja1.w).(121.w) - @hﬂmﬂepmunsm[ﬂ( W). pz(W')]

'S*]

_@ thHEﬂmuns;_H[p!;( W)P’E( W’ )]
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2-Vector Spaces for Manifoids

A physically interesting case is G = SU(2). The irreducible (basis)
objects of Zsy2)(S') ~ [SU(2)/ SU(2). Vect] amount to a choice of
conjugacy class in SU(2) (i.e. o € [0.2x] and representation of
stabilizer subgroup (U(1) if m# 0, or SU(2) it m = 0).

SU(2)

A general object corresponds to some coherent sheaf of vector spaces
on SU(2)/SU(2) (i.e. equivariant).
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2-Vector Spaces for Manifolds

The methods used can also be used to apply to any theory whose
states and histories. and their symmetries give moduli stacks of finite
total volume. Here, these are connections and gauge transformations.
To build Z; : nCob, — 2Vect, use a topological gauge theory with
gauge group G (assume G finite, or compact Lie). Flat G-connections
on manifolds can be specified by holonomies along paths.

Then the 2-vector space Zg(B) is:

Zg(B) = Rep(Aq(B)) = [Ao(B). Vect]
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2-Vector Spaces for Manifoids

Lemma

If X is a groupoid, the functor category Rep(X) = [X. Vect] is a 2-vectoi
space.

Later on, 2-Hilbert space structure will come from a "measure” on X,
given using groupoid cardinality

| 1
- % Aut(x)|

or the analog for differentiable stacks (Weinstein) from the “volume

form’ ik
vol(X) = / 1/ dv) 'dp
JX JAut([x])
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2-Vector Spaces for Manifolds

A physically interesting case is G = SU(2). The irreducible (basis)
objects of Zsy2)(S') ~ [SU(2)/ SU(2). Vect] amount to a choice of
conjugacy class in SU(2) (i.e. o € [0.2=] and representation of
stabilizer subgroup (U(1) if m# 0, or SU(2) it m = 0).

SU(2)

A general object corresponds to some coherent sheaf of vector spaces
on SU(2)/SU(2) (i.e. equivariant).
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2-Vector Spaces for Manifolds

So we have: ‘ ‘
Zs(B) Z [Ao(S). Vect] ‘2 Z5(B)

where p* is the pullback 2-linear map. taking F : Aq(B) — Vect to

(F o p) : Ag(S) — Vect. Likewise (p/)" : Zg(B') —|Aq(S). Vect|.

To push a 2-vector in Zg(B) to one in Zg(B’) involves a (direct) sum
over all “histories” - i.e. connections which restrict to a and &/, as in this

diagram:

QQQQ
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2-Vector Spaces for Manifoids

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Then we get:
Za(M) : Z5(S1) — £5(S2)
a natural transformation whose components are /inear maps:
Za(M)(ja1.w). (). w) - €D hOMaepaus,)) (07 (W). p5 (W)

S

= @ NOMgep(aut(s,)) [P’ (W). /2 (W')]

irsa; 09050041 T Page 66/83



2-Vector Spaces for Manifolds

Suppose Y : S + S' — S' is the “pair of pants™:

Then we have the diagram:
(Gx G))/G (1)

S N,
el -

(G/GY? G/G

Zs(Y) sends a representation over ([g]. [g']) to one with nontrivial reps
Pirsa:(g(gogl [ggf] for any representatlves (g' g)‘ Page 67/83




2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (21 w) - € hOMaepaus,)) (07 (W). B3 (W')]

s:]

— D homaepauise)) 0/ (W). B3 (W)

has components which are given by:

Z(M)((a.w).(z1.w").(s,.5)(F) = [(S51-82)] Y gfg™
geAut( sz )
where (ETSZ ) is a subgroupoid of Ay( M), the “essential preimage” of
(s1.S2) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).
(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao (M)

, ;f’.g' : ~ -
40(S1) Ao(S)
L -

p [+ HED: P >
Ao(B) T 4y(B)

Then we get:
Za(M) : Z5(S1) — £5(S2)
a natural transformation whose components are /inear maps:
Zo(M)(ja).w) (121 w) - @ NOMgep(aut(s,)) [P (W). p2 (W')]

[S1]

5 @homﬂm»ﬂunsﬂmfﬁ';( W).p'5(W')]
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2-Vector Spaces for Manifolds

The natural transformation

Za(M)((a.w) (21 w) - €D hOMaepaus,)) (07 (W). B3 (W')]

=

- @ hOM gep(aut(s:)) [P’ (W). /2 ( W)
[s2]

has components which are given by:

ZG(M):'{aI.W}.{[a‘j_W'!.[5.sgl(f): (3152) Z gfg_1

."-A-'--

where (s;. S) is a subgroupoid of 44( M), the “essential preimage” of
(s1.S2) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

Given a cobordism with corners between two cobordisms with the
same source and target: there is a tower of groupoids:

Ao(M)
>l IEH“*D; DM Ny
10(S) Ao(S2)

on. 0 < |
o D o re [+ 45
- \_‘-\\-\-‘Hﬁ_‘q‘ v
Ao(B) 40(B')

Then we get:
Za(M) : Z5(S1) — £5(S2)
a natural transformation whose components are /inear maps:
Za(M)(ja.w).(21.w) : @homnepmunsm[m( W). pz(W')]

[s1]

_@homﬁm#\uns@nw;( W)P'JE( W’ )]
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2-Vector Spaces for Manifoids

The natural transformation

Za(M)((a.w) (21 w) - €D hOMaepaus,)) (07 (W). B3 (W')]

S1)

=+ @ hoM gep(aut(s:)) [P’ (W). P/ (W')]

has components which are given by:

Zo(M) (o w). (21 w1550 = |(51.2)] Y gfg™

e

where (s;. S) is a subgroupoid of 4,( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifoids

The natural transformation

ZG(M)|{a],W“J ([Z]. W) - @hﬂmﬁenmm{s-.n

— P homacpats:[0'; (W). P'5(W')
Sz

has components which are given by:

ZG(M):[al_W'h.fiaj_W :|_|5_s;j(f) = (5':_;2) Z Qﬂrg_1

geAut(sz)

e ——

where (s1. S2) is a subgroupoid of 45( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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2-Vector Spaces for Manifolds

The methods used can also be used to apply to any theory whose
states and histories. and their symmetries give moduli stacks of finite
total volume. Here, these are connections and gauge transformations.
To build Z; : nCob, — 2Vect, use a topological gauge theory with
gauge group G (assume G finite, or compact Lie). Flat G-connections
on manifolds can be specified by holonomies along paths.

Then the 2-vector space Zg(B) is:

Zg(B) = Rep(Aq(B)) = [Ao(B). Vect]
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2-Vector Spaces for Manifoids

Lemma

If X is a groupoid, the functor category Rep(X) = [X. Vect] is a 2-vectoi
space.

Later on, 2-Hilbert space structure will come from a "measure” on X,
given using groupoid cardinality

_ 1
=
% Aut(x)

or the analog for differentiable stacks (Weinstein) from the “volume

form’™ ¥
vol(X) = / [/ dv) "' dy
JX JAut([x])
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2-Vector Spaces for Manifoids

The natural transformation

Za(M)((a.w) (21 w) - D hOMaepaus,)) (07 (W). B3 (W')]

s:]

5 @homﬂeﬂﬂhun&}]w;( W).p' (W)
[s2]

has components which are given by:

Zo(M) o w) (21w (s .5)(H) = [(51-92)| Y gfg™

geAut(s)

e

where (s1. s2) is a subgroupoid of Ay( M), the “essential preimage” of
(s1.55) under (p.p’). and | - | is the groupoid cardinality (or stack
volume).

(This comes from an analogous “pull-push” operation: cf Baez and
Dolan, “Groupoidification™.)
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I - /oo Sosces o Manioics

Theorem
T'he construction we’ve just seen gives a 2-functor

Zs - nCob, — 2Vect

(that is, an Extended TQFT).
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A

For physics, we really want 2-Hilbert spaces: Hilb-enriched abelian
=-categories with all limits. Generated by simple objects (i.e. ones
where hom(x. x) = C.

Typical example: a category of fields of Hilbert spaces, (7 on a
measure space (X. ) consists of an X-indexed family of Hilbert
spaces H, (together with a good space of sections).

Morphisms are (certain) fields of bounded operators o : H — K, with
ox € B(Hy, Ky) preserving good sections.

2-linear maps: C-linear additive ~-functors.

@y, - Meas(X) — Meas(Y) is specified by:

e a field of Hilbert spaces K, on X x Y

e item a Y-family {1, } of measures on X, where:

P u(H)y = /X' Hax @ Kx.y)diy (X)
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End of presentation. Press Escape to exit.




s

For physics, we really want 2-Hilbert spaces: Hilb-enriched abelian
=-categories with all limits. Generated by simple objects (i.e. ones
where hom(x. x) = C.

Typical example: a category of fields of Hilbert spaces, (77 on a
measure space (X. ) consists of an X-indexed family of Hilbert
spaces H, (together with a good space of sections).

Morphisms are (certain) fields of bounded operators o : H — K, with
ox € B(Hy, Ky) preserving good sections.

2-linear maps: C-linear additive ~-functors.

@y, - Meas(X) — Meas(Y) is specified by:

e a field of Hilbert spaces K, on X x Y

e item a Y-family {x,} of measures on X, where:

O u(H)y = /X- Hyx @ Kx.)duy(X)
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When B = B’ =), so that Aq(B) = Aq(B’) = 1, the terminal groupoid,
with Rep(1) = Vect. Then the extended TQFT reduces to a TQFT. For
G is a finite group. this theory reproduces the (untwisted)
Dijkgraaf-Witten model. If G is compact Lie, this is BF theory.

For B £ (), this describes a TQFT coupled to boundary
conditions—"matter”. Take the circle as boundary around an excised
point particle!

If G = SU(2) and n = 3, this depicts particles classified by mass

(m € [0.2x]) and spin (unitary group representations) propagating on a
background described by 3D quantum gravity (a BF theory in 3D). If

n = 4, this is a limit of gravity as Newton's G — 0.
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