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Abstract: | will discuss the existence problem of extremal Kahler metrics (in the sense of Calabi) on the total space of a holomorphic projective
bundle P(E) over a compact complex curve. The problem is not solved in full generality even in the case of a projective plane bundle over CPM1.
However, | will show that sufficiently ““small" Kahler classes admit extremal Kahler metrics if and only if the underlying vector bundle E can be
decomposed as a sum of stable factors. This result can be viewed as a " "Hitchin-Kobayashi correspondence” for projective bundles over a curve, but
in the context of the search for extremal Kahler metrics. The talk will be based on a recent work with D. Calderbak, P. Gauduchon and C.
Tonnesen-Friedman.
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Kobayashi—Hitchin correspondence for vector bundles |

@

Definition (Stability)

m: E — S is a holomorphic vector bundle of rank r over a
compact Kahler manifold (S. Js.ws) of complex dimension n:

e slope of E: u(E) = %fb_ a(E) A J_.g—l
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Kobayashi—Hitchin correspondence for vector bundles |
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Definition (Stability)

m: E — S is a holomorphic vector bundle of rank r over a
compact Kahler manifold (S. Js.ws) of complex dimension n:

e slope of E: u(E) = %fs c(E) A ub.g—l

o E is stable if u(F) < p(E) for any proper coherent sub-sheaf
FC E
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Definition (Stability)

m: E— S is a holomorphic vector bundle of rank r over a
compact Kahler manifold (S. Js. ws) of complex dimension n:
e slopeof E: u(E) =2 [ a(E) AT

e E is stable if u(F) < p(E) for any proper coherent sub-sheaf
FC b

o E is semistable if ;(F) < u(E) for any coherent sub-sheaf
. =
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Definition (Stability)

m: E— S is a holomorphic vector bundle of rank r over a
compact Kahler manifold (S. Js. ws) of complex dimension n:

o E is stable if u(F) < p(E) for any proper coherent sub-sheaf
E b

o E is semistable if u(F) < pu(E) for any coherent sub-sheaf
FCE

e E is polystable if it decomposes as a direct sum of stable
vector bundles with the same slope
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Definition (Stability)

7 : E — S is a holomorphic vector bundle of rank r over a
compact Kahler manifold (S. Js. ws) of complex dimension n:

e slope of E: u(E) = %fs c(E) A ﬁ.g—l

o E is stable if u(F) < p(E) for any proper coherent sub-sheaf
FCcE

o E is semistable if ;(F) < u(E) for any coherent sub-sheaf
==

e E is polystable if it decomposes as a direct sum of stable
vector bundles with the same slope

e ‘stable’ = 'polystable’ = ‘semistable’
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Kobayashi—Hitchin correspondence for vector bundles I
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Definition (Hermitian-Einstein metric)

A hermitian metric hon 7 : E — S is Hermitian—Einstein if the
canonical Chern connection V7 has curvature R"(ws) = ¢ Idg,
where c is a constant (equal to 27u(E)/ [c «2).
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Kobayashi—Hitchin correspondence for vector bundles |
@

Definition (Hermitian-Einstein metric)

A hermitian metric hon 7 : E — S is Hermitian—Einstein if the
canonical Chern connection V" has curvature R"(ws) = ¢ Idg,
where c is a constant (equal to 27u(E)/ [c «2).

A central result in the 80's:

Theorem (Donaldson, Uhlenbeck—Yau, ..., Lubke—Teleman)

E admits an Hermitian—Einstein metric <= E is polystable.

irsa: 09050031 Page 9/73



Two examples of * Kobayashi—Hitchin® correspondence:  Proisctive bundies over 2 curee  The rigid semisimple Ansarz Conclusion

Kobayashi—Hitchin correspondence for projective varieties |
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Definition (Stability)
(M. J.L) is a polarized (compact smooth) variety (¢ (£) > 0):
e Kodaira embedding: M — P(HO(M.LK)*) =CPMN« k> 1
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Definition (Stability)
(M. J.L) is a polarized (compact smooth) variety (¢;(£) > 0):
e Kodaira embedding: M — P(H°(M.L*)*) = CPMN« k> 1

e a:C* — SI(Ng +1.C): the central fibre
Mg = limy_g a;(M) endowed with a C* action a.

irsa: 09050031 Page 11/73



Two examples of * Kobayashi—Hitchin® correspondence Frojective bundles over 2 curve  The nigid semisimple Ansatz C

Kobayashi—Hitchin correspondence for projective varieties |

R

Definition (Stability)
(M. J.L) is a polarized (compact smooth) variety (c;(£) > 0):
e Kodaira embedding: M — P(H°(M.L*)*) = CPMN« k> 1

e a:C* — SL(Ng +1.C): the central fibre
Mo := lim,_g a (M) endowed with a C* action «a.

o Futaki invariant: a number F(Mp. o) (analogue of ‘slope’)

irsa: 09050031 Page 12/73



Two examples of * Kobayashi—Hitchin" correspondence o =cone Dundles cver - > The ngid semisimple Ansatz C

Kobayashi—Hitchin correspondence for projective varieties |

e

Definition (Stability)
(M. J.L) is a polarized (compact smooth) variety (¢;(£) > 0):
e Kodaira embedding: M — P(H°(M.L*)*) = CPM« k> 1
o a:C" — SL(Ng + 1.C): the central fibre
Mo := lim,_g a (M) endowed with a C* action «a.
o Futaki invariant: a number F(Mp. o) (analogue of ‘slope’)
e (M.J.L) is K-stable if for any M — P(H°(M. £¥)*) and any

C*-subgroup a, F(My. a) > 0 with equality iff o, preserves
M.
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Calabi initiated the study of the following problem in Kahler
geometry:
Definition (extremal Kahler metrics)
(M. J) a compact Kihler manifold and Q € Hix(M) a Kahler

class:

o w < Qis extremal if X = grad_(Scal,) preserves J
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Calabi initiated the study of the following problem in Kahler
geometry:
Definition (extremal Kahler metrics)
(M. J) a compact Kahler manifold and Q € Hio(M) a Kahler
class:
o w e Qis extremal if X = grad _(Scal,) preserves J

e constant scalar curvature (CSC): when X =0
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Calabi initiated the study of the following problem in Kahler
geometry:
Definition (extremal Kahler metrics)
(M. J) a compact Kahler manifold and Q € Hix(M) a Kahler
class:

o we Qis extremal if X = grad_(Scal,) preserves J

e constant scalar curvature (CSC): when X =0

o Q= +¢c;(M): CSC & Kahler—Einstein (Aubin, Yau, Tian)
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Calabi initiated the study of the following problem in Kahler
geometry:
Definition (extremal Kahler metrics)
(M. J) a compact Kahler manifold and Q € Hix(M) a Kahler
class:

o weQis extremal if X = grad_(Scal,) preserves J

e constant scalar curvature (CSC): when X =0

o Q) =+¢(M): CSC = Kahler-Einstein (Aubin, Yau, Tian)

e (M. J) =0: CSC < Ricci-flat or ‘Calabi—Yau' (Yau)
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A central problem in Kahler geometry (today and tomorrow) is
Conjecture (Wau, Tian, Donaldson)

(M. J. L) is a polarized variety.
Q2 = ¢1(£) admits a CSC metric <= (M. J. L) is K-stable.

There is a similar conjecture for the existence of extremal Kahler
metric in Q (Székelyhidi)
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Kobayashi—Hitchin correspondence for projective varieties ||
A central problem in Kahler geometry (today and tomorrow) is
Conjecture (Wau, Tian, Donaldson)

(M. J. L) is a polarized variety.
2 = ¢1(£) admits a CSC metric <= (M. J. L) is K-stable.

There is a similar conjecture for the existence of extremal Kahler
metric in Q (Székelyhidi)

Results:

o (Donaldson, 04; Chen-Tian, 08) If Q = (L) admits a CSC
metric = (M. J. L) is K-semistable (F(Mg.a) > 07 a)...
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A central problem in Kahler geometry (today and tomorrow) is

Conjecture (Wau, Tian, Donaldson)
(M. J. L) is a polarized variety.
Q = ¢1(£) admits a CSC metric < (M. J. L) is K-stable.
There is a similar conjecture for the existence of extremal Kahler
metric in Q (Székelyhidi)
Results:

o (Donaldson, 04; Chen-Tian, 08) If Q = (L) admits a CSC

metric = (M. J. L) is K-semistable (F(Mg.a) > 07 a)...

o (Stoppa, 08) Q2 = ¢1(£) admits a CSC metric and Aut(M. J)
s discrete = (M. J. L) is K-stable...
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A central problem in Kahler geometry (today and tomorrow) is

Conjecture (Yau, Tian, Donaldson)

(M. J. L) is a polarized variety.
Q = ¢1(£) admits a CSC metric < (M. J. L) is K-stable.

There is a similar conjecture for the existence of extremal Kahler
metric in Q (Székelyhidi)

Results:
o (Donaldson, 04; Chen-Tian, 08) If Q = (L) admits a CSC
metric = (M. J. L) is K-semistable (F(Mp.a) > 07 a)...

o (Stoppa, 08) Q2 = ¢1(£) admits a CSC metric and Aut(M. J)
s discrete = (M. J. L) is K-stable...

e (Mabuchi, 7?) Q = (L) admitsa CSC = (M. J. L) is
K-stable.
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A central problem in Kahler geometry (today and tomorrow) is

Conjecture (¥au, Tian, Donaldson)

(M. J. L) is a polarized variety.
Q = (L) admits a CSC metric < (M. J. L) is K-stable.

There is a similar conjecture for the existence of extremal Kahler
metric in Q (Székelyhidi)
Results:

o (Donaldson, 04; Chen-Tian, 08) If Q = (L) admits a CSC
metric = (M. J. L) is K-semistable (F(Mg.a) > 07 a)...

o (Stoppa, 08) Q2 = ¢1(£) admits a CSC metric and Aut(M. J)
is discrete = (M. J. L) is K-stable...

e (Mabuchi, 77) Q = (L) admitsa CSC = (M. J. L) is
K-stable.

~_® The other direction is very much open... and the conjecture |
needs modification (recent example by ACGT)



-nc=  Projective bundles over 3 curve

Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2
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Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2
o O =21(c1(O(1)g + kp*[wx]) (k> 1) where wy is CSC on L

and [wy] is primitive
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Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2
o O =21(c(@1)g + kp*[wx]) (k> 1) where wy is CSC on L

and [wy] is primitive

Narasimhan—Seshadri: E projectively-fiat <—— E polystable
pe : m1(X) — PU(r)
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Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2
o QO =c(O(1x)+ kp*[wy] (k> 1) where wy is CSCon ¥

and [wy] is primitive

Narasimhan—Seshadri: E projectively-flat <——  E polystable
pe : m1(X) — PU(r)
Ross— Thomas-07: Y

3 CSCin Q P(E) K-stable
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Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2
o O =qc(O(1x)+ kp*[wy] (k> 1) where wy is CSCon ¥

and [wy] is primitive

Narasimhan—Seshadri: E projectively-fiat = E semistable
pe - T1(X) — PU(r)
Ross— Thomas-07: {8 1l
Donaldson-04: 3 CSCin Q — P(E) K-semistable
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Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2 and E simple
e Q= (O(1)x)+ kp*[wy] (k> 1) where wy is CSC on ¥

and [wy] is primitive

Narasimhan—Seshadri: E projectively-flat — E stable
simple
Ross— Thomas-07: U ft
Stoppa-08 : CSCin Q — P(E) K-stable
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Projective bundle over a curve

e (M.J)=P(E) — X with genus(X) > 2 and E simple
o () — cl(O(l)%) + kp*[wy] (k> 1) where wy is CSC on

and [wy] is primitive

Narasimhan—Seshadri: E projectively-flat — E stable
Ross— Thomas-07: { it
Mabuchi-?? CSCin Q —  P(E) K-stable
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The CSC case

Theorem 1
(M.J) = P(E) — X with genus(¥X) > 2.
3 CSC metric in some (and hence any) 2 — E is polystable.

i
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The CSC case

Theorem 1
(M.J) = P(E) — X with genus(¥X) > 2.
3 CSC metric in some (and hence any) 2 — E is polystable.
iﬂ? "k
J

Any CSC Kahler metric on P(E) is locally-symmetric.

irsa: 09050031 Page 32/73



= Projective bundles over a3 curve

The CSC case

Theorem 1
(M.J) = P(E) — X with genus(X) > 2.
3 CSC metric in some (and hence any) 2 — E is polystable.

N

A
4

Any CSC Kahler metric on P(E) is locally-symmetric.

Already established by direct arguments:
o E simple = Aut(M. ) is discrete (Fujiki — Chen—Tian);
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The CSC case

Theorem 1
(M.J) = P(E) — X with genus(¥X) > 2.
3 CSC metric in some (and hence any) 2 — E is polystable.

it

£
l -
‘1'..

Any CSC Kahler metric on P(E) is locally-symmetric.

Already established by direct arguments:
e E simple <= Aut(M.J) is discrete (Fujiki + Chen—Tian);
o E of rank 2 and ¢; - Q2 = 0: (Burns—deBartolomeis);

irsa: 09050031 Page 34/73



- Projective bundles over 3 curve

The CSC case

Theorem 1
(M.J) = P(E) — X with genus(¥X) > 2.
34 CSC metric in some (and hence any) Q2 — E is polystable.

&

A
"

Any CSC Kahler metric on P(E) is locally-symmetric.

Already established by direct arguments:
e E simple =< Aut(M. J) is discrete (Fujiki — Chen—Tian);
e E of rank 2 and ¢; - Q2 = 0: (Burns—deBartolomeis);
e £ of rank 2 and ¢ - Q2 < 0 (LeBrun).
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Sketch of a direct proof (building on Fujiki)

‘Any CSC Kahler metric w on P(E) is locally symmetric’
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Sketch of a direct proof (building on Fujiki)

‘Any CSC Kahler metric w on P(E) is locally symmetric’

e Narasimhan—Ramanan: = small stable deformation

E(t). t€ D.,st. E= E(Q) and E(t) is stable for t = 0.

&
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= Projective bundles over 3 curve

Sketch of a direct proof (building on Fujiki)

‘Any CSC Kahler metric w on P(E) is locally symmetric’

e Narasimhan—Ramanan: 3 small stable deformation
E(t). t€ D.,st. E= E(Q) and E(t) is stable for t = 0.
e Kodaira: 3 smooth family w; of Kahler metrics on
(M, J;) = PEE(t)) with wo =w. As HYY(M. Jp) = HﬁR(M)

we can assume [w:] = [w].
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Sketch of a direct proof (building on Fujiki)

‘Any CSC Kahler metric w on P(E) is locally symmetric’

e Narasimhan—Ramanan: = small stable deformation
E(t). t€ D.,st. E= E(0) and E(t) is stable for t = 0.

e Kodaira: 3 smooth family w; of Kahler metrics on
(M. Jy) = PEE(t)) with wo =w. As H*Y(M. J;) = HﬁR(M)
we can assume [w:] = [w].

e Implicit Function Theorem: 3 f; € (*(M) s.t.

Scal(we + ddf f;) = const
(T(0.0)Scal)(f) = —266((\_0’7‘)_) is the Lichnerowicz

operator and its kernel {f : grad  f is holomorphic} is trivial
when Aut(M. Jy) is discrete.

irsa: 09050031 Page 39/73
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Sketch of a direct proof (building on Fujiki)

‘Any CSC Kahler metric w on P(E) is locally symmetric’

Narasimhan—Ramanan: = small stable deformation

E(t). t€ D.,st. E= E(Q) and E(t) is stable for t = 0.
Kodaira: 3 smooth family w; of Kahler metrics on

(M, J) = PEE(t)) with wp =w. As HYY(M. Jp) = HﬁR(M)
we can assume [w:] = [w].

Implicit Function Theorem: 2 f € (*(M) s.t.

Scal(we + ddf fi) = const

(T(0.0)Scal)(f) = —25{5((Vdf)_) is the Lichnerowicz
operator and its kernel {f : grad  f is holomorphic} is trivial
when Aut(M. Jp) is discrete.

O = wt + ddff; is locally symmetric by the uniqueness of the
CSC/extremal metric (Chen—Tian, Donaldson, Mabuchi) =
W = lims_g &y is locally symmetric.
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Correction in the obstructed case

Suppose Auto(M. J) = H%(X. PGL(E)) £ {1d}.
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Correction in the obstructed case

Suppose Autg(M. J) = H9(X. PGL(E)) £ {1d}.
o Lichnerowicz—Matsushima/Calabi: any extremal metric w is
invariant under a maximal torus T C Autg(M.J) (dim T = /)

i
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Correction in the obstructed case

Suppose Autg(M. J) = H%(X. PGL(E)) £ {1d}.
o Lichnerowicz—Matsushima/Calabi: any extremal metric w is
invariant under a maximal torus T C Autg(M. J) (dim T = /)
e T induces a decomposition E = @::.:U E; with E;
indecompoga%le. Consider small stable deformations
E(t) = @;_, E(t) and put (M. J;) = P(E(t)). Then
T C Auto(M. Jy).
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Correction in the obstructed case

Suppose Autg(M. J) = H9(X. PGL(E)) £ {1d}.
o Lichnerowicz—Matsushima/Calabi: any extremal metric w is
invariant under a maximal torus T C Autg(M.J) (dim T = /)
e T induces a decomposition E = @Lg E; with E;
indecompa_sa%le. Consider small stable deformations
E(t) = @,_, E(t) and put (M. J;) = P(E(t)). Then
T C Auto(M. Jy).

e | eBrun—Simanca: work equivariantly and reduce to the
Implicit Function Theorem on the Sobolev closures of the
space Cr (M) of T-invariant smooth functions L2 orthogonal
the space of Killing potentials of t with respect to w.

The point here is that (T(g g)Scal)(f) = —256((?0’1‘)_) has

trivial kernel on this space.
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The key argument

The arguments so far are not specific to the CSC case!l We have
shown: Let w be an extremal Kahler metric on (M. J) = P(E) and
T be an a maximal torus in Isom(M. ), then

o - T-invariant, extremal Kahler metrics &; on
(M. J;) = P(P:_, Ei(t)) (with E(t) stable for t # 0), such
that: (l) Iimt_{] ..:'f — &, and (2) [*-:i'] — [w]
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=  Projective bundles over 3 curve

The key argument

The arguments so far are not specific to the CSC casel We have
shown: Let w be an extremal Kahler metric on (M. J) = P(E) and
T be an a maximal torus in Isom(M. ), then

o o T-invariant,extremal Kahler metrics &; on
(M. J;) = P(P;_, Ei(t)) (with E;(t) stable for t # 0), such
that: (1) lime 0@ =w, and (2) [&¢] = |u]
The CSC case:

o Futaki: 3 CSC Kahler metric w = F (M. X;) = 0. where
X; € t = Lie(T) are generators of S subgroups.
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- Projective bundies over 3 curve

The key argument

The arguments so far are not specific to the CSC casel We have
shown: Let w be an extremal Kahler metric on (M. J) = P(E) and
T be an a maximal torus in Isom(M. ), then

o - T-invariant, extremal Kahler metrics &; on
(M. J;) = P(P:_, Ei(t)) (with E(t) stable for t # 0), such
that: (1) Iimt_{] ..:.:f — W, and (2) [:f] — [w]
The CSC case:

e Futaki: 3 CSC Kahler metric w = F (M. X;) = 0. where
X; € t = Lie(T) are generators of S subgroups.
< p(E) = p(E) < E(t) is polystable t # 0.
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- Projective bundies over 3 curve

The key argument

The arguments so far are not specific to the CSC casel We have
shown: Let w be an extremal K3hler metric on (M. J) = P(E) and
T be an a maximal torus in Isom(M. ), then

o - T-invariant,extremal Kahler metrics &; on
(M. Jy) = P(@'_, Ei(t)) (with E(t) stable for t # 0), such
that: (1) limy 0@ =w, and (2) [@¢] = [u]
The CSC case:

e Futaki: 3 CSC Kahler metric w = F (M. X;) = 0. where
X; € t = Lie(T) are generators of S subgroups.
< p(E;) = p(E) < E(t) is polystable t # 0.

¢ Narasimhan—Seshadri + Chen—Tian (uniqueness): (w. J:) is
locally symmetric. [
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The general case

e What about é&he general extremal case? (For the rest of the
talk will discuss this case).

irsa: 09050031 Page 49/73



irsa:

= Projective bundles over 32 curve

The general case

o What about t;Eh{—:l general extremal case? (For the rest of the
talk will discuss this case).

e [he real question is how do the extremal metrics on
M = P(Eg(t) &= --- = Es(t)) with E;(t) stable look like and to

what kind of extremal metrics they can possibly converge?
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- The rigid semisimple Ansatz

The blow-up picture

Suppose E = EBf:D E; with E; stable. How does an extremal
metric on P(E) look like?

M=P(O(-1)g < ---20(—1)g) — S = P(R) Xy == x5 PlEg)

o

Y
M=P(E¢---¢E) =

which generalizes

M= P(O(-1)=0) — S =CP*?

l

S is the stable quotient of M by the complexified action T€.
M is a toric CP‘-bundle over S associated to a principle T bundle.
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The rigid semisimple Ansatz

We want to build a metric on M using the locally symmetric

structure of S and the toric structure of CP* (ACGT, JDG-04):
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= The rigid semisimpile Ansatz

The blow-up picture

Suppose E = EB?ZD E; with E; stable. How does an extremal
metric on P(E) look like?

M=P(O(xl)g S ---20O(—1)g) — S = P(R) Xy~ xx P{Eg)

|

) .
M=P(E&---¢E) - 2.

which generalizes

M=P(O(-1)=0) — S=CP!

! ;

M = CP? - {pt].

S is the stable quotient of M by the complexified action T€.
M is a toric CP*-bundle over S associated to a principle T€ bundle.
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The rigid semisimple Ansatz

We want to build a metric on M using the locally symmetric

structure of S and the toric structure of CP* (ACGT, JDG-04):

W
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= The rigid semisimple Ansatz

The rigid semisimple Ansatz

We want to build a metric on M using the locally symmetric

structure of S and the toric structure of CP* (ACGT, JDG-04):

* (gs.ws) a locally symmetric metric on S, covered by
CP% x ... x CP9% x H where the Fubini-Study metric

(gi.w;) on CP% has scalar curvature 2d;(d; ~ 1), and
(gx.wy) is CSC on ¥ with [wy] primitive.
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= The rigid semisimpile Ansatz

The rigid semisimple Ansatz

We want to build a metric on M using the locally symmetric

structure of S and the toric structure of CP* (ACGT, JDG-04):

* (gs.ws) a locally symmetric metric on S, covered by
CP% x ... x CP9% x H where the Fubini-Study metric

(gi.wj) on CP9 has scalar curvature 2d;(d; + 1), and
(gx.wy) is CSC on ¥ with [wy] primitive.

e Delzant—Guillemin: gy a toric K3hler metric on (CP*.T)
gv = Grgdzrdzs 5 Grgdi}-dts

where z : CPY — A C R’ is the momentum map (A is a
simplex), G,s = Hess(U),s with U(z) smooth of the interior of
A
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= The rigid semisimple Ansatz

e A a connection 1-form on M? (which is the associated
principal T-bundle over S) with

/
aé — E W; R U +wy @ U
=0

where u;. u € t and u; are primitive inward normals of the
co-dimension 1 faces F; = {z € t" : pi(z) = (uj.z) + ¢; = 0}.
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= The rigid semisimple Ansatz

e A a connection 1-form on M? (which is the associated
principal T-bundle over S) with

.
dé — Z W @ U; +wy R U
=0 &
where u;. u € t and u; are primitive inward normals of the
co-dimension 1 faces F; = {z € t" : pi(z) = (u;.z) + ¢; = 0}.
¢
e=Y pi()ai+((u.2) + k)ax + Ga(2)dz dzs + G(2)6, 6,
=0

Is a Kahler metric on M in Q = 27(c(O(1)g - k|wx])
(parametrized by U(z) with G, = (HessU)).
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- The rigid semisimple Ansatz

Example

The Fubini-Study metric as a blow down:

M =P(O(-1) & 0) — S =CP!
| |

1

grs = (1 +2)gep + (=55 )42 + (1 - )2

with G(z) = 1/(1 — z%) and df = wpr.
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1i—Hitch esp ence Projective bundles = The rigid semisimple Ansatz

Geometric properties of the Ansatz

e Observe that for any z € int(A), the symplectic quotient
construction defines a locally symmetric Kahler metric

é’(Z) s ZEZ{] PE(Z)g; 0 (\U Z) | k)gz onS — Mss.s'.Tc-
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= The rigid semisimple Ansatz

Geometric properties of the Ansatz

e Observe that for any z € int(A), the symplectic quotient
construction defines a locally symmetric Kahler metric

é-(z) e Z i PJ(Z)g; ( .Z) + k)gz an S—M_/T".

e The corresponding e@Quation on U(z) to get an extremal
metric Is

2d;(d; +1) Scaly

Pe(U) =(Ax. z‘:+Bk+Z w3 ik

- e

P (p(2)6™(2)) =
pk (Z (JZ,. 0z Pk 3

where py(z) = ((u.z) + k)H o Pi(2)%, and A, € t and
B, € R are determined by ¢;(E;) and €.

Pirsa: 09050031 Page 61/73



= The rigid semisimple Ansatz

Geometric properties of the Ansatz

e Observe that for any z € int(A), the symplectic quotient
construction defines a locally symmetric Kahler metric

g(z) = Z-E:{] pi(z)gi + ((u.z) ~k)gg on S = M, /T*.

e T[he corresponding equation on U(z) to get an extremal
metric Is

f
, | — 2d;(d; +1 Scal
P(U) :<Ak.z;+8k+§: L_(z) sty
- T e

Pk @)G=(z2)) =

where py(z) = ((u.z) + k) Hf-:ﬂ pi(z)%, and A, € t and
B, € R are determined by c;(E;) and €.

wLflis provides a considerable scope for extending Donaldson's .
theory in the toric case to this context...
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Geometric properties of the Ansatz
o We believe that 27(c1(O(1)g + k|wy]) admits an extremal

Kahler metric <= (1) has solution (true if
) =rk(Aut(P(E)) < 1, ACGT, Inv.math-08).
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= The rigid semisimple Ansatz

Geometric properties of the Ansatz

o We believe that 27(c1(O(1)g + k|wy]) admits an extremal
Kahler metric <= (1) has solution (true if

¢ =rk(Aut(P(E)) < 1, ACGT, Inv.math-08).

e Existence in small classes: when kK —

2d:(d: +
Jim Py (V) B+Z = Z)

Zozrozs z)G"(z)) =0.

p(z

where p(z) = HJ-_{] pi(z)%. This describes a Fubini—Study

metric on CP" ! seen as blow-down of

P(O(—1) & ---& O(—1)) — [J;is CP.
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- The rigid semisimple Ansatz

Geometric properties of the Ansatz

o We believe that 27(c1(O(1)g + k[wy]) admits an extremal
Kahler metric <= (1) has solution (true if

¢ =rk(Aut(P(E)) < 1, ACGT, Inv.math-08).

e Existence in small classes: when kK —

| < 2di(d; + 1)
LIRS s

—0

where p(z) = Hf:ﬂ pi(z)%. This describes a Fubini—Study

metric on CP ! seen as blow-down of
PO 1)e---29( 1) ], CP4% .
s IMplicit Function Theorem — existence when kK > 1.
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- The rigid semisimple Ansatz

T he key argument revisited

o (w¢,Jt) is extremal on P(Eg(t) = ... = E(t)) with E(t)
stable for t =20

The CSC case:

® (w¢. Jt) is locally-symmetric on P(Eg(t) = --- = Ei(t)) for

every t = E;(0) are stable.
The extremal case (and k > 1):

o (w¢. J;) given by the Ansatz :

o (Z¢. J;) is locally symmetric on P(Ey(t))x x --- xx P(Ei(t))
for every t = E;(0) are stable.
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- The rigid semisimple Ansatz

Geometric properties of the Ansatz

o We believe that 27(c1(O(1)g + k|wy]) admits an extremal
Kahler metric <= (1) has solution (true if

= rk(Aut(P(E)) < 1, ACGT, Inv.math-08).

e Existence in small classes: when kK —

2d;(d: -

Jim P (V) B+Z = Z)

p(z Z Ozr()z5 L E)

where p(z) = HLU pi(z)9. This describes a Fubini-Study

metric on CP"™1 seen as blow-down of
P(O(—1) @ --- & O(-1)) — [T CP%.

raossooz IMplicit Function Theorem —— existence when k > 1. rueoms



= The rigid semisimple Ansatz

The key argument revisited

o (w¢.Jt) is extremal on P(Ep(t) = ... = E4(t)) with E;(t)
stable for t =20
The CSC case:

® (w¢. Jt) is locally-symmetric on P(Eg(t) = --- = Ei(t)) for
every t = E;(0) are stable.

The extremal case (and k > 1):
o (w¢. J;) given by the Ansatz &

o (. J;) is locally symmetric on P(Ey(t))x x --- xx P(Ei(t))
for every t = E;(0) are stable.
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= The rigid semisimple Ansatz

The key argument revisited

o (w¢.Jt) is extremal on P(Eg(t) = ... = Ei(t)) with E(t)
stable for t =20
The CSC case:

® (w¢, Jt) is locally-symmetric on P(Eg(t) = --- = Ei(t)) for
every t = E;(0) are stable.

The extremal case (and k > 1):
o (w¢. J;) given by the Ansatz

o (¢ J;) is locally symmetric on P(Ey(t))x x --- xx P(Ei(t))
for every t = E;(0) are stable.
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> Conclosion

Conclusion

Conjecture

P(E) admits an extremal Kahler metric in some Kahler class 2

— E = @;_, E with E; stable.

Theorem 2
There exists ko(E.Y) such that P(E) admits an extremal Kahler

metric in a class Q= 27(c1(O(1)g + klwx]) with k > kg iff
kr— EB?:D E; with E; stable.

Theorem 1 and a recent result of ACGT confirm the conjecture in
the case when rk(Autg(P(E)) =¢ < 1...
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