Title: Extremal Kahler metrics on projective bundles over a curve

Date: May 08, 2009 01:45 PM

URL: http://pirsa.org/09050031

Abstract: I will discuss the existence problem of extremal Kahler metrics (in the sense of Calabi) on the total space of a holomorphic projective bundle P(E) over a compact complex curve. The problem is not solved in full generality even in the case of a projective plane bundle over CP^1. However, I will show that sufficiently ``small' Kahler classes admit extremal Kahler metrics if and only if the underlying vector bundle E can be decomposed as a sum of stable factors. This result can be viewed as a ``Hitchin-Kobayashi correspondence'' for projective bundles over a curve, but in the context of the search for extremal Kahler metrics. The talk will be based on a recent work with D. Calderbak, P. Gauduchon and C. Tonnesen-Friedman.

Pirsa: 09050031 Page 1/73

# Stability and extremal Kähler metrics on projective bundles over a curve

Vestislav Apostolov<sup>1</sup>

May, 2009

Pirsa: 09050031 Page 2/73



#### Definition (Stability)

 $\pi: E \to S$  is a holomorphic vector bundle of rank r over a compact Kähler manifold  $(S, J_S, \omega_S)$  of complex dimension n:

• slope of  $E: \mu(E) := \frac{1}{r} \int_{S} c_{1}(E) \wedge \omega_{S}^{n-1}$ 

Pirsa: 09050031 Page 3/73



#### Definition (Stability)

 $\pi: E \to S$  is a holomorphic vector bundle of rank r over a compact Kähler manifold  $(S, J_S, \omega_S)$  of complex dimension n:

- slope of  $E: \mu(E) := \frac{1}{r} \int_{S} c_{1}(E) \wedge \omega_{S}^{n-1}$
- E is stable if  $\mu(F) < \mu(E)$  for any proper coherent sub-sheaf  $F \subset E$

Pirsa: 09050031 Page 4/73



#### Definition (Stability)

 $\pi: E \to S$  is a holomorphic vector bundle of rank r over a compact Kähler manifold  $(S, J_S, \omega_S)$  of complex dimension n:

- slope of  $E: \mu(E) := \frac{1}{r} \int_{S} c_{1}(E) \wedge \omega_{S}^{n-1}$
- E is stable if  $\mu(F) < \mu(E)$  for any proper coherent sub-sheaf  $F \subset E$
- E is semistable if  $\mu(F) \leq \mu(E)$  for any coherent sub-sheaf  $F \subset E$

Pirsa: 09050031 Page 5/73



#### Definition (Stability)

 $\pi: E \to S$  is a holomorphic vector bundle of rank r over a compact Kähler manifold  $(S, J_S, \omega_S)$  of complex dimension n:

- slope of  $E: \mu(E) := \frac{1}{r} \int_{S} c_{1}(E) \wedge \omega_{S}^{n-1}$
- E is stable if  $\mu(F) < \mu(E)$  for any proper coherent sub-sheaf  $F \subset E$
- E is semistable if  $\mu(F) \leq \mu(E)$  for any coherent sub-sheaf  $F \subset E$
- E is polystable if it decomposes as a direct sum of stable vector bundles with the same slope

Pirsa: 09050031 Page 6/73



#### Definition (Stability)

 $\pi: E \to S$  is a holomorphic vector bundle of rank r over a compact Kähler manifold  $(S, J_S, \omega_S)$  of complex dimension n:

- slope of  $E: \mu(E) := \frac{1}{r} \int_{S} c_{1}(E) \wedge \omega_{S}^{n-1}$
- E is stable if  $\mu(F) < \mu(E)$  for any proper coherent sub-sheaf  $F \subset E$
- E is semistable if  $\mu(F) \leq \mu(E)$  for any coherent sub-sheaf  $F \subset E$
- E is polystable if it decomposes as a direct sum of stable vector bundles with the same slope
- 'stable' ⇒ 'polystable' ⇒ 'semistable'

Pirsa: 09050031 Page 7/73



#### Definition (Hermitian-Einstein metric)

A hermitian metric h on  $\pi: E \to S$  is Hermitian—Einstein if the canonical Chern connection  $\nabla^h$  has curvature  $R^h(\omega_S) = c \operatorname{Id}_E$ , where c is a constant (equal to  $2\pi\mu(E)/\int_S \omega_S^n$ ).

Pirsa: 09050031 Page 8/73



#### Definition (Hermitian-Einstein metric)

A hermitian metric h on  $\pi: E \to S$  is Hermitian—Einstein if the canonical Chern connection  $\nabla^h$  has curvature  $R^h(\omega_S) = c \operatorname{Id}_E$ , where c is a constant (equal to  $2\pi\mu(E)/\int_S \omega_S^n$ ).

A central result in the 80's:

Theorem (Donaldson, Uhlenbeck-Yau, ..., Lübke-Teleman)

E admits an Hermitian-Einstein metric \( \infty E \) is polystable.

Pirsa: 09050031 Page 9/73



#### Definition (Stability)

 $(M, J, \mathcal{L})$  is a polarized (compact smooth) variety  $(c_1(\mathcal{L}) > 0)$ :

• Kodaira embedding:  $M \hookrightarrow P(H^0(M, \mathcal{L}^k)^*) \cong \mathbb{C}P^{N_k}, k \gg 1$ 

Pirsa: 09050031 Page 10/73



#### Definition (Stability)

 $(M, J, \mathcal{L})$  is a polarized (compact smooth) variety  $(c_1(\mathcal{L}) > 0)$ :

- Kodaira embedding:  $M \hookrightarrow P(H^0(M, \mathcal{L}^k)^*) \cong \mathbb{C}P^{N_k}, k \gg 1$
- $\alpha: \mathbb{C}^{\times} \hookrightarrow SL(N_k + 1, \mathbb{C})$ : the central fibre  $M_0 := \lim_{z \to 0} \alpha_z(M)$  endowed with a  $\mathbb{C}^{\times}$  action  $\alpha$ .

Pirsa: 09050031 Page 11/73



#### Definition (Stability)

 $(M, J, \mathcal{L})$  is a polarized (compact smooth) variety  $(c_1(\mathcal{L}) > 0)$ :

- Kodaira embedding:  $M \hookrightarrow P(H^0(M, \mathcal{L}^k)^*) \cong \mathbb{C}P^{N_k}, k \gg 1$
- $\alpha : \mathbb{C}^{\times} \hookrightarrow SL(N_k + 1, \mathbb{C})$ : the central fibre  $M_0 := \lim_{z \to 0} \alpha_z(M)$  endowed with a  $\mathbb{C}^{\times}$  action  $\alpha$ .
- Futaki invariant: a number  $\mathcal{F}(M_0, \alpha)$  (analogue of 'slope')

Pirsa: 09050031



#### Definition (Stability)

 $(M, J, \mathcal{L})$  is a polarized (compact smooth) variety  $(c_1(\mathcal{L}) > 0)$ :

- Kodaira embedding:  $M \hookrightarrow P(H^0(M, \mathcal{L}^k)^*) \cong \mathbb{C}P^{N_k}, k \gg 1$
- $\alpha: \mathbb{C}^{\times} \hookrightarrow SL(N_k + 1, \mathbb{C})$ : the central fibre  $M_0 := \lim_{z \to 0} \alpha_z(M)$  endowed with a  $\mathbb{C}^{\times}$  action  $\alpha$ .
- Futaki invariant: a number  $\mathcal{F}(M_0, \alpha)$  (analogue of 'slope')
- $(M, J, \mathcal{L})$  is K-stable if for any  $M \hookrightarrow P(H^0(M, \mathcal{L}^k)^*)$  and any  $\mathbb{C}^\times$ -subgroup  $\alpha$ ,  $\mathcal{F}(M_0, \alpha) \geq 0$  with equality iff  $\alpha_z$  preserves M.

Pirsa: 09050031 Page 13/73



Calabi initiated the study of the following problem in Kähler geometry:

Definition (extremal Kähler metrics)

(M, J) a compact Kähler manifold and  $\Omega \in H^2_{dR}(M)$  a Kähler class:

•  $\omega \in \Omega$  is extremal if  $X = \operatorname{grad}_{\omega}(Scal_{\omega})$  preserves J

Pirsa: 09050031 Page 14/73



Calabi initiated the study of the following problem in Kähler geometry:

### Definition (extremal Kähler metrics)

(M, J) a compact Kähler manifold and  $\Omega \in H^2_{dR}(M)$  a Kähler class:

- $\omega \in \Omega$  is extremal if  $X = \operatorname{grad}_{\omega}(\operatorname{Scal}_{\omega})$  preserves J
- constant scalar curvature (CSC): when X=0

Pirsa: 09050031 Page 15/73



Calabi initiated the study of the following problem in Kähler geometry:

#### Definition (extremal Kähler metrics)

(M, J) a compact Kähler manifold and  $\Omega \in H^2_{dR}(M)$  a Kähler class:

- $\omega \in \Omega$  is extremal if  $X = \operatorname{grad}_{\omega}(\operatorname{Scal}_{\omega})$  preserves J
- constant scalar curvature (CSC): when X=0
- $\Omega = \pm c_1(M)$ : CSC  $\Leftrightarrow$  Kähler–Einstein (Aubin, Yau, Tian)

Pirsa: 09050031 Page 16/73



Calabi initiated the study of the following problem in Kähler geometry:

#### Definition (extremal Kähler metrics)

(M, J) a compact Kähler manifold and  $\Omega \in H^2_{dR}(M)$  a Kähler class:

- $\omega \in \Omega$  is extremal if  $X = \operatorname{grad}_{\omega}(\operatorname{Scal}_{\omega})$  preserves J
- constant scalar curvature (CSC): when X=0
- $\Omega = \pm c_1(M)$ : CSC  $\Leftrightarrow$  Kähler–Einstein (Aubin, Yau, Tian)
- $c_1(M, J) = 0$ : CSC  $\Leftrightarrow$  Ricci-flat or 'Calabi-Yau' (Yau)

Pirsa: 09050031 Page 17/73

A central problem in Kähler geometry (today and tomorrow) is

Conjecture (Yau, Tian, Donaldson)

 $(M, J, \mathcal{L})$  is a polarized variety.

 $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\iff (M, J, \mathcal{L})$  is K-stable.

There is a similar conjecture for the existence of extremal Kähler metric in  $\Omega$  (Székelyhidi)

Pirsa: 09050031 Page 18/73

A central problem in Kähler geometry (today and tomorrow) is

Conjecture (Yau, Tian, Donaldson)

 $(M, J, \mathcal{L})$  is a polarized variety.

 $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\iff (M, J, \mathcal{L})$  is K-stable.

There is a similar conjecture for the existence of extremal Kähler metric in  $\Omega$  (Székelyhidi)

#### Results:

• (Donaldson, 04; Chen-Tian, 08) If  $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\Rightarrow$   $(M, J, \mathcal{L})$  is K-semistable  $(\mathcal{F}(M_0, \alpha) \geq 0 \ \forall \ \alpha)...$ 

Pirsa: 09050031 Page 19/73

A central problem in Kähler geometry (today and tomorrow) is

Conjecture (Yau, Tian, Donaldson)

 $(M, J, \mathcal{L})$  is a polarized variety.

 $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\iff (M, J, \mathcal{L})$  is K-stable.

There is a similar conjecture for the existence of extremal Kähler metric in  $\Omega$  (Székelyhidi)

#### Results:

- (Donaldson, 04; Chen-Tian, 08) If  $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\Rightarrow$   $(M, J, \mathcal{L})$  is K-semistable  $(\mathcal{F}(M_0, \alpha) \geq 0 \ \forall \ \alpha)...$
- (Stoppa, 08)  $\Omega = c_1(\mathcal{L})$  admits a CSC metric and  $\operatorname{Aut}(M, J)$  is discrete  $\Rightarrow (M, J, \mathcal{L})$  is K-stable...

Pirsa: 09050031 Page 20/73

A central problem in Kähler geometry (today and tomorrow) is

Conjecture (Yau, Tian, Donaldson)

 $(M, J, \mathcal{L})$  is a polarized variety.

 $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\iff (M, J, \mathcal{L})$  is K-stable.

There is a similar conjecture for the existence of extremal Kähler metric in  $\Omega$  (Székelyhidi)

#### Results:

- (Donaldson, 04; Chen-Tian, 08) If  $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\Rightarrow$   $(M, J, \mathcal{L})$  is K-semistable  $(\mathcal{F}(M_0, \alpha) \geq 0 \ \forall \ \alpha)...$
- (Stoppa, 08)  $\Omega = c_1(\mathcal{L})$  admits a CSC metric and  $\operatorname{Aut}(M, J)$  is discrete  $\Rightarrow (M, J, \mathcal{L})$  is K-stable...
- (Mabuchi, ??)  $\Omega = c_1(\mathcal{L})$  admits a CSC  $\Rightarrow$   $(M, J, \mathcal{L})$  is K-stable.

Pirsa: 09050031 Page 21/73

A central problem in Kähler geometry (today and tomorrow) is

Conjecture (Yau, Tian, Donaldson)

 $(M, J, \mathcal{L})$  is a polarized variety.

 $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\iff (M, J, \mathcal{L})$  is K-stable.

There is a similar conjecture for the existence of extremal Kähler metric in  $\Omega$  (Székelyhidi)

#### Results:

- (Donaldson, 04; Chen-Tian, 08) If  $\Omega = c_1(\mathcal{L})$  admits a CSC metric  $\Rightarrow$   $(M, J, \mathcal{L})$  is K-semistable  $(\mathcal{F}(M_0, \alpha) \geq 0 \ \forall \ \alpha)...$
- (Stoppa, 08)  $\Omega = c_1(\mathcal{L})$  admits a CSC metric and  $\operatorname{Aut}(M, J)$  is discrete  $\Rightarrow (M, J, \mathcal{L})$  is K-stable...
- (Mabuchi, ??)  $\Omega = c_1(\mathcal{L})$  admits a CSC  $\Rightarrow$   $(M, J, \mathcal{L})$  is K-stable.
- The other direction is very much open... and the conjecture
  Pirsa: 09050031
  needs modification (recent example by ACGT)



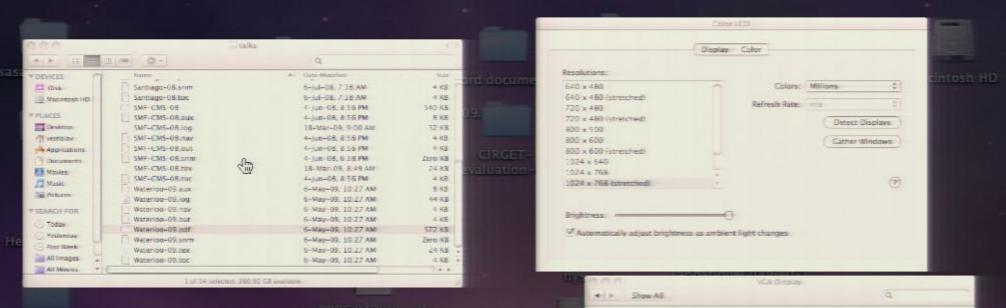
• 
$$(M, J) = P(E) \rightarrow \Sigma$$
 with genus $(\Sigma) \ge 2$ 

Pirsa: 09050031



- $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$
- $\Omega = 2\pi (c_1(\mathcal{O}(1)_E + kp^*[\omega_{\Sigma}]) \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

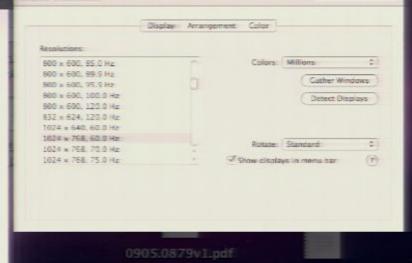
Pirsa: 09050031 Page 24/73



we examples of "Kobayashi-Hitchin' correspondence Projective bundles over a curve. The rigid semisimple Ansatz. Conclusion

- $(M. J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$
- $\Omega = 2\pi (c_1(\mathcal{O}(1)_E + kp^*[\omega_{\Sigma}]) \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

Narasimhan–Seshadri: E projectively-flat  $\iff$  E polystable  $\rho_E:\pi_1(\Sigma)\to PU(r)$ 



Szekelyhidl(ASENS-0 9).pdf

Szekelyhidi(preprint-08) Pagé 25/73

- $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$
- $\Omega = 2\pi (c_1(\mathcal{O}(1)_E + kp^*[\omega_{\Sigma}]) \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

Narasimhan-Seshadri: E projectively-flat  $\iff$  E polystable  $ho_E:\pi_1(\Sigma) \to PU(r)$ 

Pirsa: 09050031 Page 26/73

- $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$
- $\Omega = c_1(\mathcal{O}(1)_{\Sigma}) + kp^*[\omega_{\Sigma}] \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

Narasimhan—Seshadri: 
$$E$$
 projectively-flat  $\iff$   $E$  polystable  $\rho_E:\pi_1(\Sigma)\to PU(r)$  Ross—Thomas-07:  $\Downarrow$   $\uparrow$   $\uparrow$   $\vdash$  CSC in  $\Omega$   $P(E)$  K-stable

Pirsa: 09050031 Page 27/73

- $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$
- $\Omega = c_1(\mathcal{O}(1)_{\Xi}) + kp^*[\omega_{\Sigma}] \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

Narasimhan-Seshadri: E projectively-flat  $\Rightarrow$  E semistable

$$\rho_{\mathsf{E}}: \pi_1(\Sigma) \to PU(r)$$

Ross–Thomas-07: ↓

Donaldson-04:  $\exists$  CSC in  $\Omega$   $\Rightarrow$  P(E) K-semistable

Pirsa: 09050031

- $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$  and E simple
- $\Omega = c_1(\mathcal{O}(1)_{\Sigma}) + kp^*[\omega_{\Sigma}] \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

Narasimhan—Seshadri: E projectively-flat  $\iff$  E stable simple

Ross–Thomas-07: ↓

Stoppa-08 : CSC in  $\Omega$   $\Longrightarrow$  P(E) K-stable

Pirsa: 09050031 Page 29/73

- $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$  and E simple
- $\Omega = c_1(\mathcal{O}(1)_E^{\mathfrak{D}}) + kp^*[\omega_{\Sigma}] \ (k \gg 1)$  where  $\omega_{\Sigma}$  is CSC on  $\Sigma$  and  $[\omega_{\Sigma}]$  is primitive

Narasimhan—Seshadri: E projectively-flat  $\iff$  E stable Ross—Thomas-07:  $\Downarrow$ 

Mabuchi-?? : CSC in  $\Omega$   $\Longrightarrow$  P(E) K-stable

Pirsa: 09050031 Page 30/73

#### Theorem 1

 $(M,J) = P(E) \rightarrow \Sigma \text{ with genus}(\Sigma) \geq 2.$ 

 $\exists$  CSC metric in some (and hence any)  $\Omega \iff E$  is polystable.

3

Pirsa: 09050031 Page 31/73

#### Theorem 1

 $(M,J) = P(E) \rightarrow \Sigma \text{ with genus}(\Sigma) \geq 2.$ 

 $\exists$  CSC metric in some (and hence any)  $\Omega \iff E$  is polystable.





Any CSC Kähler metric on P(E) is locally-symmetric.

Pirsa: 09050031 Page 32/73

#### Theorem 1

 $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$ .  $\exists$  CSC metric in some (and hence any)  $\Omega \iff E$  is polystable.





Any CSC Kähler metric on P(E) is locally-symmetric.

Already established by direct arguments:

•  $E \text{ simple} \iff \operatorname{Aut}(M, J) \text{ is discrete (Fujiki} + \operatorname{Chen-Tian});$ 

Pirsa: 09050031 Page 33/73

#### Theorem 1

 $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \ge 2$ .  $\exists$  CSC metric in some (and hence any)  $\Omega \iff E$  is polystable.





Any CSC Kähler metric on P(E) is locally-symmetric.

Already established by direct arguments:

- $E \text{ simple} \iff \operatorname{Aut}(M, J) \text{ is discrete (Fujiki} + \operatorname{Chen-Tian});$
- E of rank 2 and  $c_1 \cdot \Omega = 0$ : (Burns-deBartolomeis);

Pirsa: 09050031 Page 34/73

#### Theorem 1

 $(M, J) = P(E) \rightarrow \Sigma$  with genus $(\Sigma) \geq 2$ .  $\exists$  CSC metric in some (and hence any)  $\Omega \iff E$  is polystable.





Any CSC Kähler metric on P(E) is locally-symmetric.

Already established by direct arguments:

- $E \text{ simple} \iff \operatorname{Aut}(M, J) \text{ is discrete (Fujiki} + \operatorname{Chen-Tian});$
- E of rank 2 and  $c_1 \cdot \Omega = 0$ : (Burns-deBartolomeis);
- E of rank 2 and  $c_1 \cdot \Omega < 0$  (LeBrun).

Pirsa: 09050031

### Sketch of a direct proof (building on Fujiki)

'Any CSC Kähler metric  $\omega$  on P(E) is locally symmetric'



Pirsa: 09050031 Page 36/73

'Any CSC Kähler metric  $\omega$  on P(E) is locally symmetric'

• Narasimhan-Ramanan:  $\exists$  small stable deformation E(t),  $t \in D_{\varepsilon}$ , s.t. E = E(0) and E(t) is stable for  $t \neq 0$ .



Pirsa: 09050031 Page 37/73

'Any CSC Kähler metric  $\omega$  on P(E) is locally symmetric'

- Narasimhan-Ramanan:  $\exists$  small stable deformation E(t),  $t \in D_{\varepsilon}$ , s.t. E = E(0) and E(t) is stable for  $t \neq 0$ .
- Kodaira:  $\exists$  smooth family  $\omega_t$  of Kähler metrics on  $(M, J_t) = P(\Xi(t))$  with  $\omega_0 = \omega$ . As  $H^{1,1}(M, J_t) \cong H^2_{dR}(M)$  we can assume  $[\omega_t] = [\omega]$ .

Pirsa: 09050031 Page 38/73

'Any CSC Kähler metric  $\omega$  on P(E) is locally symmetric'

- Narasimhan–Ramanan:  $\exists$  small stable deformation E(t),  $t \in D_{\varepsilon}$ , s.t. E = E(0) and E(t) is stable for  $t \neq 0$ .
- Kodaira:  $\exists$  smooth family  $\omega_t$  of Kähler metrics on  $(M, J_t) = P(\Xi(t))$  with  $\omega_0 = \omega$ . As  $H^{1,1}(M, J_t) \cong H^2_{dR}(M)$  we can assume  $[\omega_t] = [\omega]$ .
- Implicit Function Theorem:  $\exists f_t \in C_0^{\infty}(M)$  s.t.

$$Scal(\omega_t + dd_t^c f_t) = const$$

 $(T_{(0,0)}Scal)(f) = -2\delta\delta\Big((\nabla df)^-\Big)$  is the Lichnerowicz operator and its kernel  $\{f: \operatorname{grad}_{\omega_0} f \text{ is holomorphic}\}$  is trivial when  $\operatorname{Aut}(M,J_0)$  is discrete.

Pirsa: 09050031 Page 39/73

'Any CSC Kähler metric  $\omega$  on P(E) is locally symmetric'

- Narasimhan–Ramanan:  $\exists$  small stable deformation E(t),  $t \in D_{\varepsilon}$ , s.t. E = E(0) and E(t) is stable for  $t \neq 0$ .
- Kodaira:  $\exists$  smooth family  $\omega_t$  of Kähler metrics on  $(M, J_t) = P(\not = t)$  with  $\omega_0 = \omega$ . As  $H^{1,1}(M, J_t) \cong H^2_{dR}(M)$  we can assume  $[\omega_t] = [\omega]$ .
- Implicit Function Theorem:  $\exists f_t \in C_0^{\infty}(M)$  s.t.

$$Scal(\omega_t + dd_t^c f_t) = const$$

- $(T_{(0,0)}Scal)(f) = -2\delta\delta\Big((\nabla df)^-\Big)$  is the Lichnerowicz operator and its kernel  $\{f: \operatorname{grad}_{\omega_0} f \text{ is holomorphic}\}$  is trivial when  $\operatorname{Aut}(M,J_0)$  is discrete.
- $\tilde{\omega}_t = \omega_t + dd_t^c f_t$  is locally symmetric by the uniqueness of the CSC/extremal metric (Chen-Tian, Donaldson, Mabuchi)  $\Rightarrow_{Page 40/73} \omega = \lim_{t \to 0} \tilde{\omega}_t$  is locally symmetric.

Pirsa: 09050031

Suppose  $\operatorname{Aut}_0(M,J) \cong H^0(\Sigma, PGL(E)) \neq \{\operatorname{Id}\}.$ 



Pirsa: 09050031 Page 41/73

Suppose  $\operatorname{Aut}_0(M,J) \cong H^0(\Sigma, PGL(E)) \neq \{\operatorname{Id}\}.$ 

• Lichnerowicz–Matsushima/Calabi: any extremal metric  $\omega$  is invariant under a **maximal** torus  $\mathbb{T} \subset \operatorname{Aut}_0(M,J)$  (dim  $\mathbb{T}=\ell$ )

3

Pirsa: 09050031 Page 42/73

Suppose  $\operatorname{Aut}_0(M,J) \cong H^0(\Sigma, PGL(E)) \neq \{\operatorname{Id}\}.$ 

- Lichnerowicz–Matsushima/Calabi: any extremal metric  $\omega$  is invariant under a **maximal** torus  $\mathbb{T} \subset \operatorname{Aut}_0(M,J)$  (dim  $\mathbb{T}=\ell$ )
- $\mathbb{T}$  induces a decomposition  $E = \bigoplus_{i=0}^{\ell} E_i$  with  $E_i$  indecomposable. Consider small stable deformations  $E(t) = \bigoplus_{i=0}^{\ell} E_i(t)$  and put  $(M, J_t) = P(E(t))$ . Then  $\mathbb{T} \subset \operatorname{Aut}_0(M, J_t)$ .

Pirsa: 09050031 Page 43/73

Suppose  $\operatorname{Aut}_0(M,J) \cong H^0(\Sigma, PGL(E)) \neq \{\operatorname{Id}\}.$ 

- Lichnerowicz–Matsushima/Calabi: any extremal metric  $\omega$  is invariant under a **maximal** torus  $\mathbb{T} \subset \operatorname{Aut}_0(M,J)$  (dim  $\mathbb{T}=\ell$ )
- $\mathbb{T}$  induces a decomposition  $E = \bigoplus_{i=0}^{\ell} E_i$  with  $E_i$  indecomposable. Consider small stable deformations  $E(t) = \bigoplus_{i=0}^{\ell} E_i(t)$  and put  $(M, J_t) = P(E(t))$ . Then  $\mathbb{T} \subset \operatorname{Aut}_0(M, J_t)$ .
- LeBrun–Simanca: work equivariantly and reduce to the Implicit Function Theorem on the Sobolev closures of the space  $\overline{C}_{\mathbb{T}}^{\infty}(M)$  of  $\mathbb{T}$ -invariant smooth functions  $L^2$  orthogonal the space of Killing potentials of t with respect to  $\omega$ . The point here is that  $(T_{(0,0)}Scal)(f) = -2\delta\delta\left((\nabla df)^{-}\right)$  has trivial kernel on this space.

Pirsa: 09050031 Page 44/73

The arguments so far are not specific to the CSC case! We have shown: Let  $\omega$  be an extremal Kähler metric on (M, J) = P(E) and  $\mathbb{T}$  be an a maximal torus in  $\mathrm{Isom}(M, \omega)$ , then

•  $\exists$   $\mathbb{T}$ -invariant extremal Kähler metrics  $\widetilde{\omega}_t$  on  $(M, J_t) = P(\bigoplus_{i=0}^{\ell} E_i(t))$  (with  $E_i(t)$  stable for  $t \neq 0$ ), such that: (1)  $\lim_{t\to 0} \widetilde{\omega}_t = \omega$ , and (2)  $[\widetilde{\omega}_t] = [\omega]$ 

Pirsa: 09050031 Page 45/73

The arguments so far are not specific to the CSC case! We have shown: Let  $\omega$  be an extremal Kähler metric on (M, J) = P(E) and  $\mathbb{T}$  be an a maximal torus in  $\mathrm{Isom}(M, \omega)$ , then

•  $\exists$   $\mathbb{T}$ -invariant extremal Kähler metrics  $\widetilde{\omega}_t$  on  $(M, J_t) = P(\bigoplus_{i=0}^{\ell} E_i(t))$  (with  $E_i(t)$  stable for  $t \neq 0$ ), such that: (1)  $\lim_{t\to 0} \widetilde{\omega}_t = \omega$ , and (2)  $[\widetilde{\omega}_t] = [\omega]$ 

#### The CSC case:

• Futaki:  $\exists$  CSC Kähler metric  $\omega \Rightarrow \mathcal{F}_{[\omega]}(M, X_i) = 0$ , where  $X_i \in \mathfrak{t} = \mathrm{Lie}(\mathbb{T})$  are generators of  $S^1$  subgroups.

Pirsa: 09050031

The arguments so far are not specific to the CSC case! We have shown: Let  $\omega$  be an extremal Kähler metric on (M, J) = P(E) and  $\mathbb{T}$  be an a maximal torus in  $\mathrm{Isom}(M, \omega)$ , then

•  $\exists$   $\mathbb{T}$ -invariant extremal Kähler metrics  $\tilde{\omega}_t$  on  $(M, J_t) = P(\bigoplus_{i=0}^{\ell} E_i(t))$  (with  $E_i(t)$  stable for  $t \neq 0$ ), such that: (1)  $\lim_{t\to 0} \tilde{\omega}_t = \omega$ , and (2)  $[\tilde{\omega}_t] = [\omega]$ 

#### The CSC case:

• Futaki:  $\exists$  CSC Kähler metric  $\omega \Rightarrow \mathcal{F}_{[\omega]}(M, X_i) = 0$ , where  $X_i \in \mathfrak{t} = \mathrm{Lie}(\mathbb{T})$  are generators of  $S^1$  subgroups.  $\iff \mu(E_i) = \mu(E_j) \iff E(t)$  is polystable  $t \neq 0$ .

Pirsa: 09050031 Page 47/73

The arguments so far are not specific to the CSC case! We have shown: Let  $\omega$  be an extremal Kähler metric on (M, J) = P(E) and  $\mathbb{T}$  be an a maximal torus in  $\mathrm{Isom}(M, \omega)$ , then

•  $\exists$   $\mathbb{T}$ -invariant extremal Kähler metrics  $\tilde{\omega}_t$  on  $(M, J_t) = P(\bigoplus_{i=0}^{\ell} E_i(t))$  (with  $E_i(t)$  stable for  $t \neq 0$ ), such that: (1)  $\lim_{t\to 0} \tilde{\omega}_t = \omega$ , and (2)  $[\tilde{\omega}_t] = [\omega]$ 

#### The CSC case:

- Futaki:  $\exists$  CSC Kähler metric  $\omega \Rightarrow \mathcal{F}_{[\omega]}(M, X_i) = 0$ , where  $X_i \in \mathfrak{t} = \mathrm{Lie}(\mathbb{T})$  are generators of  $S^1$  subgroups.  $\iff \mu(E_i) = \mu(E_j) \iff E(t)$  is polystable  $t \neq 0$ .
- Narasimhan–Seshadri + Chen–Tian (uniqueness):  $(\omega, J_t)$  is locally symmetric.  $\square$

Pirsa: 09050031

# The general case

 What about the general extremal case? (For the rest of the talk will discuss this case).

Pirsa: 09050031 Page 49/73

# The general case

- What about the general extremal case? (For the rest of the talk will discuss this case).
- The real question is how do the extremal metrics on  $M = P(E_0(t) \oplus \cdots \oplus E_\ell(t))$  with  $E_i(t)$  stable look like and to what kind of extremal metrics they can possibly converge?

Pirsa: 09050031 Page 50/73

## The blow-up picture

Suppose  $E = \bigoplus_{i=0}^{\ell} E_i$  with  $E_i$  stable. How does an extremal metric on P(E) look like?

$$\hat{M} = P(\mathcal{O}(-1)_{E_0} \oplus \cdots \oplus \mathcal{O}(-1)_{E_\ell}) \longrightarrow S = P(E_0) \times_{\Sigma} \cdots \times_{\Sigma} P(E_\ell)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M = P(E_0 \oplus \cdots \oplus E_\ell) \longrightarrow \Sigma,$$

which generalizes

$$\hat{M} = P(\mathcal{O}(-1) \oplus \mathcal{O}) \longrightarrow S = \mathbb{C}P^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M = \mathbb{C}P^{2} \longrightarrow \{pt\}.$$

S is the *stable* quotient of M by the complexified action  $\mathbb{T}^c$ .  $\hat{M}$  is a *toric*  $\mathbb{C}P^\ell$ -bundle over S associated to a principle  $\mathbb{T}^c$  bundle.

Pirsa: 09050031 Page 51/73

We want to build a metric on M using the locally symmetric structure of S and the toric structure of  $\mathbb{C}P^{\ell}$  (ACGT, JDG-04):



Pirsa: 09050031 Page 52/73

### The blow-up picture

Suppose  $E = \bigoplus_{i=0}^{\ell} E_i$  with  $E_i$  stable. How does an extremal metric on P(E) look like?

$$\hat{M} = P(\mathcal{O}(\mathbb{T}_1)_{E_0} \oplus \cdots \oplus \mathcal{O}(-1)_{E_\ell}) \longrightarrow S = P(E_0) \times_{\Sigma} \cdots \times_{\Sigma} P(E_\ell)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M = P(E_0 \oplus \cdots \oplus E_\ell) \longrightarrow \Sigma,$$

which generalizes

$$\hat{M} = P(\mathcal{O}(-1) \oplus \mathcal{O}) \longrightarrow S = \mathbb{C}P^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M = \mathbb{C}P^{2} \longrightarrow \{pt\}.$$

S is the *stable* quotient of M by the complexified action  $\mathbb{T}^c$ .  $\hat{M}$  is a *toric*  $\mathbb{C}P^\ell$ -bundle over S associated to a principle  $\mathbb{T}^c$  bundle.

Pirsa: 09050031 Page 53

We want to build a metric on M using the locally symmetric structure of S and the toric structure of  $\mathbb{C}P^{\ell}$  (ACGT, JDG-04):



Pirsa: 09050031 Page 54/73

We want to build a metric on M using the locally symmetric structure of S and the toric structure of  $\mathbb{C}P^{\ell}$  (ACGT, JDG-04):

•  $(g_S, \omega_S)$  a locally symmetric metric on S, covered by  $\mathbb{C}P^{d_0} \times \cdots \times \mathbb{C}P^{d_\ell} \times \mathbb{H}$  where the Fubini–Study metric  $(g_i, \omega_i)$  on  $\mathbb{C}P^{d_i}$  has scalar curvature  $2d_i(d_i + 1)$ , and  $(g_{\Sigma}, \omega_{\Sigma})$  is CSC on  $\Sigma$  with  $[\omega_{\Sigma}]$  primitive.

Pirsa: 09050031 Page 55/73

We want to build a metric on M using the locally symmetric structure of S and the toric structure of  $\mathbb{C}P^{\ell}$  (ACGT, JDG-04):

- $(g_S, \omega_S)$  a locally symmetric metric on S, covered by  $\mathbb{C}P^{d_0} \times \cdots \times \mathbb{C}P^{d_\ell} \times \mathbb{H}$  where the Fubini–Study metric  $(g_i, \omega_i)$  on  $\mathbb{C}P^{d_i}$  has scalar curvature  $2d_i(d_i + 1)$ , and  $(g_{\Sigma}, \omega_{\Sigma})$  is CSC on  $\Sigma$  with  $[\omega_{\Sigma}]$  primitive.
- Delzant-Guillemin:  $g_V$  a toric Kähler metric on  $(\mathbb{C}P^\ell, \mathbb{T})$

$$g_V = G_{rs} dz_r dz_s + G^{rs} dt_r dt_s$$

where  $z: \mathbb{C}P^{\ell} \to \Delta \subset \mathbb{R}^{\ell}$  is the momentum map  $(\Delta \text{ is a simplex})$ ,  $G_{rs} = \operatorname{Hess}(U)_{rs}$  with U(z) smooth of the interior of  $\Delta$ .

Pirsa: 09050031 Page 56/73

•  $\theta$  a connection 1-form on  $M^0$  (which is the associated principal  $\mathbb{T}$ -bundle over S) with

$$d\theta = \sum_{i=0}^{\ell} \omega_i \otimes u_i + \omega_{\Sigma} \otimes u,$$

where  $u_i, u \in \mathfrak{t}$  and  $u_i$  are primitive inward normals of the co-dimension 1 faces  $F_i = \{z \in \mathfrak{t}^* : p_i(z) = \langle u_i, z \rangle + c_i = 0\}.$ 



Pirsa: 09050031 Page 57/73

•  $\theta$  a connection 1-form on  $M^0$  (which is the associated principal  $\mathbb{T}$ -bundle over S) with

$$d\theta = \sum_{i=0}^{\ell} \omega_i \otimes u_i + \omega_{\Sigma} \otimes u,$$

where  $u_i, u \in \mathfrak{t}$  and  $u_i$  are primitive inward normals of the co-dimension 1 faces  $F_i = \{z \in \mathfrak{t}^* : p_i(z) = \langle u_i, z \rangle + c_i = 0\}.$ 

$$g = \sum_{i=0}^{\ell} p_i(z)g_i + (\langle u, z \rangle + k)g_{\Sigma} + G_{rs}(z)dz_rdz_s + G^{rs}(z)\theta_r \otimes \theta_s$$

is a Kähler metric on M in  $\Omega = 2\pi(c_1(\mathcal{O}(1)_E + k[\omega_{\Sigma}])$  (parametrized by U(z) with  $G_{rs} = (\text{Hess } U)_{rs}$ ).

Pirsa: 09050031

## Example

The Fubini-Study metric as a blow down:

$$\hat{M} = P(\mathcal{O}(-1) \oplus \mathcal{O}) \longrightarrow S = \mathbb{C}P^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$M = \mathbb{C}P^{2} \longrightarrow \{pt\},$$

$$g_{FS} = (1+z)g_{\mathbb{C}P^1} + \left(\frac{1}{1-z^2}\right)dz^2 + (1-z^2)\theta^2$$

Page 59/73

with  $G(z)=1/(1-z^2)$  and  $d\theta=\omega_{\mathbb{C}P^1}$ .

Pirsa: 09050031

• Observe that for any  $z \in \operatorname{int}(\Delta)$ , the symplectic quotient construction defines a *locally symmetric* Kähler metric  $\check{g}(z) = \sum_{i=0}^{\ell} p_i(z)g_i + (\langle u,z\rangle + k)g_{\Sigma}$  on  $S = M_{ss}/\mathbb{T}^c$ .



Pirsa: 09050031 Page 60/73

- Observe that for any  $z \in \operatorname{int}(\Delta)$ , the symplectic quotient construction defines a *locally symmetric* Kähler metric  $\check{g}(z) = \sum_{i=0}^{\ell} p_i(z)g_i + (\langle u,z\rangle + k)g_{\Sigma}$  on  $S = M_{ss}/\mathbb{T}^c$ .
- The corresponding equation on U(z) to get an extremal metric is

$$P_{k}(U) = \langle A_{k}, z \rangle + B_{k} + \sum_{i=0}^{\ell} \frac{2d_{i}(d_{i}+1)}{p_{i}(z)} + \frac{Scal_{\Sigma}}{\langle u, z \rangle + k}$$

$$- \frac{1}{p_{k}(z)} \sum_{r,s} \frac{\partial^{2}}{\partial z_{r} \partial z_{s}} (p_{k}(z)G^{rs}(z)) = 0,$$

$$(1)$$

where  $p_k(z) = (\langle u, z \rangle + k) \prod_{i=0}^{\ell} p_i(z)^{d_i}$ , and  $A_k \in \mathfrak{t}$  and  $B_k \in \mathbb{R}$  are determined by  $c_1(E_i)$  and  $\Omega$ .

Pirsa: 09050031 Page 61/73

- Observe that for any  $z \in \operatorname{int}(\Delta)$ , the symplectic quotient construction defines a *locally symmetric* Kähler metric  $\check{g}(z) = \sum_{i=0}^{\ell} p_i(z)g_i + (\langle u,z\rangle + k)g_{\Sigma}$  on  $S = M_{ss}/\mathbb{T}^c$ .
- The corresponding equation on U(z) to get an extremal metric is

$$P_{k}(U) = \langle A_{k}, z \rangle + B_{k} + \sum_{i=0}^{\ell} \frac{2d_{i}(d_{i}+1)}{p_{i}(z)} + \frac{Scal_{\Sigma}}{\langle u, z \rangle + k}$$

$$- \frac{1}{p_{k}(z)} \sum_{r,s} \frac{\partial^{2}}{\partial z_{r} \partial z_{s}} (p_{k}(\mathfrak{F})G^{rs}(z)) = 0,$$

$$(1)$$

where  $p_k(z) = (\langle u, z \rangle + k) \prod_{i=0}^{\ell} p_i(z)^{d_i}$ , and  $A_k \in \mathfrak{t}$  and  $B_k \in \mathbb{R}$  are determined by  $c_1(E_i)$  and  $\Omega$ .

This provides a considerable scope for extending Donaldson's theory in the toric case to this context...

• We believe that  $2\pi(c_1(\mathcal{O}(1)_E + k[\omega_{\Sigma}])$  admits an extremal Kähler metric  $\iff$  (1) has solution (true if  $\ell = \text{rk}(\text{Aut}(P(E)) \leq 1$ , ACGT, Inv.math-08).



Pirsa: 09050031 Page 63/73

- We believe that  $2\pi(c_1(\mathcal{O}(1)_E + k[\omega_{\Sigma}])$  admits an extremal Kähler metric  $\iff$  (1) has solution (true if  $\ell = \text{rk}(\text{Aut}(P(E)) \leq 1$ , ACGT, Inv.math-08).
- Existence in small classes: when  $k \to \infty$

$$\lim_{k \to \infty} P_k(U) = B + \sum_{i=0}^{\ell} \frac{2d_i(d_i + 1)}{p_i(z)}$$
$$-\frac{1}{p(z)} \sum_{r,s} \frac{\partial^2}{\partial z_r \partial z_s} (p(z)G^{rs}(z)) = 0,$$

where  $p(z) = \prod_{i=0}^{\ell} p_i(z)^{d_i}$ . This describes a Fubini–Study metric on  $\mathbb{C}P^{r-1}$  seen as blow-down of  $P(\mathcal{O}(-1) \oplus \cdots \oplus \mathcal{O}(-1)) \to \prod_{i=0}^{\ell} \mathbb{C}P^{d_i}$ .

Pirsa: 09050031 Page 64/73

- We believe that  $2\pi(c_1(\mathcal{O}(1)_E + k[\omega_{\Sigma}])$  admits an extremal Kähler metric  $\iff$  (1) has solution (true if  $\ell = \text{rk}(\text{Aut}(P(E)) \leq 1$ , ACGT, Inv.math-08).
- Existence in small classes: when  $k \to \infty$

$$\lim_{k \to \infty} P_k(U) = B + \sum_{i=0}^{\ell} \frac{2d_i(d_i + 1)}{p_i(z)}$$
$$-\frac{1}{p(z)} \sum_{r,s} \frac{\partial^2}{\partial z_r \partial z_s} (p(z)G^{rs}(z)) = 0,$$

where  $p(z) = \prod_{i=0}^{\ell} p_i(z)^{d_i}$ . This describes a Fubini–Study metric on  $\mathbb{C}P^{r-1}$  seen as blow-down of  $P(\mathcal{O}(-1) \oplus \cdots \oplus \mathcal{O}(-1)) \to \prod_{i=0}^{\ell} \mathbb{C}P^{d_i}$ .

Implicit Function Theorem  $\Longrightarrow$  existence when  $k \gg 1$ .

# The key argument revisited

•  $(\omega_t, J_t)$  is extremal on  $P(E_0(t) \oplus ... \oplus E_\ell(t))$  with  $E_i(t)$  stable for  $t \neq 0$ 

#### The CSC case:

•  $(\omega_t, J_t)$  is locally-symmetric on  $P(E_0(t) \oplus \cdots \oplus E_\ell(t))$  for every  $t \Rightarrow E_i(0)$  are stable.

The extremal case (and  $k \gg 1$ ):

- $(\omega_t, J_t)$  given by the Ansatz
- $(\check{\omega}_t, \check{J}_t)$  is locally symmetric on  $P(E_0(t))_{\Sigma} \times \cdots \times_{\Sigma} P(E_{\ell}(t))$  for every  $t \Rightarrow E_i(0)$  are stable.

Pirsa: 09050031 Page 66/73

- We believe that  $2\pi(c_1(\mathcal{O}(1)_E + k[\omega_{\Sigma}])$  admits an extremal Kähler metric  $\iff$  (1) has solution (true if  $\ell = \text{rk}(\text{Aut}(P(E)) \leq 1$ , ACGT, Inv.math-08).
- Existence in small classes: when  $k \to \infty$

$$\lim_{k \to \infty} P_k(U) = B + \sum_{i=0}^{\ell} \frac{2d_i(d_i + 1)}{p_i(z)}$$
$$-\frac{1}{p(z)} \sum_{r,s} \frac{\partial^2}{\partial z_r \partial z_s} (p(z)G^{rs}(z)) = 0,$$

where  $p(z) = \prod_{i=0}^{\ell} p_i(z)^{d_i}$ . This describes a Fubini–Study metric on  $\mathbb{C}P^{r-1}$  seen as blow-down of  $P(\mathcal{O}(-1) \oplus \cdots \oplus \mathcal{O}(-1)) \to \prod_{i=0}^{\ell} \mathbb{C}P^{d_i}$ .

Implicit Function Theorem  $\implies$  existence when  $k \gg 1$ .

# The key argument revisited

•  $(\omega_t, J_t)$  is extremal on  $P(E_0(t) \oplus \ldots \oplus E_\ell(t))$  with  $E_i(t)$  stable for  $t \neq 0$ 

#### The CSC case:

•  $(\omega_t, J_t)$  is locally-symmetric on  $P(E_0(t) \oplus \cdots \oplus E_\ell(t))$  for every  $t \Rightarrow E_i(0)$  are stable.

The extremal case (and  $k \gg 1$ ):

- $(\omega_t, J_t)$  given by the Ansatz
- $(\check{\omega}_t, \check{J}_t)$  is locally symmetric on  $P(E_0(t))_{\Sigma} \times \cdots \times_{\Sigma} P(E_{\ell}(t))$  for every  $t \Rightarrow E_i(0)$  are stable.

Pirsa: 09050031 Page 68/73

No Signal VGA-1

Pirsa: 09050031 Page 69/73

No Signal VGA-1

Pirsa: 09050031 Page 70/73

No Signal VGA-1

Pirsa: 09050031 Page 71/73

# The key argument revisited

•  $(\omega_t, J_t)$  is extremal on  $P(E_0(t) \oplus \ldots \oplus E_\ell(t))$  with  $E_i(t)$  stable for  $t \neq 0$ 

#### The CSC case:

•  $(\omega_t, J_t)$  is locally-symmetric on  $P(E_0(t) \oplus \cdots \oplus E_\ell(t))$  for every  $t \Rightarrow E_i(0)$  are stable.

### The extremal case (and $k \gg 1$ ):

- $(\omega_t, J_t)$  given by the Ansatz
- $(\check{\omega}_t, \check{J}_t)$  is locally symmetric on  $P(E_0(t))_{\Sigma} \times \cdots \times_{\Sigma} P(E_{\ell}(t))$  for every  $t \Rightarrow E_i(0)$  are stable.

Pirsa: 09050031 Page 72/73

### Conclusion

### Conjecture

P(E) admits an extremal Kähler metric in some Kähler class  $\Omega \iff E = \bigoplus_{i=0}^{\ell} E_i$  with  $E_i$  stable.

#### Theorem 2

There exists  $k_0(E, \Sigma)$  such that P(E) admits an extremal Kähler metric in a class  $\Omega = 2\pi(c_1(\mathcal{O}(1)_E + k[\omega_{\Sigma}])$  with  $k > k_0$  iff  $E = \bigoplus_{i=0}^{\ell} E_i$  with  $E_i$  stable.

Theorem 1 and a recent result of ACGT confirm the conjecture in the case when  $\operatorname{rk}(\operatorname{Aut}_0(P(E)) = \ell \leq 1....$ 

Pirsa: 09050031 Page 73/73