Title: Special geometries associated to quaternion-Kahler 8-manifolds

Date: May 08, 2009 01:00 PM

URL: http://pirsa.org/09050030

Abstract: In this talk we will discuss the (local) construction of a calibrated G\_2 structure on the 7-dimensional quotient of an 8-dimensional quaternion-Kahler (QK) manifold M under the action of a group S^1 of isometries. The idea is to construct explicitly a 3-form of type G\_2, using the data associated to the S^1 action and to the QK structure on M. In the same spirit, we can consider the level sets of the QK moment-map square-norm function on M, and again take the S^1 quotient: we will discuss in this case the construction of half-flat metrics in dimension 6, under suitable circumstances. This talk is based on a joint work with F. Lonegro, Y. Nagatomo and S. Salamon, still in progress.

Pirsa: 09050030 Page 1/44

# Special Geometries associated to 8-dimensional quaternion-Kähler manifolds

Andrea Gambioli

Connections in Geometry and Physics Perimeter Institute

5/9/2008

Pirsa: 09050030 Page 2/44

int work with:

Lonegro, Y. Nagatomo, S. Salamon, still in progress.

he Algebra of Quaternions  $\mathbb H$  is a 4-dimensional real vector space nerated by the elements

nich satisfy the relations

$$i^2 = j^2 = \kappa^2 = -1$$
  $ij = \kappa$ .

- It is associative but not commutative:
- we can define the quaternionic vector space H<sup>r</sup> with scalar multiplication on the right.
  - We have an inclusion

 $Gl(n.H)H' \subset Gl(4n.R)$ 

of invertibe matrices with quaternionic entries acting on the left

Pirsa: 09050030

Page 4/44

he Algebra of Quaternions  $\mathbb{H}$  is a 4-dimensional real vector space nerated by the elements

nich satisfy the relations

$$i^2 = j^2 = \kappa^2 = -1 \quad ij = \kappa.$$

- It is associative but not commutative;
  - we can define the quaternionic vector space E<sup>n</sup> with scalar multiplication on the *right*.
  - We have an inclusion

 $G(n: \mathbb{H})\mathbb{H}^* \subset G(4n: \mathbb{R})$ 

of invertibe matrices with quaternionic entries acting on the I

Pirsa: 09050030

Page 5/44

ne Algebra of Quaternions III is a 4-dimensional real vector space enerated by the elements

nich satisfy the relations

$$i^2 = j^2 = \kappa^2 = -1 \quad ij = \kappa.$$

- It is associative but not commutative;
- we can define the quaternionic vector space H<sup>n</sup> with scalar multiplication on the right.
  - We have an inclusion

 $G((n, \mathbb{H})\mathbb{H}) \subset G((4n, \mathbb{R}))$ 

of invertibe matrices with quaternionic entries acting on the le

Pirsa: 09050030

Page 6/44

ne Algebra of Quaternions III is a 4-dimensional real vector space enerated by the elements

nich satisfy the relations

$$i^2 = j^2 = \kappa^2 = -1 \quad ij = \kappa.$$

- It is associative but not commutative;
- we can define the quaternionic vector space H<sup>n</sup> with scalar multiplication on the right.
- We have an inclusion

$$Gl(n, \mathbb{H}) \mathbb{H}^* \subset Gl(4n, \mathbb{R})$$

of invertibe matrices with quaternionic entries acting on the *left* page 7/4  $\mathbb{H}^*$  acting on the *right*.

ne Algebra of Quaternions III is a 4-dimensional real vector space enerated by the elements

nich satisfy the relations

$$i^2 = j^2 = \kappa^2 = -1 \quad ij = \kappa.$$

- It is associative but not commutative;
- we can define the quaternionic vector space H<sup>n</sup> with scalar multiplication on the right.
- We have an inclusion

$$Gl(n, \mathbb{H}) \mathbb{H}^* \subset Gl(4n, \mathbb{R})$$

of invertibe matrices with quaternionic entries acting on the *left* page 84. Page 84.

e define a *quaternionic structure* over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i\cdot,I_i\cdot)=g(\cdot,\cdot)\quad i=1,2,3)$  is called QK t satisfies one of the following (equivalent) conditions:

the holonomy group is contained in Sp(n)Sp(1)

the bundle G, satisfies  $\nabla_X G \subseteq G \cap X \in TM$ :

if  $\omega_i = g(I_{i-1})$  span  $G \subset \bigwedge^2 TM$  then the 4-form  $\Omega = \sum_{i=1}^3 z_i$  is parallel.

K manifolds are Einstein  $\longrightarrow$  the scalar curvature s is constant s will deal with the case s=0.

e define a quaternionic structure over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i\cdot,I_i\cdot)=g(\cdot,\cdot)\quad i=1,2,3)$  is called QK t satisfies one of the following (equivalent) conditions:

the holonomy group is contained in Sp(n)Sp(1)

the bundle G, satisfies  $\nabla_X G \subseteq G - X = TM$ .

if  $\omega_i = g(l_i, ...)$  span  $\mathcal{G} = \bigwedge^2 TM$  then the 4-form  $\Omega = \sum_{l=1}^3 \omega_l$  is parallel.

manifolds are Einstein — the scalar curvature s is constant, will deal with the case s=0.

e define a quaternionic structure over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i\cdot,I_i\cdot)=g(\cdot,\cdot)\quad i=1,2,3)$  is called QK t satisfies one of the following (equivalent) conditions:

the honorous group is contained in ap(7) about

if  $\omega_i = g(I_{i-1})$  span  $G \subset \Lambda^2$  TM then the 4-form  $\Omega = \sum_{i=1}^3 \omega_i$  is parallel.

K manifolds are Einstein  $\Longrightarrow$  the scalar curvature s is constant s will deal with the case s=0.

e define a *quaternionic structure* over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_{i \in g}, I_i \cdot) = g(\cdot, \cdot) \quad i = 1, 2, 3)$  is called QK t satisfies one of the following (equivalent) conditions:

- the holonomy group is contained in Sp(n)Sp(1);
- a the hundle C estisfies  $\nabla_{x}C = C = X = TM$
- if  $\omega_i = g(I_{i-1})$  span  $G = \bigwedge^2 TM$  then the 4-form  $\Omega = \sum_{i=1}^3 \varphi_i$  is parallel
- K manifolds are Einstein the scalar curvature s is constant, a will deal with the case s=0.

e define a *quaternionic structure* over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i \cdot, I_i \cdot) = g(\cdot, \cdot) \mid i = 1, 2, 3)$  is called QK t satisfies one of the following (equivalent) conditions:

the holonomy group is contained in Sp(n)Sp(1)

the bundle G, satisfies  $\nabla_X G \subseteq G = X \in TM$ 

if  $\omega_l = g(l_{l-1})$  span  $G \subset \Lambda^2$  TM then the 4-form  $\Omega = \sum_{l=1}^3 \omega_l$  is parallel.

K manifolds are Einstein  $\Longrightarrow$  the scalar curvature s is constant will deal with the case s=0.

e define a *quaternionic structure* over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i, I_i) = g(\cdot, \cdot) \quad i = 1, 2, 3)$  is called QK t satisfies one of the following (equivalent) conditions:

- the holonomy group is contained in Sp(n)Sp(1);
- a the hundle C satisfies  $\nabla_{X}C = C X = TM$
- if  $\omega_i = g(I_{i-1})$  span  $G \subset \bigwedge^2 TM$  then the 4-form  $\Omega = \sum_{i=1}^3 \omega_i$  is parallel
- K manifolds are Einstein  $\longrightarrow$  the scalar curvature s is constant s will deal with the case s=0.

e define a quaternionic structure over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i, I_i) = g(\cdot, \cdot) \quad i = 1, 2, 3)$  is called QK t satisfies one of the following (equivalent) conditions:

- the holonomy group is contained in Sp(n)Sp(1);
- the bundle  $\mathcal{G}$ , satisfies  $\nabla_X \mathcal{G} \subseteq \mathcal{G} \ \forall \ X \in TM$ ;

is parallel.

K manifolds are Einstein  $\Longrightarrow$  the scalar curvature s is constant s will deal with the case s=0.

e define a quaternionic structure over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i, I_i) = g(\cdot, \cdot) \quad i = 1, 2, 3)$  is called QK t satisfies one of the following (equivalent) conditions:

- the holonomy group is contained in Sp(n)Sp(1);
- the bundle  $\mathcal{G}$ , satisfies  $\nabla_X \mathcal{G} \subseteq \mathcal{G} \ \forall \ X \in TM$ ;
- if  $\omega_i = g(I_i \cdot, \cdot)$  span  $\mathcal{G} \subset \bigwedge^2 TM$  then the 4-form  $\Omega = \sum_{i=1}^3 \omega_i \wedge \omega_i$  is parallel.

K manifolds are Einstein  $\longrightarrow$  the scalar curvature s is constant. e will deal with the case s=0.

e define a *quaternionic structure* over a manifold M a subbundle  $\subset End(TM)$  whose fiber  $\mathbb{R}^3$  is spanned locally by

$$l_1, l_2, l_3$$
 satisfying  $l_i^2 = -1$  and  $l_i l_j = l_k$ 

Riemannian manifold (M,g) endowed with a quaternionic structure impatible with the metric  $(g(I_i, I_i) = g(\cdot, \cdot) \quad i = 1, 2, 3)$  is called QK t satisfies one of the following (equivalent) conditions:

- the holonomy group is contained in Sp(n)Sp(1);
- the bundle  $\mathcal{G}$ , satisfies  $\nabla_X \mathcal{G} \subseteq \mathcal{G} \ \forall \ X \in TM$ ;
- if  $\omega_i = g(I_i \cdot, \cdot)$  span  $\mathcal{G} \subset \bigwedge^2 TM$  then the 4-form  $\Omega = \sum_{i=1}^3 \omega_i \wedge \omega_i$  is parallel.

K manifolds are Einstein  $\Longrightarrow$  the scalar curvature s is constant. e will deal with the case  $s \neq 0$ .

Pirsa: 09050030 Page 17/44

### camples

te projective plane  $\mathbb{HP}^2$  parametrizes the quaternionic lines in  $\mathbb{H}^3$ .

erefore we have a 21-dimensional algebra of Killing vector fields. ther 2 QK manifolds of dimension 8 and s = 0:

### camples

the projective plane  $\mathbb{HP}^2$  parametrizes the quaternionic lines in  $\mathbb{H}^3$ . It homogeneous w.r.t.  $Sp(3) = GL(3, \mathbb{H}) \cap SO(12)$ :

$$\mathbb{HP}^2 \cong \frac{Sp(3)}{Sp(2)Sp(1)}.$$

terefore we have a 21-dimensional algebra of Killing vector fields.

her 2 QK manifolds of dimension 8 and s > 0:

$$\frac{G_2}{SO(4)}$$
 and  $Gr_2(\mathbb{C}^4) \cong \frac{SU(4)}{SU(2) \times SU(2)}$ 

th isometry group of dimension respectively 14 and 15.

### camples

the projective plane  $\mathbb{HP}^2$  parametrizes the quaternionic lines in  $\mathbb{H}^3$ . It homogeneous w.r.t.  $Sp(3) = GL(3, \mathbb{H}) \cap SO(12)$ :

$$\mathbb{HP}^2 \cong \frac{Sp(3)}{Sp(2)Sp(1)}.$$

herefore we have a 21-dimensional algebra of Killing vector fields. ther 2 QK manifolds of dimension 8 and s > 0:

$$rac{G_2}{SO(4)}$$
 and  $\mathbb{G}\mathrm{r}_2(\mathbb{C}^4)\cong rac{SU(4)}{SU(2) imes SU(2)}$ 

th isometry group of dimension respectively 14 and 15.

Pirsa: 09050030 Page 20/44

## 2 Geometry

the compact Lie group  $G_2$  can be defined as the subgroup of  $GI(7, \mathbb{R})$  eserving the 3-form

$$\phi = (e^{12} - e^{34})e^7 - (e^{13} - e^{42})e^6 - (e^{14} - e^{23})e^5 + e^{765}$$
 (1)

et N be a 7 dimensional Riemannian manifold admitting a section  $\in \Gamma(\Lambda^3 M)$  which can be locally expressed as 1. Then

$$G \subset G_2 \subset SO(7)$$

here G is the structure group. If moreover

$$\nabla \phi = 0 \quad \Leftrightarrow \quad d\phi = 0 = d * \phi$$

en  $Hol_0(M,g) \subset G_2$ . (Fernandez-Gray). This is relevant in M-Teory.

### rst Examples of Holonomy G2 metrics

the late '80 the first examples of complete metrics with  $G_2$  appear in

 R.L. Bryant, S. Salamon: "On the construction of some complete metrics with exceptional holonomy", Duke Math. J. (1989)
 the total spaces of vector bundles with fibre R<sup>3</sup>



nese metrics are *invariant* w.r.t. the action of SO(5) and SU(3) spectively, acting with *cohomogeneity one*.

## 2 Geometry

the compact Lie group  $G_2$  can be defined as the subgroup of  $GI(7, \mathbb{R})$  eserving the 3-form

$$\phi = (e^{12} \otimes e^{34})e^7 - (e^{13} - e^{42})e^6 - (e^{14} - e^{23})e^5 + e^{765}$$
 (1)

It N be a 7 dimensional Riemannian manifold admitting a section  $\in \Gamma(\Lambda^3 M)$  which can be locally expressed as 1. Then

$$G \subset G_2 \subset SO(7)$$

nere G is the structure group. If moreover

$$\nabla \phi = 0 \quad \Leftrightarrow \quad d\phi = 0 = d * \phi$$

en  $Hol_0(M,g) \subset G_2$ . (Fernandez-Gray). This is relevant in M-Teory.

### rst Examples of Holonomy G2 metrics

the late '80 the first examples of complete metrics with  $G_2$  appear in

 R.L. Bryant, S. Salamon: "On the construction of some complete metrics with exceptional holonomy", Duke Math. J. (1989)
 the total spaces of vector bundles with fibre R<sup>3</sup>



nese metrics are *invariant* w.r.t. the action of SO(5) and SU(3) spectively, acting with *cohomogeneity one*.

## ther Examples

- D. D. Joyce: Compact Riemannian 7-manifolds with holonomy G<sub>2</sub>
   I, II. J. Differential Geom. 43 (1996)
- A. Brandhuber, J. Gomis, S. S. Gubser, S. Gukov: Gauge theory at large N and new G<sub>2</sub> holonomy metrics. Nuclear Phys. B 611 (2001)
- G.W. Gibbons, H. Lü, C.N. Pope, K. S. Stelle: Supersymmetric domain walls from metrics of special holonomy, Nuclear Phys. B 623 (2002)

#### uestion

it possible to construct G2-holonomy metrics on quotients

 $X/S^1$ 

here X is some special holonomy 8-dimensional manifold and  $S^1$  is a oup of isometries ?

r instance:

B. Acharya, E. Witten: "Chiral Fermions from Manifolds of  $G_2$  Holonomy" hep-th/0109152 (2001).

are the authors discuss the existence of  $G_2$  holonomy metrics on the otients  $X : S^1$  of certain 8-dimensional hyperKähler (HK) manifolds X

HK iff  $Holo(X) \subset Sp(n)$ .

#### uestion

it possible to construct G2-holonomy metrics on quotients

$$X/S^1$$

here X is some special holonomy 8-dimensional manifold and  $S^1$  is a oup of isometries ?

#### or instance:

 B. Acharya, E. WItten: "Chiral Fermions from Manifolds of G<sub>2</sub> Holonomy" hep-th/0109152 (2001).

ere the authors discuss the existence of  $G_2$  holonomy metrics on the otients  $X/S^1$  of certain 8-dimensional hyperKähler (HK) manifolds X

HK iff  $Hol_0(X) \subset Sp(n)$ .

Pirsa: 09050030

Page 27/44

### ne QK case

an we obtain something analogous with M an 8-dimensional QK anifold?

onsider for instance HP2.

th weight vector  $\mathbf{W} = (q_0, q_1, q_2) \in \mathbb{Z}^3$  On the subset  $U = \{K \neq 0\}$ 

$$\gamma = K \cup \Omega$$

nich stisfies

$$\begin{cases} \mathcal{L}_K(K \perp \Omega) = 0 \\ d(K \perp \Omega) = 0 \end{cases}$$

nich provides a closed 3-form on U/S1

#### ne QK case

an we obtain something analogous with M an 8-dimensional QK anifold?

#### naïve guess

onsider for instance HP2.

$$K_{\mathbf{w}}$$
 Killing v.f.  $\longleftrightarrow S_{\mathbf{w}}^1 \subset \mathbb{T}^3$ 

th weight vector  $\mathbf{W}=(q_0,\,q_1,\,q_2)\in\mathbb{Z}^3$  On the subset  $U=\{K\neq 0\}$ 

$$\gamma = K \cup \Omega$$

nich stisfies

$$\begin{cases} \mathcal{L}_K(K \perp \Omega) = 0 \\ d(K \perp \Omega) = 0 \end{cases}$$

nich provides a closed 3-form  $\gamma$  on  $U/S^1$ 

#### ne QK case

an we obtain something analogous with M an 8-dimensional QK anifold?

#### naïve guess

onsider for instance HP2.

$$K_{\mathbf{w}}$$
 Killing v.f.  $\longleftrightarrow S_{\mathbf{w}}^1 \subset \mathbb{T}^3$ 

th weight vector  $\mathbf{w} = (q_0, q_1, q_2) \in \mathbb{Z}^3$  On the subset  $U = \{K \neq 0\}$  can consider the form

$$\gamma = K \bot \Omega$$

nich stisfies

$$\begin{cases} \mathscr{L}_K(K \perp \Omega) = 0 \\ d(K \perp \Omega) = 0 \end{cases}$$

nich provides a closed 3-form  $\gamma$  on  $U/S^1$ .

infortunately, this is not the correct answer: in fact, we can find an ON cal coframe  $e^1, \dots, e^8$  on  $M^8$  with respect to which

$$\begin{cases}
\omega_1 = e^{12} - e^{34} + e^{56} - e^{78} \\
\omega_2 = e^{13} - e^{42} + e^{57} - e^{86} \\
\omega_3 = e^{14} - e^{23} + e^{58} - e^{67}.
\end{cases} (2)$$

here we can identify  $e^8 = \alpha_0/|\alpha_0| = K^\#/|K|$ . In this case

hich has  $G_5 \subset SO(3,4)$  as a stabilizer.

order to have the correct stabilizer we need to change the last

infortunately, this is not the correct answer: in fact, we can find an ON cal coframe  $e^1, \dots, e^8$  on  $M^8$  with respect to which

$$\begin{cases}
\omega_1 = e^{12} - e^{34} + e^{56} - e^{78} \\
\omega_2 = e^{13} - e^{42} + e^{57} - e^{86} \\
\omega_3 = e^{14} - e^{23} + e^{58} - e^{67}.
\end{cases} (2)$$

here we can identify  $e^8 = \alpha_0/|\alpha_0| = K^\#/|K|$ . In this case

$$\gamma = K \, \exists \, \Omega = (e^{12} - e^{34})e^7 - (e^{13} - e^{42})e^6 - (e^{14} - e^{23})e^5 - 3e^{765},$$

nich has  $G_2^* \subset SO(3,4)$  as a stabilizer.

order to have the correct stabilizer we need to change the last mmand:

infortunately, this is not the correct answer: in fact, we can find an ON cal coframe  $e^1, \dots, e^8$  on  $M^8$  with respect to which

$$\begin{cases}
\omega_1 = e^{12} - e^{34} + e^{56} - e^{78} \\
\omega_2 = e^{13} - e^{42} + e^{57} - e^{86} \\
\omega_3 = e^{14} - e^{23} + e^{58} - e^{67}.
\end{cases} (2)$$

here we can identify  $e^8 = \alpha_0/|\alpha_0| = K^\#/|K|$ . In this case

$$\gamma = K \, \exists \, \Omega = (e^{12} - e^{34})e^7 - (e^{13} - e^{42})e^6 - (e^{14} - e^{23})e^5 - 3e^{765},$$

nich has  $G_2^* \subset SO(3,4)$  as a stabilizer.

order to have the correct stabilizer we need to change the last mmand:

$$-3e^{765} \longrightarrow +\lambda e^{765}$$



Page 33/44

the presence of an  $S^1$  action on a QK manifold provides the following lated objects:

- a Killing vector field K
- a moment map  $\mu \in \Gamma(\mathcal{G})$  defined by  $c(\nabla K)$
- a reduction of the structure group of G to  $S^1 \equiv SO(3)$  on

other words:

nere N is spanned locally by

the presence of an  $S^1$  action on a QK manifold provides the following lated objects:

a Killing vector field K

a reduction of the structure group of  $\mathcal{G}$  to  $S^1 \equiv SO(3)$  or  $M = u^{-1}(0)$ 

other words

nere N is spanned locally by

the presence of an  $S^1$  action on a QK manifold provides the following lated objects:

- a Killing vector field K
- a moment map  $\mu \in \Gamma(\mathcal{G})$  defined by  $c(\nabla K)^{\mathcal{G}}$

nere N is spanned locally by

the presence of an  $S^1$  action on a QK manifold provides the following lated objects:

- a Killing vector field K
- a moment map  $\mu \in \Gamma(\mathcal{G})$  defined by  $c(\nabla K)^{\mathcal{G}}$
- a reduction of the structure group of G to S¹ ⊂ SO(3) on M \ μ⁻¹(0)

other words:

$$G = \mu \oplus N$$

here N is spanned locally by  $\omega_2$ ,  $\omega_3$ .

#### ructure equations for $\mathcal{G}$

$$\nabla \omega_1 = \alpha_2 \otimes \omega_2 + \alpha_3 \otimes \omega_3$$
$$\nabla \omega_2 = -\alpha_2 \otimes \omega_1 + \beta \otimes \omega_3$$
$$\nabla \omega_1 = -\beta \otimes \omega_2 + \alpha_3 \otimes \omega_1$$

th  $\beta$ ,  $\alpha_2$ ,  $\alpha_3$  local 1-forms.

#### -invariant forms

- dβ
- $\bullet \ \omega_1 = \frac{\mu}{|\mu|}$
- $d\omega_1 = \alpha_2 \wedge \omega_2 + \alpha_3 \wedge \omega_3$
- $I_1 d\omega_1 = \alpha_2 \wedge \omega_3 \alpha_3 \wedge \omega_2$
- e well defined on the open set  $M^8 \setminus \{\mu^{-1}(0)\}$ .

### alibrated G<sub>2</sub> Structures

t us set

$$M_0 = M^8 \setminus (\{\mu = 0\} \cup \{K = 0\}),$$

id let us define

$$\tau = I_1 \alpha_0 \wedge (d\beta + \omega_1)$$

#### neorem

onsider an S1 action on M8 as before. Let us consider

$$\phi = A\gamma + B\tau, \tag{3}$$

here A, B are certain functions of  $\|\mu\|$  and of a parameter  $t \in \mathbb{R}$ . nen the form  $\phi$  induces a 1-parameter family of calibrated  $G_2$  ructures on the quotient  $M^7 = M_0/S^1$ .

# cample

t us consider  $\mathbb{HP}^2$  with  $S^1$  associated to  $\mathbf{w} = (1,0,0)$ . Then

$$\{K = 0\} \cong S^4 \cup [1, 0, 0] \text{ and } \{\mu = 0\} \cong S^4$$

preover 
$$C(S_w^1) = S^1 \times Sp(2)$$
. So

$$\mathbb{HP}^2 \setminus (S^4 \cup [1,0,0]) \longrightarrow \Lambda^2_+ S^4 \setminus S^4$$

rjectively and Sp(2)-equivariantly.

the Bryant-Salamon metric amongst the calibrated  $G_2$ -structures tained in the theorem?

# alf-flat geometry

et  $M^6$  be a 6-dimenisonal manifold with an SU(3)-structure aracterized by

$$\omega \in \Lambda^{1,1}$$
  $\psi^+ + \imath \psi^- \in \Lambda^{3,0}$ .

en we say that  $M^6$  is half the following equations are satisfied:

$$\begin{cases} d\omega & \omega & = 0 \\ d\omega^+ & = 0 \end{cases}$$

e intrinsic torsion of the SU(3) structure lies in a direct sum

e half-flat condition implies that the projections on  $W_{1,2}^-$  and  $W_{4,5}$  are

# cample

It us consider  $\mathbb{HP}^2$  with  $S^1$  associated to  $\mathbf{w} = (1, 0, 0)$ . Then

$$\{K = 0\} \cong S^4 \cup [1, 0, 0] \text{ and } \{\mu = 0\} \cong S^4$$

preover  $C(S_w^1) = S^1 \times Sp(2)$ . So

$$\mathbb{HP}^2\setminus (S^4\cup [1, \overset{\mathfrak{h}}{0}, 0])\longrightarrow \Lambda^2_+S^4\setminus S^4$$

rjectively and Sp(2)-equivariantly.

the Bryant-Salamon metric amongst the calibrated  $G_2$ -structures tained in the theorem?



# alf-flat geometry

t  $M^6$  be a 6-dimenisonal manifold with an SU(3)-structure aracterized by

$$\omega \in \Lambda^{1,1}$$
  $\psi^+ + \imath \psi^- \in \Lambda^{3,0}$ .

ien we say that  $M^6$  is half-flat if the following equations are satisfied:

$$\begin{cases} d\omega \wedge \omega = 0 \\ d\psi^{+} = 0 \end{cases}$$

e intrinsic torsion of the SU(3) structure lies in a direct sum

e half-flat condition implies that the projections on  $W_{1,2}^{\pm}$  and  $W_{4,5}$  are

### pen Questions

- find an expression for \*φ in terms of the known forms, and see if in the manifold of calibrated G<sub>2</sub> structure there are any which are integrable;
- the S¹ quotients of the hypersurfaces {||μ|| = c ≠ 0} admit a half flat structure: does the G₂ cone over these coincide with some of the above metrics?
- study the relationships with the Bryant-Salamon examples for the weights (1, 1, 1) and (1, 0, 0) on HP<sup>2</sup>;