Title: Mirror Symmetry for Blow Ups

Date: May 08, 2009 10:00 AM

URL: http://pirsa.org/09050028

Abstract: This talk is a report on joint work with Mohammed Abouzaid and Ludmil Katzarkov about mirror symmetry for blowups, from the perspective of the Strominger-Yau-Zaslow conjecture. Namely, we first describe how to construct a Lagrangian torus fibration on the blowup of a toric variety X along a codimension 2 subvariety S contained in a toric hypersurface. Then we discuss the SYZ mirror and its instanton corrections, to provide an explicit description of the mirror Landau-Ginzburg model (possibly up to higher order corrections to the superpotential). This construction allows one to recover geometrically the predicted mirrors in various interesting settings: pairs of pants, curves of arbitrary genus, etc.

Pirsa: 09050028 Page 1/33

Mirror symmetry for blowups

Denis Auroux

MIT

May 2009 - Connections in Geometry and Physics Perimeter Institute, Waterloo

arXiv:0706.3207 and 0902.1595 + work in progress w/ M. Abouzaid and L. Katzarkov

Tage 2/33

Mirror symmetry for Calabi-Yau manifolds

Symplectic geometry (A)

 (X, J, ω, Ω) Calabi-Yau

Gromov-Witten invariants
Lagrangian submanifolds
Fukaya category

Complex geometry (B)

 $(X^{\vee},J^{\vee},\omega^{\vee},\Omega^{\vee})$ Calabi-Yau

Hodge theory Analytic cycles

Derived category of coherent sheaves

- Calabi-Yau: (X,J) complex manifold, ω compatible Kähler form $K_X = \Omega^{n,0} \simeq \mathcal{O}_X$, $\Omega \in \Omega^{n,0}(X)$ holomorphic volume form example: \mathbb{C}^n , J_0 , $\omega_0 = \frac{i}{2} \sum dz_j \wedge d\bar{z}_j$, $\Omega_0 = dz_1 \wedge \cdots \wedge dz_n$ (do not require $|\Omega|^2 \sim \omega^n$ or Ric = 0: "almost Calabi-Yau")
- symplectic data ω determines complex data J^{\vee}, Ω^{\vee} and vice-versa

How to construct a mirror?

The Strominger-Yau-Zaslow conjecture

SYZ conjecture

X, X^{\vee} are dual fibrations by special Lagrangian tori over a base carrying an integral affine structure.*

* special Lagrangian fibrations are hard to come by; singularities induce "instanton corrections" on the mirror; ...

(⇒ Joyce, Fukaya, Kontsevich-Soibelman, Gross-Siebert, ...)

The Strominger-Yau-Zaslow conjecture

SYZ conjecture

X, X^{\vee} are dual fibrations by special Lagrangian tori over a base carrying an integral affine structure.*

* special Lagrangian fibrations are hard to come by; singularities induce "instanton corrections" on the mirror; ...

(⇒ Joyce, Fukaya, Kontsevich-Soibelman, Gross-Siebert, ...)

SYZ from homological mirror symmetry

For each point $p \in X^{\vee}$, $\mathcal{O}_p \in D^b Coh(X^{\vee}) \longleftrightarrow \mathcal{L} \in \mathcal{F}(X)$.

$$HF(\mathcal{L},\mathcal{L}) \simeq Ext^*(\mathcal{O}_p,\mathcal{O}_p) \simeq H^*(T^n;\mathbb{C})$$

 \Rightarrow points of $X^{\vee} \stackrel{(?)}{\longleftrightarrow}$ Lagrangian tori in X (+ U(1) local system)

Landau-Ginzburg models

X Kähler $(c_1(X) \neq 0)$, D anticanonical divisor $\Rightarrow X \setminus D$ open Calabi-Yau. $\Rightarrow M = \text{open CY}^{\oplus} \text{mirror to } X \setminus D$. What about X?

Landau-Ginzburg models

```
X Kähler (c_1(X) \neq 0), D anticanonical divisor \Rightarrow X \setminus D open Calabi-Yau.

\Rightarrow M = \text{open CY mirror to } X \setminus D. What about X?
```

 $L \subset X \setminus D$ special Lagrangian bounds holomorphic discs in X \Rightarrow Floer homology is obstructed $(\partial^2 = \{m_0, \cdot\})$ and generically trivial.

Pirsa: 09050028 Page 7/

Landau-Ginzburg models

```
X Kähler (c_1(X) \neq 0), D anticanonical divisor \Rightarrow X \setminus D open Calabi-Yau. \Rightarrow M = \text{open CY mirror to } X \setminus D. What about X?
```

 $L \subset X \setminus D$ special Lagrangian bounds holomorphic discs in X \Rightarrow Floer homology is obstructed $(\partial^2 = \{m_0, \cdot\})$ and generically trivial.

The mirror of X is a Landau-Ginzburg model $W: M \to \mathbb{C}$ (M noncompact CY mirror to $X \setminus D$; W = superpotential, holomorphic)

The superpotential modifies interpretation of A and B models on M: e.g., Symplectic geometry of $X \Leftrightarrow$ complex geometry of singularities of W

Page 8/33

A rough conjecture (SYZ for $-K_X$ effective)

Conjecture

 (X, ω, J) compact Kähler manifold, $D \subset X$ anticanonical divisor, $\Omega \in \Omega^{n,0}(X \setminus D) \Rightarrow$ can construct a mirror as

- M = moduli space of special Lagrangian tori L ⊂ X \ D
 + flat U(1) connections on trivial bundle over L
- W: M → C counts holomorphic discs of Maslov index 2 in (X, L) (Fukaya-Oh-Ohta-Ono's m₀ obstruction in[©]Floer homology)
- the fiber of W is mirror to D.

A rough conjecture (SYZ for $-K_X$ effective)

Conjecture

 (X, ω, J) compact Kähler manifold, $D \subset X$ anticanonical divisor, $\Omega \in \Omega^{n,0}(X \setminus D) \Rightarrow$ can construct a mirror as

- M = moduli space of special Lagrangian tori L ⊂ X \ D
 + flat U(1) connections on trivial bundle over L
- W: M → C counts holomorphic discs of Maslov index 2 in (X, L) (Fukaya-Oh-Ohta-Ono's m₀ obstruction in Floer homology)
- the fiber of W is mirror to D.

Conjecture doesn't quite hold as stated, because:

- W presents wall-crossing discontinuities caused by Maslov index 0 discs ⇒ need "instanton corrections" to correct these discontinuities.
- According to Hori-Vafa, need to enlarge M by "renormalization".

Special Lagrangians

 (X, ω, J) compact Kähler manifold, $\dim_{\mathbb{C}} X = n$; $D = \sigma^{-1}(0) \in |K_X^{-1}|$. $\Omega = \sigma^{-1} \in \Omega^{n,0}(X \setminus D)$, $\psi = |\Omega|_g \in C^{\infty}(X \setminus D, \mathbb{R}_+)$.

 $L^n \subset X \setminus D$ is special Lagrangian if $\omega_{|L} = 0$ and $Im(\Omega)_{|L} = 0$.

Special Lagrangians

 (X, ω, J) compact Kähler manifold, $\dim_{\mathbb{C}} X = n$; $D = \sigma^{-1}(0) \in |K_X^{-1}|$. $\Omega = \sigma^{-1} \in \Omega^{n,0}(X \setminus D)$, $\psi = |\Omega|_g \in C^{\infty}(X \setminus D, \mathbb{R}_+)$.

 $L^n \subset X \setminus D$ is special Lagrangian if $\omega_{|L} = 0$ and $Im(\Omega)_{|L} = 0$.

Proposition (McLean, Joyce)

Special Lagrangian deformations = $\mathcal{H}^1_{\psi}(L)$ ($\simeq H^1(L,\mathbb{R})$), unobstructed.

 $\mathcal{H}^1_{\psi}(L) = \{\theta \in \Omega^1(L, \mathbb{R}) \mid d\theta = 0, \ d^*(\psi\theta) = 0\}$ " ψ -harmonic" 1-forms $v \in C^{\infty}(NL)$ is SLag iff $-\iota_v \omega = \theta$ and $\iota_v \operatorname{Im}(\Omega) = \psi * \theta$ are closed.

Special Lagrangians

 (X, ω, J) compact Kähler manifold, $\dim_{\mathbb{C}} X = n$; $D = \sigma^{-1}(0) \in |K_X^{-1}|$. $\Omega = \sigma^{-1} \in \Omega^{n,0}(X \setminus D)$, $\psi = |\Omega|_g \in C^{\infty}(X \setminus D, \mathbb{R}_+)$.

 $L^n \subset X \setminus D$ is special Lagrangian if $\omega_{|L} = 0$ and $Im(\Omega)_{|L} = 0$.

Proposition (McLean, Joyce)

Special Lagrangian deformations $=\mathcal{H}^1_{\psi}(L)~(\simeq H^1(L,\mathbb{R}))$, unobstructed.

 $\mathcal{H}^1_{\psi}(L) = \{\theta \in \Omega^1(L, \mathbb{R}) \mid d\theta = 0, \ d^*(\psi\theta) = 0\}$ " ψ -harmonic" 1-forms $v \in C^{\infty}(NL)$ is SLag iff $-\iota_v \omega = \theta$ and $\iota_v \operatorname{Im}(\Omega) = \psi * \theta$ are closed.

Example

X smooth toric variety with moment map $\phi: X \to \mathbb{R}^n$, $\Delta = \phi(X)$. $D = \phi^{-1}(\partial \Delta)$ toric divisor, $X \setminus D \simeq (\mathbb{C}^*)^n$, $\Omega = d \log x_1 \wedge \cdots \wedge d \log x_n$.

Toric fibers (T^n -orbits) are special Lagrangian.

Page 13/33

The geometry of the moduli space

Definition

 $M = \{(L, \nabla) \mid L \subset X \setminus D \text{ special Lag. torus, } \nabla \text{ flat } U(1) \text{ conn. on } \underline{\mathbb{C}} \to L\}.$

The geometry of the moduli space

Definition

 $M = \{(L, \nabla) \mid L \subset X \setminus D \text{ special Lag. torus, } \nabla \text{ flat } U(1) \text{ conn. on } \underline{\mathbb{C}} \to L\}.$

Proposition

- $T_{(L,\nabla)}M = \{(v,\alpha) \in C^{\infty}(NL) \oplus \Omega^{1}(L,\mathbb{R}) \mid -\iota_{v}\omega + i\alpha \in \mathcal{H}^{1}_{\psi}(L) \otimes \mathbb{C}\}.$
- Complex structure J^{\vee} on M; local holomorphic functions: given $\beta \in H_2(X, L)$, $z_{\beta} = \exp(-\int_{\beta} \omega) \operatorname{hol}_{\partial\beta}(\nabla) : M \to \mathbb{C}^*$.
- Compatible Kähler form $\omega^{\vee}((v_1,\alpha_1),(v_2,\alpha_2)) = \int_{L} \alpha_2 \wedge \iota_{v_1} \operatorname{Im} \Omega \alpha_1 \wedge \iota_{v_2} \operatorname{Im} \Omega$
- $\Omega^{\vee}((v_1,\alpha_1),\ldots,(v_n,\alpha_n))=\int_L(-\iota_{v_1}\omega+i\alpha_1)\wedge\cdots\wedge(-\iota_{v_n}\omega+i\alpha_n).$

The geometry of the moduli space

Definition

 $M = \{(L, \nabla) \mid L \subset X \setminus D \text{ special Lag. torus, } \nabla \text{ flat } U(1) \text{ conn. on } \underline{\mathbb{C}} \to L\}.$

Proposition

- $T_{(L,\nabla)}M = \{(v,\alpha) \in C^{\infty}(NL) \oplus \Omega^{1}(L,\mathbb{R}) \mid -\iota_{v}\omega + i\alpha \in \mathcal{H}^{1}_{\psi}(L) \otimes \mathbb{C}\}.$
- Complex structure J^{\vee} on M; local holomorphic functions: given $\beta \in H_2(X, L)$, $z_{\beta} = \exp(-\int_{\beta} \omega) \operatorname{hol}_{\partial\beta}(\nabla) : M \to \mathbb{C}^*$.
- Compatible Kähher form $\omega^{\vee}((v_1,\alpha_1),(v_2,\alpha_2)) = \int_I \alpha_2 \wedge \iota_{v_1} \operatorname{Im} \Omega \alpha_1 \wedge \iota_{v_2} \operatorname{Im} \Omega.$
- Holom. volume form $\Omega^{\vee}((v_1,\alpha_1),\ldots,(v_n,\alpha_n)) = \int_L (-\iota_{v_1}\omega + i\alpha_1) \wedge \cdots \wedge (-\iota_{v_n}\omega + i\alpha_n).$
- \Rightarrow Assuming ψ -harmonic 1-forms on L have no zeroes, X and M are dual special Lag. torus fibrations in a nbd. of L (the projection is $(L, \nabla) \underset{Pirsa: 09050028}{\mapsto} L$).

The superpotential

 $\beta \in \pi_2(X, L) \Rightarrow$ moduli space of holom. maps $u : (D^2, \partial D^2) \to (X, L)$ in class β , of virt. dim. $n - 3 + \mu(\beta)$, where $\mu(\beta) = 2\#(\beta \cap D)$ Maslov index.

Assumption

L does not bound any nonconstant Maslov index 0 holomorphic discs; Maslov index 2 discs are regular.

Then for $\mu(\beta) = 2$, can count holom. discs in class β whose boundary passes through a generic given point $p \in L \Rightarrow n_{\beta}(L) \in \mathbb{Z}$.

The superpotential

 $\beta \in \pi_2(X, L) \Rightarrow$ moduli space of holom. maps $u : (D^2, \partial D^2) \to (X, L)$ in class β , of virt. dim. $n - 3 + \mu(\beta)$, where $\mu(\beta) = 2\#(\beta \cap D)$ Maslov index.

Assumption

L does not bound any nonconstant Maslov index 0 holomorphic discs; Maslov index 2 discs are regular.

Then for $\mu(\beta) = 2$, can count holom. discs in class β whose boundary passes through a generic given point $p \in L \Rightarrow n_{\beta}(L) \in \mathbb{Z}$.

Definition

$$W(L, \nabla) = \sum_{\mu(\beta)=2} n_{\beta}(L) z_{\beta}(L, \nabla)$$
, where $z_{\beta} = \exp(-\int_{\beta} \omega) \operatorname{hol}_{\partial\beta}(\nabla)$.

By construction $W:M\to\mathbb{C}$ is holomorphic. (Convergence OK at least if X Fano)

Page 18/33

The toric case (see also Hori, Cho-Oh, FO³)

X smooth toric variety with moment map $\phi: X \to \mathbb{R}^n$, $\Delta = \phi(X)$. $D = \phi^{-1}(\partial \Delta)$ toric divisor, $X \setminus D \simeq (\mathbb{C}^*)^n$, $\Omega = d \log x_1 \wedge \cdots \wedge d \log x_n$.

- Toric fibers (T^n -orbits) are special Lagrangian.
- $M \approx (\text{domain in}) (\mathbb{C}^*)^n$.

37

The toric case (see also Hori, Cho-Oh, FO³)

X smooth toric variety with moment map $\phi: X \to \mathbb{R}^n$, $\Delta = \phi(X)$. $D = \phi^{-1}(\partial \Delta)$ toric divisor, $X \setminus D \simeq (\mathbb{C}^*)^n$, $\Omega = d \log x_1 \wedge \cdots \wedge d \log x_n$.

- Toric fibers (T^n -orbits) are special Lagrangian.
- $M \approx (\text{domain in}) (\mathbb{C}^*)^n$.
- There are no Maslov index 0 discs; one family of Maslov index 2 discs for each facet F of Δ . Primitive outward normal: $\nu(F) \in \mathbb{Z}^n$.
- $W = \sum_{F \text{ facet}} e^{-2\pi\alpha(F)} z^{\nu(F)}$ where eqn. of F is $\langle \nu(F), \phi \rangle = \alpha(F)$.

Example: $X = \mathbb{CP}^2$

$$L = S^1(r_1) \times S^1(r_2) \subset (\mathbb{C}^*)^2 \subset \mathbb{CP}^2$$

bounds 3 families of $\mu = 2$ discs in \mathbb{CP}^2
(two of which are $D(r_1) \times \{x_2\}$ and $\{x_1\} \times D(r_2)$)

$$\Rightarrow W = z_1 + z_2 + \frac{e^{-\Lambda}}{z_1 z_2} \quad (\Lambda = \int_{\mathbb{CP}^1} \omega)$$

Page 20/33

Maslov index 0 discs and wall-crossing

Bubbling of Maslov index 0 discs causes the disc count $n_{\beta}(L)$ to jump.

Typically, for $n \ge 3$ the disc count depends on $p \in L \ (\Rightarrow W \ \text{multivalued})$. For n = 2 the disc count is independent of $p \in L$ but jumps where L bounds a Maslov index0 disc $(\Rightarrow W \ \text{discontinuous})$.

Maslov index 0 discs and wall-crossing

Bubbling of Maslov index 0 discs causes the disc count $n_{\beta}(L)$ to jump.

Typically, for $n \ge 3$ the disc count depends on $p \in L$ ($\Rightarrow W$ multivalued). For n = 2 the disc count is independent of $p \in L$ but jumps where L bounds a Maslov index 0 disc ($\Rightarrow W$ discontinuous).

Proposition (Fukaya-Oh-Ohta-Ono $+\varepsilon$)

For n=2, crossing a wall in which L bounds a single Maslov index 0 disc in a class α modifies W by a holomorphic substitution of variables $z_{\beta} \mapsto z_{\beta} \ h(z_{\alpha})^{[\partial \beta] \cdot [\partial \alpha]} \ \forall \beta \in \pi_2(X, L)$, where $h(z_{\alpha}) = 1 + O(z_{\alpha}) \in \mathbb{C}[[z_{\alpha}]]$.

Maslov index 0 discs and wall-crossing

Bubbling of Maslov index 0 discs causes the disc count $n_{\beta}(L)$ to jump.

Typically, for $n \ge 3$ the disc count depends on $p \in L$ ($\Rightarrow W$ multivalued). For n = 2 the disc count is independent of $p \in L$ but jumps where L bounds a Maslov index 0 disc ($\Rightarrow W$ discontinuous).

Proposition (Fukaya-Oh-Ohta-Ono $+ \varepsilon$)

For n=2, crossing a wall in which L bounds a single Maslov index 0 disc in a class α modifies W by a holomorphic substitution of variables $z_{\beta} \mapsto z_{\beta} \ h(z_{\alpha})^{[\partial \beta] \cdot [\partial \alpha]} \ \forall \beta \in \pi_2(X, L)$, where $h(z_{\alpha}) = 1 + O(z_{\alpha}) \in \mathbb{C}[[z_{\alpha}]]$.

The mirror is obtained from M by gluing the various regions delimited by the walls according to these changes of variables (instanton corrections).

Pirsa: 09050028

Mirror symmetry for blow-ups

(Abouzaid-Auroux-Katzarkov, in progress)

Goal: construct mirror of $\hat{X}_Y = \text{blow-up of } X \text{ along a codimension 2}$ subvariety $Y \subset X \text{ (need } Y \subset D \in |-K_X|)$

Motivation: a mirror of \hat{X}_Y is almost as good as a mirror of Y.

- $D^bCoh(\hat{X}_Y) \simeq \langle D^bCoh(Y), D^bCoh(X) \rangle$ (semiorthogonal decomp.) (Bondal-Orlov)
- also expect $\mathcal{F}(\hat{X}_Y)$ related to $\mathcal{F}(Y)$ (esp. if $X = D \times \mathbb{C}$ and Y fiber of a pencil in D)

Simplification: assume (X, D) **toric** (but not Y).

Mirror symmetry for blow-ups

(Abouzaid-Auroux-Katzarkov, in progress)

Goal: construct mirror of $\hat{X}_Y = \text{blow-up of } X \text{ along a codimension 2}$ subvariety $Y \subset X \text{ (need } Y \subset D \in |-K_X|)$

Motivation: a mirror of \hat{X}_Y is almost as good as a mirror of Y.

- $D^bCoh(\hat{X}_Y) \simeq \langle D^bCoh(Y), D^bCoh(X) \rangle$ (semiorthogonal decomp.) (Bondal-Orlov)
- also expect $\mathcal{F}(\hat{X}_Y)$ related to $\mathcal{F}(Y)$ (esp. if $X = D \times \mathbb{C}$ and Y fiber of a pencil in D)

Simplification: assume (X, D) **toric** (but not Y).

Motivating example: what's the mirror of a genus 2 curve Σ ? Answer: blow up $(\mathbb{P}^1)^2 \times \mathbb{C}$ along $\Sigma \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \{0\}$, take mirror, restrict.

Page 25/33

Blowing up a point

Local model in dim. 2:

$$X = \mathbb{C}^* \times \mathbb{C}, \ D = \mathbb{C}^* \times \{0\}, \ \Omega = d \log x \wedge d \log y, \ \omega = \omega_0$$

 $\hat{X} = \text{blowup at } (1,0), \ \hat{D} = \text{proper transform}, \ \hat{\Omega} = \pi^* \Omega, \ \hat{\omega} = \hat{\omega}_{\epsilon} \ (\int_F \hat{\omega} = \epsilon)$

Pirsa: 09050028 Page 26/33

Blowing up a point

Local model in dim. 2:

 $X = \mathbb{C}^* \times \mathbb{C}, \ D = \mathbb{C}^* \times \{0\}, \ \Omega = d \log x \wedge d \log y, \ \omega = \omega_0$ $\hat{X} = \text{blowup at } (1,0), \ \hat{D} = \text{proper transform}, \ \hat{\Omega} = \pi^* \Omega, \ \hat{\omega} = \hat{\omega}_{\epsilon} \ (\int_F \hat{\omega} = \epsilon)$

 S^1 action $(y \mapsto e^{i\theta}y)$ lifts, fixed point set $\hat{D} \cup \{pt\}$. $\mu :=$ moment map. S^1 -invariant S.Lag. fibration on $\hat{X} \setminus \hat{D}$: $L_{t_1,t_2} = \{\log |\pi^*x| = t_1, \ \mu = t_2\}$.

sympl. area along x-axis

Pirsa: 09050028

Page 27/33

Blowing up a point (continued)

 $X = \mathbb{C}^* \times \mathbb{C}$, $D = \mathbb{C}^* \times \{0\}$, $\Omega = d \log x \wedge d \log y$, $\omega = \omega_0$ $\hat{X} = \text{blowup at } (1,0)$, $\hat{D} = \text{proper transform}$, $\hat{\Omega} = \pi^* \Omega$, $\hat{\omega} = \hat{\omega}_{\epsilon}$ ($\int_{\mathcal{E}} \hat{\omega} = \epsilon$) S^1 -invariant S.Lag. fibration on $\hat{X} \setminus \hat{D}$: $L_{t_1,t_2} = \{\log |\pi^* x| = t_1, \ \mu = t_2\}$.

Classical: uv = 1 for $|z| < e^{-\epsilon}$ (above \times); $uv = e^{\epsilon}z$ for $|z| > e^{-\epsilon}$ (below \times).

Blowing up a point (continued)

 $X = \mathbb{C}^* \times \mathbb{C}$, $D = \mathbb{C}^* \times \{0\}$, $\Omega = d \log x \wedge d \log y$, $\omega = \omega_0$ $\hat{X} = \text{blowup at } (1,0)$, $\hat{D} = \text{proper transform}$, $\hat{\Omega} = \pi^* \Omega$, $\hat{\omega} = \hat{\omega}_{\epsilon}$ ($\int_E \hat{\omega} = \epsilon$) S^1 -invariant S.Lag. fibration on $\hat{X} \setminus \hat{D}$: $L_{t_1,t_2} = \{\log |\pi^* x| = t_1, \ \mu = t_2\}$.

Classical: uv = 1 for $|z| < e^{-\epsilon}$ (above $); uv = e^{\epsilon}z$ for $|z| > e^{-\epsilon}$ (below \times).

Corrected: $\{(u, v, z) \in \mathbb{C}^2 \times \mathbb{C}^*, uv = 1 + e^{\epsilon}z\}$ Superpotential: W = z

$$(\overrightarrow{P}_{irsa}; 09050028)$$
 wup of $\mathbb{P}^1 \times \mathbb{P}^1$: $W = z + e^{-A}z^{-1} + u + e^{-B}v$

Blowing up a curve (A.-A.-K., in progress)

$$X = (\mathbb{CP}^1)^3$$
, $D = \bigcup$ toric strata, $\Sigma \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \{0\} \subset D \subset X$. $\hat{X} = \text{blowup along } \Sigma$, $\hat{D} = \text{proper transform, } \hat{\Omega} = \pi^*\Omega$, $\int_{\mathcal{F}} \hat{\omega} = \epsilon$.

- S^1 -action (3rd factor) lifts; new fixed point stratum $\simeq \Sigma$ at $\mu = \epsilon$. All reduced spaces $\simeq \mathbb{CP}^1 \times \mathbb{CP}^1$, carry (5.??) Lag. torus fibrations.
- This gives a Lagr. T^3 fibration on $\hat{X} \setminus \hat{D}$, with discriminant locus \simeq amoeba of Σ .

Blowing up a curve (continued)

Walls propagate "vertically" from the amoeba. Chambers → components in its complement.

Need: instanton-corrected gluing across walls.

Work out local models (and glue them together)

Sm

Pirsa: 09050028 Page 31/33

Blowing up a curve (continued)

Walls propagate "vertically" from the amoeba. Chambers → components in its complement.

Need: instanton-corrected gluing across walls.

Work out local models (and glue them together)

Mirror: $\{xyu = 1 + e^{\epsilon}z\}$

$$\{z = -e^{-\epsilon}\}$$

$$= \{xyu = 0\}$$
three \mathbb{C}^2 's glued along coord. axes

Local mirror: $\{(x, y, u, z) \in \mathbb{C}^3 \times \mathbb{C}^*, xyu = 1 + e^{\epsilon}z\}$

Superpotential: W = z + other terms

Gluing pieces...

For open curve in $(\mathbb{C}^*)^2 \times \mathbb{C}$, superpotential W = z \Rightarrow singular fiber = union of toric surfaces glued along \mathbb{P}^1 's and \mathbb{C} 's (combinatorics governed by tropicalization of Σ) crit. locus of W

