Title: Agent - Based Computational Modeling and Macroeconomics

Date: May 02, 2009 01:00 PM

URL: http://pirsa.org/09050021

Abstract: TBA

Pirsa: 09050021 Page 1/32

Agent-Based Computational Modeling and Macroeconomics

Perimeter Institute Conference, May 1-4, 2009

The Economic Crisis and Its Implications for the Science of Economics

Presenter:

Leigh Tesfatsion

Prof. of Econ, Math, and Electrical & Comp. Eng.

Iowa State University

Ames, Iowa 50011-1070

http://www.econ.iastate.edu/tesfatsi/
tesfatsi@iastate.edu

Presentation Outline

- Complexity of real-world macroeconomic systems
- What is Agent-based Computational Economics?
- Illustration: From Walrasian general equilibrium to an ACE Trading World
- ACE test beds for the systematic experimental study of macroeconomic systems

Complexity of Real-World Macroeconomic Systems

- Macro regularities arise from local interactions among micro entities (producers, consumers, banks, public agencies,...).
- ☐ Interactions are channeled and constrained by current
 - *Structural conditions (physical/biological limits, resource distribution, infrastructure, technology, weather patterns,...);
 - *Institutional arrangements (legal system, credit system, business practices, regulations, social norms,...);
 - Behavioral dispositions (risk aversion, responsiveness to incentives, learning capabilities, foresight, strategic planning, time-inconsistent preferences, irrational exuberance,...).
- Structure, institutions, and behavior can in turn evolve.

Pirea: 0005002

Can ACE Help?

- Agent-Based Computational Economics (ACE)
 is designed to handle this level of complexity.
- ACE = Computational study of economic processes as dynamical systems of interacting agents.
- Goal: Development of empirically-grounded dynamical economic theories in which equilibrium is a possible outcome rather than a constraint imposed a priori.

Complexity of Real-World Macroeconomic Systems

- Macro regularities arise from local interactions among micro entities (producers, consumers, banks, public agencies,...).
- ☐ Interactions are channeled and constrained by current
 - *Structural conditions (physical/biological limits, resource distribution, infrastructure, technology, weather patterns,...);
 - *Institutional arrangements (legal system, credit system, business practices, regulations, social norms,...);
 - Behavioral dispositions (risk aversion, responsiveness to incentives, learning capabilities, foresight, strategic planning, time-inconsistent preferences, irrational exuberance,...).
- Structure, institutions, and behavior can in turn evolve.

Pirea: 0005002

Can ACE Help?

- Agent-Based Computational Economics (ACE)
 is designed to handle this level of complexity.
- ACE = Computational study of economic processes as dynamical systems of interacting agents.
- Goal: Development of empirically-grounded dynamical economic theories in which equilibrium is a possible outcome rather than a constraint imposed a priori.

ACE Culture-Dish Analogy

- ACE modeler constructs a virtual economic world populated by various agent types.
- Modeler sets initial agent attributes.
- Modeler then steps back to observe how the world develops in real (CPU) time without further external intervention (no imposed market clearing, no assumed perfect foresight,...).
- World events driven by agent interactions.

ACE Agent Types

Agent = Encapsulated bundle of data and methods acting within a computationally constructed world.

- Agents can represent:
 - Individuals (consumers, entrepreneurs,...)
 - Social groupings (families, communities,...)
 - Biological entities (crops, livestock, forests,...)
 - Physical entities (roads, weather, landscapes,...)

ACE Agent Types...

Cognitive agents are capable (in various degrees) of

- Behavioral adaptation;
- Goal-directed learning;
- Social communication (talking with each other!);
- Endogenous formation of interaction networks;
- Autonomy (self-activation and self-determination based on private internal data and methods).

Importance of Agent Encapsulation

- Real-world economies consist of distributed entities with limited info & computational capabilities.
- □ ACE forces adherence to this constraint.
 - An ACE model is a collection of data and methods encapsulated into separate bundles ("agents").
- Procedures encapsulated in the methods of particular agents can only be implemented using the particular resources (data, money, CPU time,
 Prisa: 09050@Peasoning powers, ...) available to these agents.

Four Main Strands of ACE Research

- Empirical Understanding (possible explanations for empirical regularities)
- Normative Understanding (market design, policy selection,...)
- Methodological Advancement (representation, visualization, empirical validation,...)
- □ Theory Generation/Qualitative Insight (self-organization of decentralized market economies,...)

ACE and Theory Generation

Illustrative Issue: What are the performance capabilities of decentralized market economies?

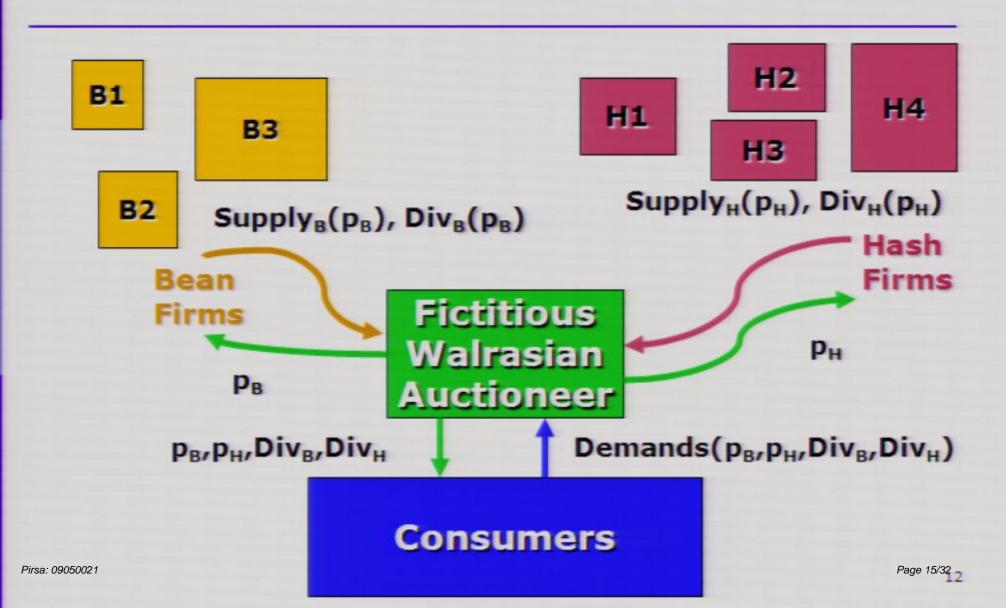
(Adam Smith, F. von Hayek, J.M.Keynes, J. Schumpeter, ...)

ACE Approach:

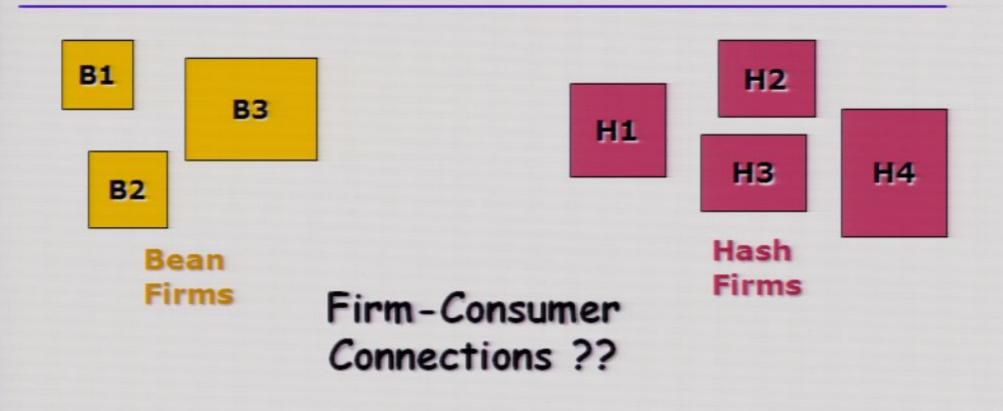
- Construct an agent-based world qualitatively capturing salient aspects of actual decentralized market economies.
- Systematically vary key treatment factors (learning capabilities, size distribution of firms,...).
- For each treatment, let the world evolve for multiple runs and observe the degree of coordination that results.

Pirea: 00050021

Illustration: From Walrasian General Equilibrium to an ACE Trading World


Starting Point:

Standard Walrasian General Equilibrium Economy


Exercise:

- Remove all imposed equilibrium conditions (e.g., market clearing, correct expectations,...).
- Introduce minimal agent-driven production, pricing, and trade processes needed to re-establish sustained circular flow among firms and consumers.
- Analyze the resulting economy to see if/when it is able to attain some form of equilibrium state over time.

Start from a Standard Walrasian GE Economy (Price-Taking Firms & Consumers, Auctioneer, ...)

Pluck Out the Fictitious Auctioneer!

Consumers

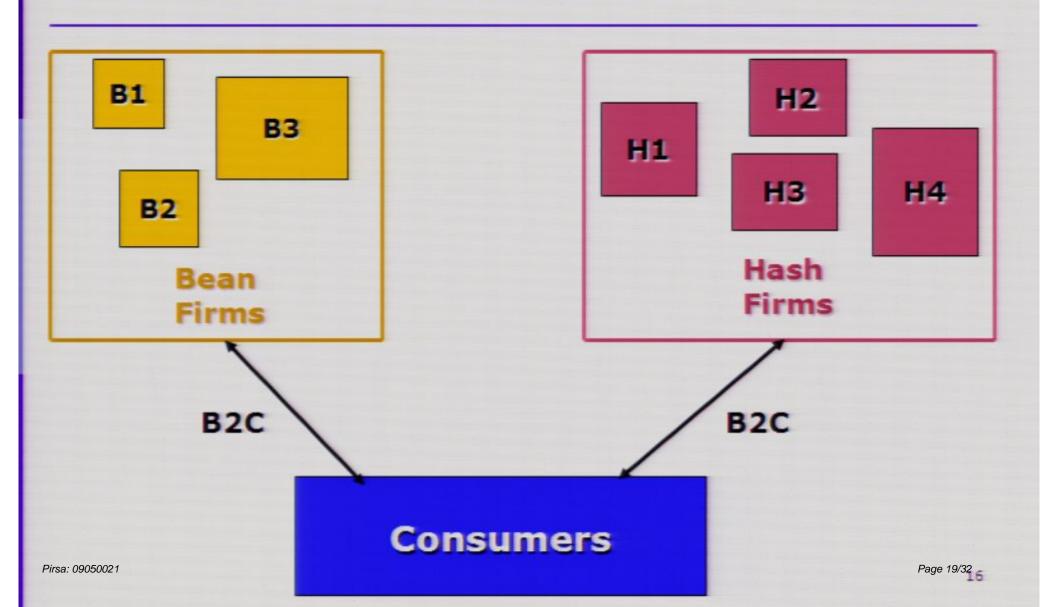
How to Construct a Self-Sustaining Economy without the Fictitious Walrasian Auctioneer?

Attention must now shift FROM firms & consumers who

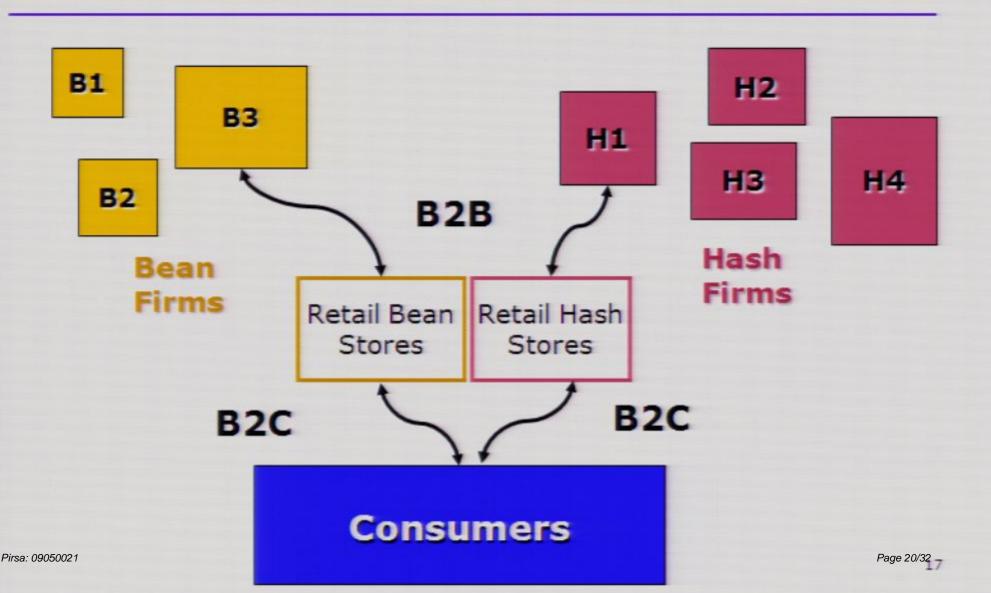
- maximize profits and utility in social isolation;
- condition decisions on publicly given -- or correctly expected -- equilibrium (market clearing) prices,

TO the trade interaction patterns among profit-seeking firms and utility-seeking consumers who

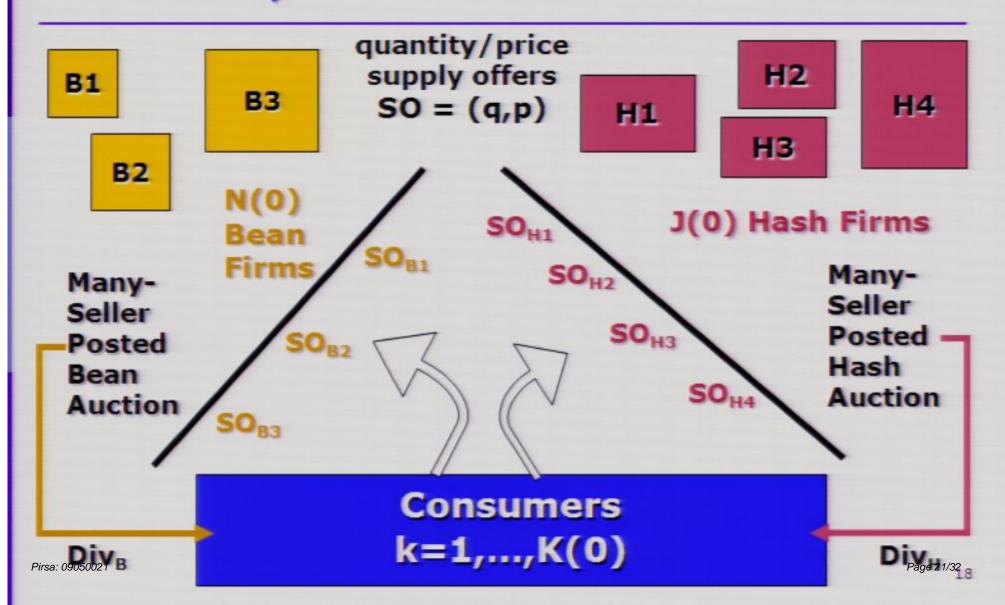
- recognize that trade is essential for survival as well as for prosperity;
- have individualized endowments and good-for-good "reservation prices"--i.e., marginal rates of (technical) substitution--that constrain their trades.


Construction of a Self-Sustaining Economy...

In particular, careful attention must be paid to:


- Market Organization
 - Who is able to trade with whom, and how often?
 - Under what types of rules and regulations does trading take place?
 - Bilateral trade?
 - Trade mediated by brokers or dealers?
 - Seller or buyer one-sided posted auctions?
 - Double auctions?

Ex.1: Bilateral Trade


(Business-To-Consumer = B2C)

Ex.2: Store-Mediated Trade (Producers → Retail Stores → Consumers)

Example 3: Trade Through Many-Seller Posted Auctions

Construction of a Self-Sustaining Economy...

Careful attention must also be paid to:

Market-making activities

- Seller price/quantity offers?
- Buyer price/quantity bids?
- Seller-buyer matching?
- Price determination from seller/buyer interactions?

What happens when things go wrong

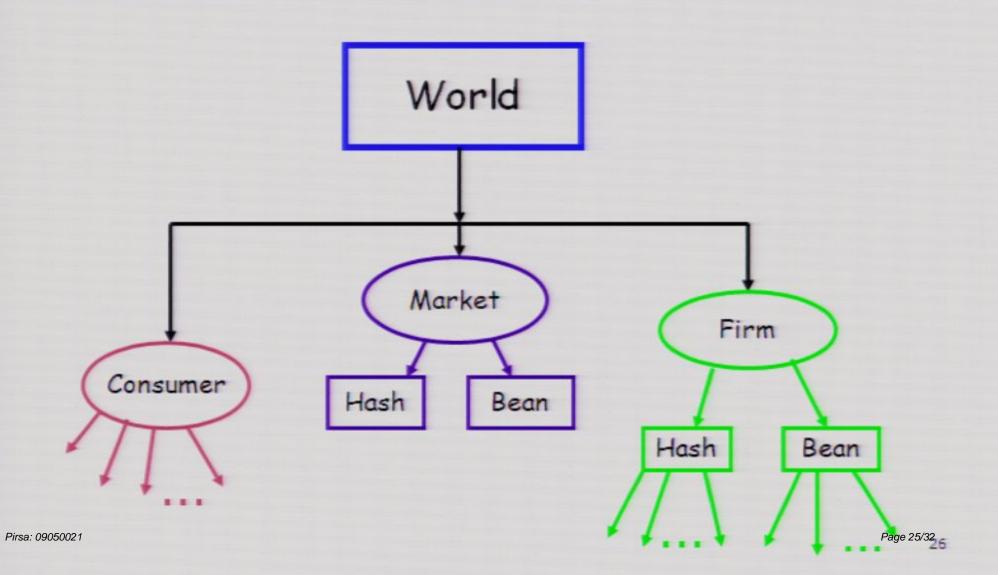
- Excess demand (inventory run down or stock-outs)
- Excess supply (inventory pile-up or waste)
- Insolvency (firm negative net worth)
- Starvation (consumer subsistence needs not met)

Pirsa: 09050021

Page 22/32

Complex Set of Market Processes Routinely Engaged in By Real-World Traders

- Terms of Trade: Set production and price levels
- Seller-Buyer Matching:
 - Identify potential suppliers/customers
 - Compare/evaluate opportunities
 - Make demand bids/supply offers
 - · Select specific suppliers/customers
 - Negotiate supplier/customer contracts
- Trade: Transactions carried out (or contracts broken)
- Settlement: Payments carried out (or default occurs)
- Learning: Strategy revisions, exit/entry decisions
- Management: Long-term supplier/customer relations


Pirsa: 09050021

Page 23/32

Dynamic Activity Flow for Firms Over Time Periods T≥1

- Each firm f starts out with positive net worth NW₄(0) and plant production capacity Cap₄(0).
- Firm f's sunk cost SC_f(T) for T≥1 is proportional to its plant production capacity, Cap_f(T-1).
- At beginning of each T≥1, firm f selects a supply
 offer = (production level, unit price).
- At end of T ≥ 1, firm f is solvent if it has positive net worth: NW_f(T) = [Profits_f(T) + ValueCap_f(T)] > 0
- If solvent, firm f allocates its profits (+ or -) between retained earnings, dividends, and/or capacity purchase/sale; otherwise it exits world, Page 24/32, 3

ACE H&B Trading World: Agent Hierarchy

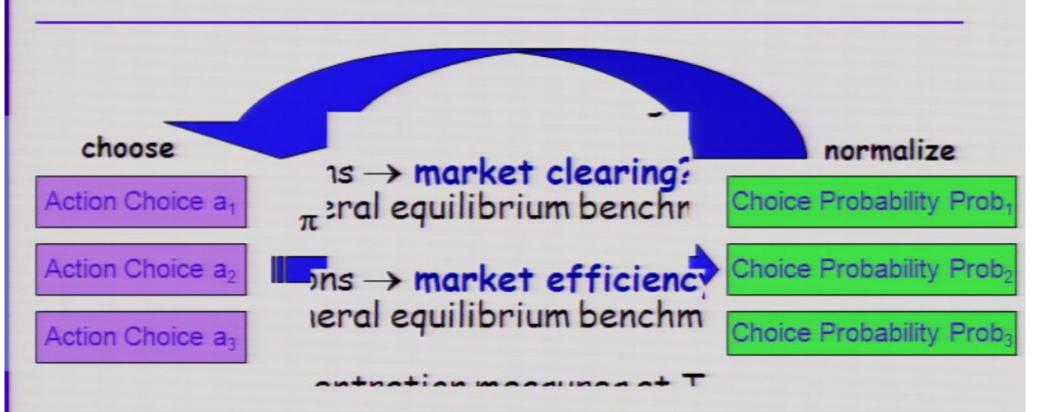
Market Agent (Institutional)

Pubublic Methods

```
// ptWorldEventSchedule(clock time);
getWorldProtocols (collusion, insolvency);
PretMarketProtocols (posting, matching, trade, settlement Prethods for receiving data;
Methods for retrieving Firm data;
Methods for retrieving Firm data;
```

rate Access:

Priprivate Methods

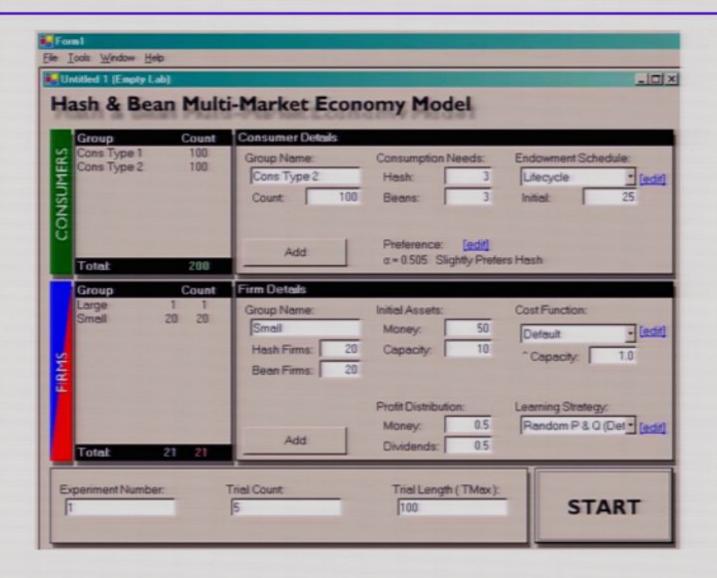

```
//Methods for getting, storing, processing, & sending data;
Methods for calculating expected & actual profit outcomes
// Methods for supply offer selection, profit allocation...;
Methods for updating my methods (PLASTICITY);
Private Data
```

Data about me (history, capacity, cost function, net worth Data about external world (rivals' supply offers. ...):

Pirea: 00050021

Firm & Consumer Learning?

Illustration: Stochastic Reinforcement Learning

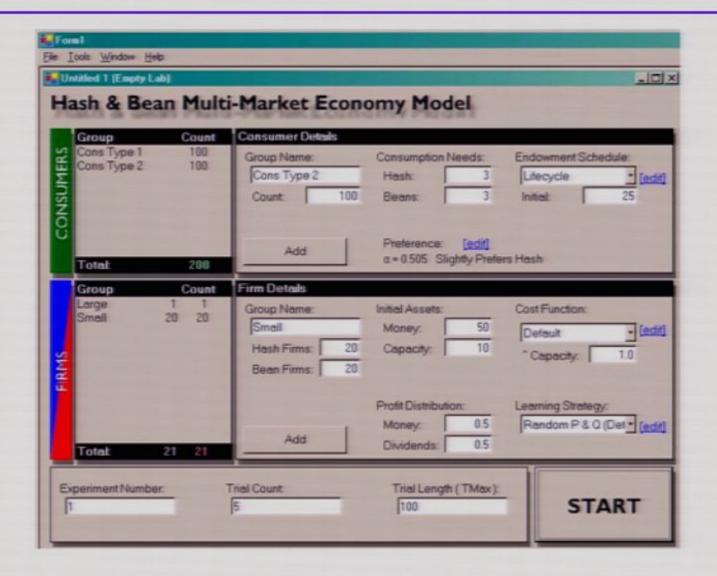


Action choice a' leads to earnings/utility π', followed by updating of action choice propensities q based on this reward, followed by normalization of these Pirsa: 0905002 propensities into action choice probabilities Probasilities

Interesting Issues for Exploration

- Initial conditions → carrying capacity? (Survival of firms/consumers in long run)
- Initial conditions → market clearing? (Walrasian general equilibrium benchmark)
- Initial conditions → market efficiency? (Walrasian general equilibrium benchmark)
- Standard concentration measures at T=1 → good predictors of long-run market power?
- Importance of learning vs. market structure for market performance? (Gode/Sunder, JPE, 1993)

ACE H&B Trading World as a Test Bed? (Cook & Tesfatsion, 2009)


Recommended Tasks

- Develop ACE test beds that permit systematic study of macroeconomic systems.
 - Test beds can be tailored to specific issues (agent scale, agent taxonomy, agent plasticity, ...).
 - Test beds should be open source to permit replication.
 - Findings should be replicated using multiple software & hardware platforms (model verification).
- Evaluate test-bed generated theories against actual data to the fullest extent possible. Pirsa: 09050021 mpirical validation).

Firm Agent (Cognitive)

```
Public Access:
  // Public Methods
   getWorldEventSchedule(clock time);
   getWorldProtocols (collusion, insolvency);
   getMarketProtocols (posting, matching, trade, settlement);
   Methods for receiving data;
   Methods for retrieving Firm data;
 Private Access:
 // Private Methods
   Methods for getting, storing, processing, & sending data;
   Methods for calculating expected & actual profit outcomes;
   Methods for supply offer selection, profit allocation...;
   Methods for updating my methods (PLASTICITY);
 // Private Data
   Data about me (history, capacity, cost function, net worth,...);
   Data about external world (rivals' supply offers, ...);
Address book (communication links);
```

ACE H&B Trading World as a Test Bed? (Cook & Tesfatsion, 2009)

