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Abstract: Researchersin quantum foundations claim (D'Ariano, Fuchs, ...):
Quantum = probability theory + x

and hence:
X = Quantum - probability theory

Guided by the metaphorical analogy:
probability theory / x = flesh / bones

we introduce a notion of quantum measurement within x, which, when flesing it with Hilbert spaces, provides orthodox quantum mechanical
probability calculus.
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How much QM can we recover without a priori as-
suming instrumentalist concepts such as measure-

ment and prt}sahilit}' but just ‘compoundness’?
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Many say (D" Anano, Fuchs, Hardy (?). Spekkens (?)...):
quantum = probability theory + r

and hence:
r = quantum — probability theory

Guided by the metaphorical analogy:

* flesh  probability
bones X

We start from r, (1) extract (the skeleton of) classi-
cality from it, (ii) extract probability from it, (1i1) ex-
tract quantum measurements from it, and (iv) describe
quantum-classical interaction within it. Flesing it with
FHilb yields QM probabilistic calculus.
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Many say (D’ Anano. Fuchs, Hardy (?). Spekkens (?)...):
quantum = probability theory +

and hence:
r = quantum — probability theory

Guided by the metaphorical analogy:

* flesh  probability
bones X

We start from ., (1) extract (the skeleton of) classi-
cality from it, (ii) extract probability from it, (iii) ex-
tract quantum measurements from it, and (iv) describe
quantum-classical interaction within it. Flesing it with
FHilb yields QM probabilistic calculus.
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Is there a conceptual picture behind this game?

A
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Classicizing quantumness
Somewhere out there, in ontic reality, is a world.
That world is called the "‘quantum universe .

We would like to probe that world.

This requires ¥lassical interfaces’.
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Classicizing quantumness
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Somewhere out there, in ontic reality, is a world.
That world is called the "quantum universe’.
We would like to probe that world.

This requires “*lassical interfaces’.

We refer to “identifiable parts™ of it as systems,
and to their “identifiable changes™ as processes.
To joint parts and processes we refer by

and to consecutive processes by £

ould erther think of this as structure of the intertace or as structure ol

Tue 4:09:48 p
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Our language = system, process, -,
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Classicizing quantumness
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Somewhere out there, in ontic reality, is a world.
That world is called the “quantum universe'.
We would like to probe that world.

This requires “lassical interfaces’.

We refer to “identifiable parts™ of it as systems,
and to their "identifiable changes™ as processes.
To joint parts and processes we refer by

and to consecutive processes by s

Ud erther think of thes as structure of the mtertace or as structure ol
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Our language - — system, process, -,
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Our language - — system, process, -,

_ k
What does such a rigid stance buy us?
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Why does a tiger have stripes and a lion doesn’t?
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Why does a tiger have stripes and a lion doesn’t?

prey - predator - environment

hunt

dead prey = eating predator
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States and effects for systems, and resulting numbers:

[ —A =% A—I = , | —1 =
h I
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Processes and their compositions:

1
f=0 4 = gof = T [Rg = 14
| ; I B B

States and effects for systems, and resulting numbers:

1 -A =9 e ==
* |

Upside-down flipping 1.e. adjoints:

- | I
pics: ; r

| I
cats: A - 5 - A

FHilb: linear map its adjoint
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CLASSICAL INTERFACES

Y




An classical interface 1s:

such that:
l. = 1s a unit for o :

— 5 .
.0 1S coassoclative .

2

(d

.0 1S cocommutative :

b

. 0 1S isometry .

.0 1s Frobenius.

Lh
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In FHilb we can encode all ONBs as
d: H — HRH - |1) — |it, c:H—-C:|i)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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An classical interface 1s:

such that:

l. = 1s a unit for o :

19

J 1S coassociative :

s

.0 1S cocommutative

oo

J 1S isometry

.0 1s Frobenius.

Lh
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A classical interface 1s:

invariant under flipping and swapping, and such that:

III .I
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n.me&e N
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An classical interface 1s:

such that:

l. = 1s a unit for o :

2

. 0 1S coassociative :

(J

. 0 1S cocommutative °

B

. 0 1S isometry :

.0 1s Frobenius.

L
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In FHilb we can encode all ONBs as
d0: H — HKRXH = |2) — |it c:H—-C:li)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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An classical interface 1s:

such that:

l. = 1s a unit for o :

2

. 0 1S coassociative :

(s

.0 1S cocommutative

b

. 0 1S isometry :

.0 1s Frobenius.

L
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In FHilb we can encode all ONBs as
0: H — HRH :: |2) — |i c:H—-C:hi)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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An classical interface 1s:

such that:

l. = 1s a unit for o :

12

J 1S coassociative :

sJ

.0 1S cocommutative -

e

Jd is isometry -

.0 1s Frobenius.

Lh
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In FHilb we can encode all ONBs as
d0: H— HXH :: |1) — |i1) c:H—-C:|i)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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In FHilb we can encode all ONBs as
0: H — HXXIH = |1) — |it c: H—-C:li)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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Processes and their compositions:

f=u 1y = gof = 1T [f®9 = i [e

States and effects for systems, and resulting numbers:

l -A = % A—1= [ —I =
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Why does a tiger have stripes and a lion doesn’t?

prey - predator - environment
hunt

dead prey  eating predator
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Processes and their compositions:

1
f=B e = gof = F Q=B
| I | I

States and effects for systems, and resulting numbers:

l -A = 4§ A—1 = 4, | —1I =

|
Upside-down flipping 1.e. adjoints:
_ ! [
pics: : .
I I
cats: A -5 B - A

FHilb: linear map its adjoint
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! l
pics: , N [—\J
| I

eats: | A -B | *=A : - B
FHilb: linear map its conjugate
_ | [
pics: ‘ Fl = (-\ I
| I
cats: -B | B e = - A
FHilb: linear map i1ts transposed

- o | e
-, . | . e, -
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MEASUREMENT — NO-SIGNALING
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In FHilb we can encode all ONBs as
0: H— HQH :: |2) — |iz] c:H—-C:)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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A classical interface 1s:

iri
o

invariant under flipping and swapping, and such that:

n.meN

/
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Processes and their compositions:

|
f =10 Ia = gof = T [f®g =
I

Tue 4:32:25p

States and effects for systems, and resulting numbers:

1 -A =N =" =

|
Upside-down flipping 1.e. adjoints:
. | |
pics: f '
I I
cats: A -8B B - A
FHilb: linear map 1ts adjoint
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An classical interface 1s:

such that:

l. = 1s a unit for o :

2

. 0 1S coassociative :

s

.0 1S cocommutative

b

. 0 1S isometry .

.0 1s Frobenius.

Lh
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A classical interface 1s:

n.meN 3

/

I'rl Iri
-y -y
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An classical interface 1s:

such that:

l. = 1s a unit for ¢ :

2

. 0 1S coassociative :

(sd

.0 1S cocommutative

B

. 0 1S isometry -

.0 1s Frobenius.

Ln
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Processes and their compositions:

|
f=m 14 = gof = 1T [f®9 = 1A
I I I 3l

States and effects for systems, and resulting numbers:

1 i =N = =g

I
Upside-down flipping 1.e. adjoints:
: | |
pics: f r
I I
cats: A -5 | B - A

FHilb: linear map 1ts adjoint
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An classical interface 1s:

such that:

l. = 1s a unit for o :

(R

. 0 1S coassociative :

s

.0 1S cocommutative

b

. 0 1S isometry .

.0 1s Frobenius.

Ln
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A classical interface 1s:

i
.

n.meeN 3

/

invariant under flipping and swapping, and such that:

I
.
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In FHilb we can encode all ONBs as
0: H — HRH - |t) — |it, c: H—-=C:li)—1.

Thm. Interfaces (0, =) in FHilb exactly correspond
with orthonormal bases on the underlying Hilbert space.
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A classical interface 1s:

il
T

n.m©&N

/

rr Iri
- -
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A classical interface 1s:

invariant under flipping and swapping, and such that:

Iri

for instances 05 = \(g/ and 0) = ~*\.
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A classical interface 1s:

rll.
-
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invariant under flipping and swapping, and such that:

rrl I’

for instances 05 = \(g/ and o) = ~*\.
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An classical interface 1s:

such that:

l. = 1s a unit for o :

2

. 0 1S coassociative :

(sd

.0 1S cocommutative

o

Jd is isometry :

.0 1s Frobenius.

Ln
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A classical interface 1s:

oy
A

M

n.m ¢

/
invariant under flipping and swapping, and such that:

Il I’
-

for instances 05 = \(g/ and o) = ~*N\.
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A classical interface 1s:

(I
..

n.m©&N

/

mvariant under flipping and swapping, and such that:

I
.
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An classical interface 1s:

such that:

l. = 1s a unit for o :
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A classical interface 1s:

frl
o

n.me&eN

/

invariant under flipping and swapping, and such that:

rri
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An classical interface 1s:
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A classical interface 1s:
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invariant under flipping and swapping, and such that:
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An classical interface 1s:

such that:

l. = 1s a unit for o :
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A classical interface 1s:

frl
.

n.m©&N )

/
invariant under flipping and swapping. and such that:

..‘ II .I |I I’ "
o -
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A classical interface 1s:

invariant under flipping and swapping, and such that:

I I

for instances 05 = \(g/ and o) = ~*\.
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FHilb: linear map its conjugate
, | |
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MEASUREMENT — NO-SIGNALING
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Quantum measurement:

M: A—-XRQA
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Quantum measurement:

M: A—-XRA

— von Neumann projection postulate.
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Quantum measurement:

Minimal requirements for reasonable notion of measurement
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Quantum measurement:

Asserts no-signaling
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Thm. In FHilb the above rules yield exactly all pro-
jector spectra arising from self-adjoint operators.

proof.
Projection postulate =
idempotence Pe—P,
mutual orthogonality PioPiu =10
No signaling =
Completeness of spectrum 2 P=h

Minimal requirement II =
Orthogonality of projectors Pj_ = P,
PROJECTOR
SPECTRUM

Pirsa: 09050010 Page 63/108




= 4 =E =1(100% Tue4:51:13p

Quantum measurement:

Asserts no-siegnaling
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Thm. In FHilb the above rules yield exactly all pro-
jector spectra arising from self-adjoint operators.

proof.

Projection postulate =
idempotence P — P,
mutual orthogonality o —4

No signaling =
Completeness of spectrum 2 BE=1y
Minimal requirement II =
Orthogonality of projectors =P
PROJECTOR
SPECTRUM

Pirsa: 09050010 Page 65/108




= 4 =E (®1(100% Tue 4:51:58p

Quantum measurement:

Asserts no-signaling
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Thm. In FHilb the above rules yield exactly all pro-
jector spectra arising from self-adjoint operators.

proof.

Projection postulate =
idempotence =P,
mutual orthogonality s 0 Fage =M

No signaling =
Completeness of spectrum > P:=1y
Minimal requirement II =
Orthogonality of projectors pr—F
PROJECTOR
SPECTRUM
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Canonical observable :=

. -
-

-
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Quantum measurement:

Minimal requirements for reasonable notion of measurement
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Canonical observable := Copying
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Canonical observable := Copying

1
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Canonical observable :=

=
-

-
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Canonical observable := Copying
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Canonical observable :=

-
-

-
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Canonical observable := Copying

) I
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Quantum measurement:

Asserts no-signaling
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Quantum measurement:

M:A—-XQA

= von Neumann projection postulate.
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Quantum measurement:

Asserts no-signaling
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EXPOSING CLASSICAL VS QUANTUM
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How much QM can we recover without a prior
suming instrumentalist concepts such as meas |
ment and probability but just ‘compoundness’
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An classical interface 1s:

such that:

l. = 1s a unit for o :
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A classical interface 1s:
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An classical interface 1s:

such that:

l. = 1s a unit for o :
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An classical interface 1s:

such that:

1. = 1s a unit for o :
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How much QM can we recover without a priori as-
suming instrumentalist concepts such as measure-

ment and probability but just ‘compoundness’?
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