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(-p SZ/CMB interferometry

-

Interferometers have big advantages for CMB/SZ:
* Reject time-varving atmospheric power
* No scan-svnchronous signals — no scan!

* Natural modulation of signal (“fringe rate”) — "lock-n’
detection of sky

* Easv to scale to change resolution

» Natural measurement of polarization:
EE*E2 — K &5V
Rl *R2=T-iV
LI *R2Z—Q+0
Rl *1.2=Q—-iU
* You actuallv get thermal noise level 1n practice. ..

Problem: correlator scales as NV, ,” — generally more
complicated. ..




(.p CMB interferometers through the ages =
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‘Proper’ interferometry

Cleanness of interferometrv relies on various features. ..
» Spatial temporal filtering of atmosphere
—No response to atm total power fluctuations
—Correlated atm emission modulated by wind (eg Lay & Halverson 2000)
Downconversion at antenna
—Enables phase switching of LO — PSD post-correlation
—Correlation recerver msensitive to amplifier 1 7/ noise (Ryle 1957)
Gain before splitting of signal to basclines

— Arbitrarv number of basclines possible without loss of sensitivity (cf optical
(bolometric) interferometery)

Tracking antennas
—Requires path compensator

—Path inserted in IF grves natural fringe rate

Rirco- 00040060
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Future SZ interferometer?

* Follow up surveyv clusters (100s? 1000s7?)

* Resolution to see structure ( gastrophysics essential for cosmology. and interesting
anvway...) so long(ish) baselines (30 arcsec ~ 6ki)

Low resolution to get total ﬂu}]gs so short(ish) baselines (30 arcomn —~ 100 2 )

S(0)= J ATdQ ~D,? ) kI dlI”

Frequency coverage to allow

—Foregrounds removal (radio sources. IR sources)

—Kinetic SZ

—7_ from relativistic effect

Need ~30 to ~250 GHz (Kknox. Holder & Church 2004)
Bandwidth: full atmospheric wavegmde windows ie up to ~40 GHz
Frequencyv resolution

— Av v ~ resolution FOV required anvway for imaging

—Improved spectral mapping cg around null

—Line emission?

Oxford Astrophysics




(-p Front end technology

* Frequencv range 30-250 GHz spans
technology range

« HEMTs are getting better:

—Best InP MIC (discrete transistor) ~
025K/GHz =5 X hv/k

—Projected 3 X hv/k in MMIC
(integrated) 35 nm process

—Eg 15K at 100 GHz. 40K at 250 GHz
SIS mixers at 100 GHz and above:
—2 X hv/k possible with conversion gain

—HEMT amplifiers for IF at v ./(3-10)

Oxford Astrophysics
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Correlator technology

* Need many 10s of GHz BW for competitive sensitivity
* Digital?
3 Gs/s 8b ADCs available at ~$2000 a go.

—Current FPGAs deliver ~350 Gop/s for ~$2000 and consume ~100W
(eg ROACH board with Vutex XC35VSX95T)

—100 baselines x 40 GHz x 32ch needs ~1500 FPGAs - $3M and 150 kW
—Custom devices ~10x cheaper/less power but big NRE

—Moore’s law will rescue vou eventuallyv. .

Analogue?

—20 GHz multiplier chips possible for ~$10 each m bulk. ~100 mW
—100 baselines x 40 GHz x 32ch needs ~12.000 chips - $120k. 1 2 kW

Analogue looks competitive for the next decade at least. ..




GUBBINS
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Q= GUBBINS - Aims

Aims:-

* Prototvpe mm-wave heterodvne interferometer
—Low to medium spectral and spatial resolution
—High brightness sensitivity

* Technologv demonstrator

* Funded bv Roval Society's Paul Instrument Fund

* Builds on technologyv development projects at Oxford

Astronomical Observations:-

* Observe from Chajnantor Observatorv (CBI/QUIET site). possibly
mitial observations from Tenerife

* Measure Sunveav-Zeldovich effect for few brightest galaxy clusters in
southemn skv

* Other on skv tests of interferometer — atmosphere. planets etc.

Oxford Astrophysics



GUBBINS - Specifications

220-GHz Ultra-Broad Band INterferometer for S-Z — GUBBINS

Single baseline mterferometer at 185-275 GHz

Frequency

IS5-275GHz

Antenna aperinre

04 m

Baselme

0506m

Primarv beam

11" @ 220 GH=

Spatial resolnfion

7-11" @ 220 GHz

Mixer IF band

3-13 GH=z

[nstantaneous
bandwidth

x 10 GHz=z

Spectral resolution

1.125 GH=z

Target system
temperature

Brighiness
sensitIvity

Rirca- 00040000
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B

Corner Mirrors

Cryostat

Primary Mirrors

ptics Arms

Tracking Drives

Elevation Drive



(P GUBBINS - Optics

E-plane Co-paol
£ plane X-pol

o 45° offset parabolic primarv mirrors T T T T T [y T womeass—
(0.45x0.7m)
e Beam folded by a convex 45° offset murror

e Fed bv 8° FWHMI corrugated horn-

reflector antennas

[Hrmetivety (adR)

e Telescope pointed by rotating optics about
horn axis. and rotating primarv about axas
from primary to corner mirror

LO windows

Cold head .’”“;‘f —me
X block

/RF window and bearing

L-—Cnmer mirror




1 GUBBINS - Optics =

*Mirrors are CNC muilled from solid
aluminium

*Surface accuracv measured on CMM ~x10
um

*Comer murors mounted on 2-axis
goniometers

*Primarv mirrors mounted on tip/tilt stage.
XY/ translation stage and servo motor




(P GUBBINS — Cryostat

« Sumitomo G-M cooler (1W @ 4 K stage)

« Both SIS mixers mounted looking out of opposite
sides of cryostat

« SIS mixers and 1 stage IF amps on 4 K stage. 2™
stage IF amps on 40 K stage

« Cryostat supports optics arms and is mounted on
telescope plinth

« 50mm Cryostat windows made from 17 thick
Zotefoam PPA-30




Mixers

e Finline SIS muxers with IF band up to 2-
20 GHz

« Fabricated bv Paul Grimes at facilitv of
Karl Jacobs. Cologne

o Currently testing single-ended mixer
prototvpes to prove wide IF band
technology

e Eventually build and test single-chip
balanced mixers and single-chip sideband
separating mixers

e Grimes et al ISSTT 2008

Rirco- 00040060
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« Mixer tuning circuit to allow wide RF band 185 — 275 GHz
« RF choke gives wide IF band while 1solating RF side

« Predicted noise temperature ~20K over full IF and RF band

« Measured noise temp ~30K with known problems with crvostat
losses and L.O power

« Conversion gamn > -3dB over 0 — 20 GHz IF band.

Rirca- 00040000
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D=+  GUBBINS — Mixer Blocks

Finline Mixer Chip Magnet Pole
Piece Pocket

- RF Input
Eccosorb MF112

LO Load

LO Input

IF Transformer
Board Pocket

Currently being machined by Chris Groppi at University of Arizona




P GUBBINS - LO Coupler

L O is injected in mixer block
-Coupled via 3 section directional coupler
*Uses radial probe fed strip line couplers on quartz

Oxford Astrophyvsics



GUBBINS - LO

» Require 2 phase locked LO signals — 195-260 GHz
« One signal 180° phase switched against the other to modulate sky signal
» LO signal generated by microwave synth source (10.8-14.5 GH=z)
= Signal split in power divider
» Phase shift introduced in one arm - 10° Schiffman phase switch
= LO signals multiplied x18 by Radiometer Physics multipliers
« 200 pW % 3dB — can be individually levelled with attenuators
« LO coupled quasi-optically to mixer blocks in cryostat via two Gaussian beam
telescopes s
» Feed with drilled smooth-wall horns




(P GUBBINS - IF System -

« Cryogenic LNAs from Sandy Weinreb —3-13 GHz, 3-4 Kat 4 K

« Subsequent gain stages based on off-the-shelf Hittite packaged LNA — 2-20
GHz, 13 dB gain. 3.5 dB NF, cascadable, ~$70 per chip — coolable to 4 K with
significant improvement in noise: 30-80 K at 4 K from 2-20 GHz

« Further band-pass filters. slope compensation. automatic gain control
« 7-bit 2.5-160 mm Path Compensator built from switched microstrip delay lines

Oxford Astrophysics
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« Analogue 16 lag complex correlator.
2-20 GHz

« Signals from each antenna split in
quadrature hybrids

« Signals combined with varying time

delays, forming cross-correlations %
between antennas |

« Forms all combinations of cos and sin
fringes between two antennas

« Discrete Fourier Transform of output
gives independent complex power
spectra for each sideband

GUBBINS — Correlator

Total of

~. 16 lags

Q

R

X

X

®‘i

Total of

~ 16 lae=s

2

2%
Q-
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(P - GUBBINS — Correlator

« Signals from antennas split in commercial
quadrature hybrids

« Feed 4 lag correlator boards

« Each input signal split 16 ways in splitter
tree

« Uses 7-stage Wilkinson power dividers
fabricated on alumina

« Signals combined in Gilbert Cell multiplier
chips — Andrew Harris and Steve Maas

« Multiplier chips read by Oxford-developed
multichannel ADC and FPGA electronics




» First correlator board has been tested
« Bandwidth 2-20 GHz achieved
« Good lag spacing uniformity

« Good response and linearity

- Sideband separation will give 36 GHz
usable RF bandwidth

Lag spacing [mm]

Min Input [dBm|




I

(P GUBBINS - Status

» Telescope parts are made and partially
assembled

« Cryostat is being assembled

» Mixer blocks are in production

« First batch of mixers are being tested

» Cryogenic IF amplifiers delivered

» LO has been delivered. other parts in production
» |F system is awaiting assembly

= Correlator and backend have been prototyped,
and are now in production

« Complete assembly and start testing this year
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(P Can an interferometer compete with
~ 1000 element bolometer arrays?
* For pointed observations. ves.

* Relatively few beams pomnt at a cluster
instantaneously:

—FOM =NET/(fN,_,.)"
~ 700pKs'2/(1/8 x 25)1°

~ 400 pK st-

* All mterferometer antennas point at cluster

— FOM =NET/f 1.5 arcmin beams spaced 0.7 fA

— f=tilling factor
= (FOV/resolution)-N_ .~ 0.5

—NET =T,__/ Av'2 ~ 50K/(40 GHz)»> ~
250 pK s!'?

~3500 pKs'!-

Oxford Astrophysics



) Gubbins sensitivity

0.5m baseline, 5,10,11,12keY¥ clusters
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(P Can an interferometer compete with
1ys 1000 element bolometer arrays?
* For pointed observations. ves.

* Relatively few beams pomnt at a cluster
instantaneously:

—FOM =NET/fN,_,_)">
~ 700puKsV=/(1/8 x 25)1-

~ 400 pK st-

* All mterferometer antennas point at cluster '9_1 _

— FOM =NET/f 1.5 arcmin beams spaced 0.7 fA

— f=tilling factor
= (FOV/resolution)>N__.~ 0.5

—NET =T,__/ Av'2 ~ 50K/(40 GHz)»> ~
250 pK stz

~500 uKs't-




(.P The magic of foveated arrays

* Simple dense array with high filling factor:
—N_ . =f(FOV/resolution )-

—N_., ~ N .- =f (FOV/resolution *

mr

—eg FOV = 10 arcmun. res = 30 arcsec.

—

N, = 600.
N, — 360.000

Foveated array :

—Core with small antennas. larger
antennas around

— Mayv use multi-beams n larger antennas
—Eg N, = 150_N. =45

ant small ~— ant.big
—N__~ 38.000




Simple simulation...

PR VRN VENAT G [N S VUM SN VU [ N SNLN SSF WGl N AT kY e .

—-10 -5 a 5 10
arcmin

Sarah Church

e 100 Im dishes + 100 3m dishes where each 3m dish has 7 pixels. has
800 detectors. but requires ~ few x 103 correlations

2- 000400060
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* [nterferometers are a great wayv to do pomnted SZ (cf CBIL. SZA. ..

* Sutficiently low and high resolutions are feasible

* ALMA will give verv hi-res. .. but not verv low res

* HEMT and SIS front-end technologies give competitive noise
temperatures and bandwidths to bolometers

* Analogue correlators can give ~40 GHz correlated bandwidth
* Dhigital correlators are at present expensive but will catch up
* GUBBINS will provide a test-bed for these technologies

* A really good SZ follow-up mstrument with wide spectral coverage
and angular scale coverage 1s technicallv feasible. ..

Rirco- 00040060
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* Interferometers are a great wav to do pomnted SZ (cf CBIL. SZA...)

* Sufficiently low and high resolutions are feasible

* ALMA will give verv hi-res.. but not verv low res

* HEMT and SIS front-end technologies give competitive noise
temperatures and bandwidths to bolometers

* Analogue correlators can give ~40 GHz correlated bandwidth
* Dhgital correlators are at present expensive but will catch up
« GUBBINS wi1ll provide a test-bed for these technologies

* A reallv good SZ follow-up instrument with wide spectral coverage
and angular scale coverage 1s technicallv feasible. ..
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(.P The magic of foveated arrays

* Simple dense arrav with high filling factor:
—N_ . =f(FOV/resoluation )~
—N_., ~ N~ =f (FOV/resolution *

—eg FOV = 10 arcmin. res = 30 arcsec.
N._ . =600.
N, — 360.000

Foveated array :

—Core with small antennas. larger
antennas around
— Mayv use multi-beams 1n larger antennas

—Eg N — 150, N_,.. =45

ant_small ant_big

~ 38.000




