Title: Studying Cluster Physics with SPT

Date: Apr 28, 2009 02:45 PM

URL: http://pirsa.org/09040044

Abstract:

Pirsa: 09040044 Page 1/24

Outline

- 1) Cluster Observations with SPT
- 2) Targeted/Pointed Cluster Program
 - -example clusters/maps/profiles
 - -science goals
- 3) How this relates to Blind Cluster Program

Pirsa: 09040044 Page 3/24

SPT Field of View (FOV)

- ~I degree diameter FOV
- ~700 live detectors
- 3x frequency bands: 100, 150, and 220 GHz
- FWHM of ~1.6, 1.1, 0.8 arcminutes

d500 = 2x r500 = 6 arcmin for a 5.5 x 10^14 Msun cluster at z = 0.5

d500 = 2x r500 = 3.6 arcminfor a 5.5 x 10^14 Msun cluster at z = 1.0

Pirsa: 09040044

SPT Bullet Cluster Observation

13 hour 150 GHz SPT observation ~12 uK noise -> 50 sigma detection!

Chandra 40 hrs obs Markevitch)

ar^{Pirsa:} 09040044e

Significant signal out to ~15 arcmin r_200 is ~8.5 arcmin for this cluster

T. Plagge et al, in prep

Bullet Cluster: X-ray vs SZ

Pirsa: 09040044

Bullet cluster at 90, 150, and 220 GHz, ~2, 13, 13 hours integration, respectively

SPT also observes in 3-frequencies

- allows spectral discrimination between SZ, CMB, and point sources
- NET CMB sensitivity of ~ 60, 25, 140 uK rt(hrs)/rt(sq degs) at 90, 150, and 220 GHz (2009 focal plane)

SPT Time-stream Filtering

- I.0 Hz corresponds to 15 arcminute scales
- I/f knee of detector timestream PSDs are ~ I.0 Hz at I50 GHz and ~ I.5 Hz at 220 GHz
- Below these frequencies noise rises like ~1/freq^2.7 and is dominated by correlated atmosphere
- Atmospheric noise gets progressively worse from 90 to 150 to 220 GHz

Pirsa: 09040044 Page 9/24

SPT Cluster Time-stream Filtering

"Masked" Time-stream filtering procedure

- I) De-convolve detector time constants
- 2) Low-pass filter data (at frequency above detector time constant)
- 3) Remove long-timescale drifts with a low-order polynomial
- 4) For a given frequency, remove a common spatial mode across the array, masking region centered on the cluster
- 5) Fit cluster map to gas model

"Un-Masked" Time-stream filtering procedure

- 1) Steps 1-3 the same
- 2) For a given frequency, remove a common spatial mode across the array
- Simultaneously calculate transfer function of time-stream filtering by running a point source convolved with the SPT beam thru the filtering pipeline
- 4) Estimate noise covariance by jack-knife noise map realizations (differencing observations)
- 5) Add CMB noise to jack-knife noise covariance matrix
- 6) Fit map in fourier space. (Assuming the time-stream noise is stationary, then the fourier transform of the covariance matrix is diagnol)

Pirsa: 09040044 Page 10/24

SPT Targeted Cluster Observations

Targeted Cluster Program

- 1) Measure known massive clusters with existing optical and X-ray data
- 2) Measure pressure profiles out to the virial radius
- 3) Combine with X-ray data
 - · measure density, temperature, mass profiles
 - · measure baryon fraction vs radius
 - measure SZ scaling relations
- 4) Deep integrations on massive clusters could allow detection of kinematic SZ in a handful of clusters

Pirsa: 09040044 Page 11/24

Other SPT Pointed Cluster Observations

SPT Hours	Name	32000 RA	J2000 Dec	z	LCDM, h=0.7 Lx(0.1-2.4)
12	A2744	00:14:19	-30:23:00	0.3066	12.92
6	RXJ0217	02:17:13	-52:44:49	0.3432	12.0
6	RXJ0220.9	02:20:57	-38:28:48	0.228	5.82
12	RXJ0232.2	02:32:17	-44:20:51	0.2836	9.65
6	A3084	03:04:04	-36:56:27	0.219	4.68
6	RXJ0336.3	03:36:16	-40:37:45	0.1729	5.3
6	A3292	04:49:57	-44:40:24	0.150	3.29
bcs + 6	RXJ0516	05:16:38	-54:30:51	0.2952	13.87
6	RXJ0528	05:28:56	-39:27:46	0.2839	13.12
12	RXJ0532	05:32:55.5	-37:01:28	0.2708	6.94
6	CLJ0542.8	05:42:50	-41:00:02	0.634	9.9
6	A3364	05:47:38	-31:52:25	0.148	4.67
6	MACSJ0553	05:53:27	-33:42:53	0.407	32.68 ^{bolo}
9	RXJ0638	06:38:46.5	-53:58:18	0.2266	10.62
6	A3404	06:45:29	-54:13:08	0.1644	7.360
7 (+ 6)	Bullet	06:58:31	-55:56:49	0.297	23.03
12 (+4)	MACS1931	19:31:49.6	-26:34:34	0.352	
6	RXJ2011	20:11:23	-57:25:39	0.279	7.23
9	A3667	20:12:24.3	-56:49:49	0.053	5.41
6	RXJ2031	20:31:52	-40:37:14	0.3416	12.04
15	MACS2046	20:46:00.5	-34:30:17	0.423	
6	RXJ2218.6	22:18:40	-38:53:51	0.141	3.78
6	A3888	22:34:31	-37:44:06	0.151	8.46
9 (+ 6)	AS1063	22:48:43.5	-44:31:44	0.348	30.78

- 24 known clusters measured and detected with SPT, most selected by their X-ray luminosity
- Fairly massive well-studied clusters
- Almost all have Chandra or XMM data
- All between 0.05 < z < 0.65, most between 0.15 < z < 0.35
- Lensing data? Nine in LoCuSS sample (Graham Smith et al.), which combines X-ray + lensing, hopefully can give us some insight into HSE mass bias (along with SZA results)

More SPT Cluster Maps

Pressure Profiles at Large Radii

Simulated Pressure Profiles vs Chandra measurements

- SZ measurements are directly measuring the cluster pressure profile
- measurements of the pressure profile can distinguish between thermal feedback processes and physics in clusters

$$I_{SZ} \propto n_e T_e$$
 $I_{Xray} \propto n_e^2 \Lambda(T_e)$

- because of linear dependence on electron density SZ measurements can in principle probe further than X-rays
- for this reason, SPT can in principle probe regions not necessarily accessible to other experiments

SPT 150 GHz CMB Temperature Profiles

- Significant signal seen in many clusters out to ~1.5-2.0
 Mpc (typical value of r500 for these clusters is ~1.2 Mpc)
- How much of this is CMB?
- Multi-frequency SZ data will be important to disentangle this
- We need to finalize a satisfactory multi-frequency SZ pipeline

Pirsa: 09040044 Page 15/24

Combining SZ + X-ray data

- SZ in combination with X-ray data provides more information about thermodynamic state of IC gas
- the combination of SZ + X-ray imaging data can recover density and temperature profiles to larger radii without X-ray spectroscopy

Constraining Physics from Cluster Profiles

- As Daisuke showed yesterday, agreement is good in outer regions, but most X-ray studies at best extend to ~ r500 (~ 0.5 r_virial)
- Extending measurements to larger radii might reveal surprises that tell
 us about the thermodynamics of the intra-cluster gas at large radii

Gas Mass Fraction vs Radius

 Ω_{b} 20.— Enclosed gas fraction as a function of overdensity, defined with pect to the critical density at the cluster redshift. Dashed lines show the $\Omega_{b}/\Omega_{m} = 0.175 \pm 0.023$ constrained by CMB observations. Points with or bars show typical measurement uncertainties at two radii.

- Most current X-ray measurements of gas fraction extend nearly to virial radius
- Pushing this measurement further could help us estimate the total baryon budget and the amount of missing baryons or ...
- Disentangling effects of nonthermal pressure support will make total mass estimates difficult

Pirsa: 09040044 Page 18/24

SZ Scaling Relations

- State of the art is Bonamente et al. 2008 from OVRO/BIMA sample
- SZA results coming soon
- SPT should push scaling relations closer to virial radius, might reduce scatter, but could increase bias
- This sample will at least help us understand how to better estimate masses from SPT multi-frequency data

Pirsa: 09040044

Kinematic SZ

- Some clusters might have detectable kSZ, especially the merging clusters
- For Bullet cluster

$$\Delta T_{kSZ} = \tau \, T_{CMB} \, \frac{v_{pec}}{c} \sim 0.015 \times 2.725 \times \frac{1000 km/sec}{c} \sim 140 \mu K$$

- 220 GHz Bullet maps have ~40 uK noise per arcmin pixel
- SPT is at an interesting depth to make make cluster kSZ maps
- Potentially can do other interesting physics (our A3667 maps are crazy!)

Pirsa: 09040044 Page 20/24

SPT Blind Clusters

Blind Clusters

- Targeted clusters can provide intermediate scaling relations for interpreting cosmology
- 2) Will want to measure scaling relations from them from targeted X-ray follow-up, and understanding of HSE mass estimates from stacked lensing comparison
- Point source confusion population needs to be better characterized, especially sources that are correlation with clusters

Kinematic SZ

- Some clusters might have detectable kSZ, especially the merging clusters
- For Bullet cluster

$$\Delta T_{kSZ} = \tau \, T_{CMB} \, \frac{v_{pec}}{c} \sim 0.015 \times 2.725 \times \frac{1000 km/sec}{c} \sim 140 \mu K$$

- 220 GHz Bullet maps have ~40 uK noise per arcmin pixel
- SPT is at an interesting depth to make make cluster kSZ maps
- Potentially can do other interesting physics (our A3667 maps are crazy!)

Pirsa: 09040044 Page 22/24

SPT Blind Clusters

Blind Clusters

- Targeted clusters can provide intermediate scaling relations for interpreting cosmology
- 2) Will want to measure scaling relations from them from targeted X-ray follow-up, and understanding of HSE mass estimates from stacked lensing comparison
- Point source confusion population needs to be better characterized, especially sources that are correlation with clusters

Summary

- 1) SPT is working and can make deep multi-frequency maps of clusters
- 2) Massive well-studied clusters will be an interesting sample to constrain:
 - thermodynamics of outer regions of clusters
 - will motivate more accurate intra-cluster gas models to larger radii
 - SZ scaling relations near out to virial radius
 - other interesting science (kSZ, cluster physics, ...)
- Related to blind clusters, hopefully we learn more about SZ scaling relations and develop a joint SZ + X-ray pipeline

Pirsa: 09040044 Page 24/24