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Abstract: | comment on rather significant recent developments that are relevant for proposals | had presented in previous Pl seminars. The
Fermi/GLAST space telescope has reported observations that would naturaly fit previous formalizations of Planck-scale-induced in-vacuo
dispersion (but also quite afew other things). And the unexplained excess noise found at the GEO600 interferometer is just of the type that had been
previously described in terms of phenomenological models of spacetime foam (but may well be caused by quite a few other things). On the
pure-theory side | can finally keep my promise to show that spacetime noncommutativity is a valuable tool of exploration of nonclassicality of
spacetime, alowing the derivation of discretized spectra of distance, area, volume, and aso providing a completely new overall geometric picture,
in which amusingly the number Pi looses some of its privileges.
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an update on the QGphenomenology side:
e Planck-scale-induced in-vacuo dispersion,

and “Fermi’s lazy photon™

o Excess interferometric noise as manifestation of spacetime foam,
and “GEO600’s mystery excess noise”

and, if time allows, something new on the pure-theory side

* Discretization of distances and areas in noncommutative space,

and the “no-Rieman-no-7T theorem
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IN-Vacuo dispersion (nearly generic feature?)

/— “quantum” spacetime

E

g

broken/deformed symmetries

modified dispersion relations

pz . f(m"E:k) ~ El - Hl'lr 5 2 }L'P.n El*u

where |Ap | = Ep™
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slide from a couple (GLAST...many delayvs...) of previous PI seminars:

T

in-vacuo dispersion

dE
Sl T VR

pP=E -+ Ay
dp wavelength-dependent speed for photon

¥

This would mean that two (nearly-)simultaneously-emitted photons would reach
the detector with a relative time-of-arrival differenceof At=1 A, E"
where T is the overall time travelled
gamma-rayv bursts
- travel distances of order 10'° light vears
- microbursts within a burst have duration 10~ seconds and arrived
simultaneously (within available sensitivity) in all BATSE channels
-large AE (10 MeV... 100 MeV...possibly a few GeV...)

next-generation y-ray telescopes (GLAST) will have sensitivity to A, ,~1/E,

Concerning the relation v = dE f’_;f it may be useful to stress that it can be obtained assuming that a Hamiltor
dese ";ﬂ- w i still available. ¢ = dr/dt ~ [x. H(p)]. and that the Heisenberg uncertainty princs iple still hokds exa
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Another slide from previous PI seminars:

(b) Ch#1
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in-vacuo dispersion
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This would mean that two (nearly-)simultaneously-emitted photons would reach
the detector with a relative time-of-arrival differenceof At=1 A, E"
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Another slide from previous PI seminars:

(b)) Ch #1

(c) Ch#2
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GRB 080916C: notable tirsts about this burst

a Largest number. ~ 200. of high-energy, >100 MeV photons (second is GRB
940217. with 28). allowing time-resolved spectral studies

J Significant =4.5s delay between onset of >100 MeV and 100 keV radiation
First high-energy 100 MeV — GeV detection of a GRB with known redshift

3 Redshift z = 4.240.3 from GROND photometry on 2.2 m in La Silla, Chile
(Greiner et al. 2008)

— Highest energy, = 13.2 GeV photon, detected 16.5 sec after GBM trigger

(o

Charles D. Dermer. On behalf of the Fermi Collaboration.J anuary 7. 2009
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Another slide from previous PI seminars:

(b) Ch #1
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Charles D. Dermer. On behalf of the Fermi Collaboration.January 7, 2009
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1. Lags in particle acceleration timescale
Fermiacceleration limits: cannot gain a significant fraction of
energy on timescaleshorterthan Larmor time

High energy emission is delayed with
respect to the lower energy emission

Could be due to the time to accelerate
protons and ions, and to develop the
electromagnetic shower

— Highest energy, = 13.2 GeV photon, detected 16.5 sec after GBM trigger

— Conservative lower limit on the quantum gravity mass (assuming linear
energy scaling and high energy photons emitted after GRB trigger):

Mge> (1.50 +/- 0.20) x 1013 GeV/c?
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1. Lags in particle acceleration timescale
Fermi acceleration limits: cannot gain a significant fraction of
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My perspective:

*1in 1997 there was no way to imagine a 13GeV “lazy” photon
arriving 16 seconds late....... 13 GeV,16s < Planck scale!!!

* but it is pointless to speculate at the present time....

the analysis needs high statistics of bursts and it will
be available rathersoon...
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excess noise in interferometry (absolutely generic feature!!!)

GAC, Nature 398(1999)2
interferometers are sensitive to anvthing that
makes distances/lengths not sharp

all of physics is coded in interferometric noise!!!
(the classical mechanics of thermal and seismic effects...

the quantum mechanics that goes into analysis of photon shot noise and
radiation pressure noise)

If any sort of quantization of spacetime is actually present (think of

the “spacetime foam” picture) there will be a Planck-scale contribution to
noise
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Another tentative estimate can be based
on heuristic arguments for the measurability of distances,

suggesting that . GAC, ModPhysLett(1994)
O E o ~f 1 &gl

and it is well known that standard deviation going like square root of T is
manifestation of random-walk noise

Modelling of spacetime foam effectively in terms of random-walk

stochastic process would be reasonable in light of

plausible expectations for the application of the fluctuation-dissipation

theorem in a spacetime foam environment. GAC, PhysRevD62(2000)0240

And if indeed it is random-walk noise the spectrum
would be of the tyvpe a
S ( f ) s _f 5> GAC, Nature 398(1999)216

With a time scale a characteristic of the specific interferometric setup
(which however should be determined within a given spacetime-foam
picture....a task which is at least presently impeossible....)
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provides some

.....but the much-discussed “GEO600 mistery noise”
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1. Lags in particle acceleration timescale
Fermi acceleration limits: cannot gain a significant fraction of
energy on timescaleshorterthan Larmor time

High energy emission is delayed with
respect to the lower energy emission

Could be due to the time to accelerate
protons and ions, and to develop the
electromagnetic shower

— Highest energy, = 13.2 GeV photon, detected 16.5 sec after GBM trigger

— Conservative lower limit on the quantum gravity mass (assuming linear
energy scaling and high energy photons emitted after GRB trigger):

Mge= (1.50 +/- 0.20) x 1013 GeV/c?
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My perspective:

*1in 1997 there was no way to imagine a 13GeV “lazy” photon
arriving 16 seconds late....... 13 GeV,16s < Planck scale!!!

* but it is pointless to speculate at the present time....

the analysis needs high statistics of bursts and it will
be available rathersoon...
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excess noise in interferometry [JRESILIUNE-S TS

GAC, Nature 398(1999)2
interferometers are sensitive to anvthing that
makes distances/lengths not sharp

all of physics is coded in interferometric noise!!!
(the classical mechanics of thermal and seismic effects...

the quantum mechanics that goes into analysis of photon shot noise and
radiation pressure noise)

If any sort of quantization of spacetime is actually present (think of

the “spacetime foam” picture) there will be a Planck-scale contribution to
noise
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GAC, Nature 398(1999)216

PhysRevD62(2000)024(
Noise in interferometers characterized through Nature410(2001)10

the “strain noise power spectrum”

of =] s

Rough characterization of sensitivities achievable with this generation
of interferometers (used for gravitv-wave detection):

S(=100 Hz) =10 % Hz ™

It appears inevitable that the strain noise power spectrum receives some
contribution from Planck-scale effects.

But it is difficult to estimate it....no svmmetry (or symmetry breaking)
principles appear to be able to guide us...

Still noteworthy: if QG noise is “white” a natural guess would be

L
S(H=—wml0™H
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Another tentative estimate can be based
on heuristic arguments for the measurability of distances,

suggesting that . GAC, ModPhysLett(1994)
O E o A1 = ~fL

and it is well known that standard deviation going like square root of T is
manifestation of random-walk noise

Modelling of spacetime foam effectively in terms of random-walk

stochastic process would be reasonable in light of

plausible expectations for the application of the fluctuation-dissipation

theorem in a spacetime foam environment. GAC, PhysRevD62(2000)0240

And if indeed it is random-walk noise the spectrum
would be of the tyvpe a
S ( f ) =~ _f 5> GAC, Nature 398(1999)216

With a time scale a characteristic of the specific interferometric setup
(which however should be determined within a given spacetime-foam
picture....a task which is at least presently impeossible....)
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.....but the much-discussed “GEO600 misterv noise”
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This looks like the random-walk noise of mv paper Nature398,216(1998).....

And recently Hogan produced a post-diction of this random-walk noise levels
based on intuition partly originating from “holography in quantum gravity”
which would fix my parameter a to exactly the value needed

to match the “mistery noise” of GEO600...

Hogan PhysRevD78(2008) 0873
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\ Projection including increased
i BS thermo refractive noise
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Using a BS thermo refactive noise 3.4 times higher than we believe it to be
seems to explain the mystery noise as well. -
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Another tentative estimate can be based
on heuristic arguments for the measurability of distances,

suggesting that . GAC, ModPhysLett(1994)
O L- 6t~ s o~fi

and it is well known that standard deviation going like square root of T is
manifestation of random-walk noise

Modelling of spacetime foam effectively in terms of random-walk

stochastic process would be reasonable in light of

plausible expectations for the application of the fluctuation-dissipation

theorem in a spacetime foam environment. GAC, PhysRevD62(2000)0240

And if indeed it is random-walk noise the spectrum
would be of the type 7 2
S (f ) - _f 5> GAC, Nature 398(1999)216

With a time scale a characteristic of the specific interferometric setup
(which however should be determined within a given spacetime-foam
picture....a task which is at least presently impossible....)
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This looks like the random-walk noise of myv paper Nature398,216(1998).....

And recently Hogan produced a post-diction of this random-walk noise levels
based on intuition partly originating from “holography in quantum gravity”
which would fix my parameter a to exactly the value needed

to match the “mistery noise” of GEO600...

Hogan PhysRevD78(2008) 0873
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i Projection including increased
BS thermo refractive noise
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Quantum Gravity Phenomenology:
from simple estimates to show that it could be done (it definitelv can be done!!!)

to the availability of data and the need to perform robust delicate difficult
analvses.....but we are finally walking the Planck (scale)....
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Projection including increased
BS thermo refractive noise
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But focus on properties of field theories in these spaces might not be
the only way to get intuition on the implications of spacetime quantization

Should we not ask what happens to key “geometric observables™ like
distances, areas, volumes ??
No work on this!!!!
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Itheor}' stde: Discreteness of area in noncommutative space

studies of noncommutative spacetimes as a way to gain intuition on what
“spacetime quantization” might bring about...(what could be characteristic
experimental signatures?)

Typical papers: field theories in either “canonical spacetimes™ [1 s ._l'y} = 10 A

or Kappa-MinkowsKi spacetime

[*I‘J’- me] = () [*l“’;. t] — t,"’\";!.J-

Main physics result:
svmmetries are described by Hopf algebras...might be a way to formalize concq
of “deformed Poincare’ symmetries™, in the Doubly-Special-Relativity sense

- Hopf-algebra description fully established only with results on Noether analysis
of these field theories which I reported in previous PI seminar

PLB671(2009)298, PRD78(2008) 025005 MPLA22(2007)1779
(with Arzano,Gubitosi.Marciano’ Martinetti,Mercati)

' Remains to be established if truly this amount to a second relativistically-nontrivi
ebserver-independent scale in the sense of Doubly-Special Relativity  ruesose
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- Well, here is our analvsis of distances and areas
in the “Moyal plane”:

[,x‘:...\;] _ i0

First a few notions of the “pregeometric description” of noncommutative spaces

and particularly of the Moyal plane

- X, and X5 can be deseribed as operators on a Hilbert space
‘with structure that exactlyv reproduces the Hilbert space ot a particle

'in nonrelativistic quantum mechanics.
| . . e
'Denoting the “state of the point™ by

Pirsa: 09030039

v* >. so that the
wave functions” of the first coordinate of the point is v(ry) =< ry|v
we can prescribe that X; and X, act as follows

arXiv:0812.2675 PhyvsLettB (in pr¢
(with Gubitosi and Mercati)

X1 0¥U(ry) =21 ¥(11)

: o
Xop w(xry) = —if Leeswey (g
{)J'l




arXiv:0812.2675 PhysLettB (in pr
(with Gubitosi and Mercati)
Analysis of (squared-)distance observable is rather simple:

d* = (X{ - _\"1'-“): + (XY - \) |

12)

where X! =X, 1. X} =1 X;.

)

and one easily finds the spectrum (this observable pregeometrically gives the
Hamiltonian of an harmonic oscillator):

" 1
with NV mntecer and nonnecative,
NOTE THAT:

- equal spacing
- minimum distance (d=0 not possible)
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arXiv:0812.2675 PhysLettB (in pr

(with Gubitosi and Mercati)
areas.:

....we find that triangles have a special role but would not be able to explain it
clearly now...
The area of a triangle obtained from the coordinates of its 3 vertices:

={ 1} (1)

=41y Sy 43 l "i“_l‘> '\3,,. I
AX X X )=cdet]| X1¥ X3 1
R Tl ul ]

+its modulus should give area of triangle
the overall sign gives the orientation of the vertices (clockwise, anticlockwise)
*pregeometrically described as an observable on the Hilbert space
of 3 pregeometric particles
Not as easy as the Hamiltonian of an harmonic oscillator but it is still rather

easy to find the spectrum 3
v ‘_1|”h'r-ru5r;t'+ P \'.} f 1“( -

with M intecer and nonnecative.

Page 62/68

"NOTE THAT: ....equal spacing....but no minimum area!!!!




no-Riemann-no-7:

amusing to contemplate a disc in the Moval plane...
boundary can’t be given by points equidistant from an “origin” (no peint can be

the origin with sharp coordinates 0,0)...
and boundary can’t be given by points equidistant from a certain “center” point

because a relation like AB=BC cannot be sharp in any state of the geometry...
more soon....
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slide from a couple (GLAST...many delayvs...) of previous PI seminars:

i

in-vacuo dispersion

dE

P=E 2+ Bt v = —— =1-2, E"

dp wavelength-dependent speed for photon

This would mean that two (nearly-)simultaneously-emitted photons would reach
the detector with a relative time-of-arrival differenceof At=1 A, E"
where T is the overall time travelled
gamma-rayv bursts
- travel distances of order 10'° light vears
- microbursts within a burst have duration 10 seconds and arrived
simultaneously (within available sensitivity) in all BATSE channels
-large AE (10 MeV... 100 MeV...possibly a few GeV...)

next-generation y-ray telescopes (GLAST) will have sensitivity to A, ,~1/E,

Concerning the relation © = dE /dp it mav be nseful to stress that it can be obtained assuming that a Hamiltor
clesq l'llilfl* n is still available, v = dr/dt ~ [x. H(p)|. and that the Heisenbere nncertainty principle still holds exaf
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GRB 080916C: notable firsts about this burst

L

Largest number, ~ 200. of high-energy. >100 MeV photons (second is GRB
940217. with 28). allowing time-resolved spectral studies

Significant =4.5s delay between onset of >100 MeV and 100 keV radiation
First high-energy 100 MeV — GeV detection of a GRB with known redshift

Redshift z = 4.2+0.3 from GROND photometry on 2.2 m in La Silla, Chile
(Greiner et al. 2008)

— Highest energy, = 13.2 GeV photon, detected 16.5 sec after GBM trigger

(M Wy N

Charles D. Dermer. On behalf of the Fermi Collaboration.J anuary 7. 2009
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IN-VACuo dispersion (nearly generic feature?)

/— “quantum” spacetime

E

g

broken/deformed symmetries

modified dispersion relations

p? = f(m,E;A)~E2 — m? + A, E2™

where |Ap |~ Ep™

Pirsa: 09030039

v
v

MinkowsKi limit:
< *Lorentz Invariance Violatio
*Doubly-Special Relativity

GAC PhysLettB(1997)
GAC+Els+Mavromatos+Nanopoulos, ITMPD (19
GAC+Elis+Mavromatos+Nanopoulos+Sarkar,
Nature(1998)

Gambmir+Pullin PhysRevD(1999) .. .67
Kifune Astr.Journ.Lett.(1999)

—— - Lo S R R SR



:
8260 keV E
L=
0.26-5 MeV i
3
RIS AR i 5
: 10 : i 3
s R '+ 31s :
>100 MeV ; L 310 =
T 0 i : .:4" g
Tume since trigger (s) : _.i s s
J—'—'—"—'—‘-—'M. —o
. 15 1
3 i i H -
! 1 " ' :
- . P
>1 GeV E uql : [ E ” l E %
Tiune since trigger (s) . Ez o
o
&0 50 100
Pirsa: 09030039 Page 68/68
Charles D. Dermer. On behalf of the Fermi Collaboration. Januarv 7. 20(



