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Abstract: In topological quantum computation the geometric details of a particle trgjectory become irrelevant; only the topology matters. Thisis one
reason for the inherent fault tolerance of topological quantum computation. | will speak about a model in which this idea is taken one step further.
Even the topology is irrelevant. The computation is determined solely by the permutation of the particles. Unlike topological quantum computation,
which requires anyons confined to two dimensions, permutational quantum computations can in principle be performed by permuting a set of
ordinary spin-1/2 particles with definite total angular momentum in three dimensions. The resulting model of computation appears to be
intermediate in power between classical computation (P) and standard quantum computation (BQP). The model may be equivalently defined in
terms of spin networks, which are an important concept in loop quantum gravity.
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* Degenerate ground space

* Particle-like excitations (anyons)
* Adiabatically drag them around (braid)




* The transformation of the ground space is a
unitary representation of the braid group.
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* We can also fuse and split particles.
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* The map from braiding and fusing to linear
transformations obeys certain consistency
rules, for example:
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* (This is a modular tensor category.)
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* |f we find the right kind of anyons we can do
universal quantum computation (BQP) by
braiding.

* Thinking about topological QC also led to
discovery of new quantum algorithms such as
for the Jones polynomial.
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* By closing a braid we can make a link:

t\/' \/} ':“D /‘-/\ @
7 | e ( ] 9

k/i/' 1 \)

. 'J TR

» A certain matrix element of rsb is the Jones
polynomial of the plat closure at ¢™/3
(BQP-complete)

* The trace of psb Is the Jones polynomial of the
o {raCe Closure (DQC1-complete)




* In topological QC local geometry doesn't
matter. Only global topology does.

* This helps fault tolerance. (Also information
encoded in nonlocal degrees of freedom.)

* What if we ignore even topology? All that's
left Is a permutation.
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Topological Permutational
Anyons Spin-1/2
Braid (B, ) Permute (S, )
Fuse Measure Angular

Braided Tensor
Category
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Racah-Wigner
Tensor Category




Angular momentum of n spins

S=Y 5 $=5-5 S*15) = 3G + D)
=1

* g2 commutes with any permutation

* the eigenspaces of S* transform as irreducible
representations of Sx

* The Young diagrams have two rows:

* The overhang is 2j
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* Reminiscent of anyon braiding, but:

— what about fusion?
— what about a basis for the representations?

* Example: 3 particles

= =3 = \2 =y

(51 + S2 + S3) complete set of

(51 + 55)? > commuting
observables

1+ Lo+ Z3 4
* This gives us a basis.
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* How do the representations of 53 look in this
basis?

* (S, + S, + S3)% tells us which irrep
* (51 + S2)? labels the basis states within an irrep
* (Z1+ Z>+ Z3) is an irrelevant degree of freedom
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* How do the representations of 53 look in this
basis?

* (5, +5,+ S5)% tells us which irrep
* (S; +S,)? labels the basis states within an irrep
» (Z1 + Z>+ Z3) is an irrelevant degree of freedom
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* We have a choice of basis:




* For a given tree, different labellings correspond
to orthogonal states

\>b/ \>d/ = Bac de

 Different trees are related by recoupling
coefficients
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* The recoupling coefficients are:

(1 h .f e B yva+b+ec+f ) £ 1 10 a h .f
|: a— ] = (—1) v (2d+1)(2f+1) i & 4

: a b f
* The 6j symbols { —_— fg } can be computed

in poly(a+b+c+d+e+ f) time using the
Racah formula.
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* The matrix elements of the S, Irrep are
determined by the recoupling coefficients plus
the two-particle exchange rule:

b+c-a

= (-1)
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* |f we couple like this:
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* The matrix elements of the S,, irrep are
determined by the recoupling coefficients plus
the two-particle exchange rule:

b+c-a

= (-1)

Pirsa: 09030004



VAV AV Y

* If we couple like this:
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* The matrix elements of the S,, irrep are
determined by the recoupling coefficients plus
the two-particle exchange rule:

b+c-a

= (-1)
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VAV Y

* If we couple like this:
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Young's Orthogonal Form
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* Most general process:

* |nvariant under deformation:
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* We now have a model of computation:

1) Prepare a basis state from some complete
set of commuting angular momentum operators.

2) Permute the qubits.

3) Measure some other complete set of commuting
angular momentum operators

* We also have a problem it can solve:

Approximate a matrix element from Young's
orthogonal form
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How Powerful Is It?

BQP
. What | think: .B

* What | know:
PQP c BQP

Best classical algorithms for Young's
orthogonal form are exponential time
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PQP C BQFP
Proof Sketch:

work in this basis:

make any PQP state
by polynomially many
F and R moves

ol S€ Hadamard test

Z U (abed)|abed)

abed




* R is easy to implement: just a phase

b ¢ b
=(_l)fr:r+c-;1
d d
 How about F?
a b C a b C
_ a b f

d T 2 s BE @© d] f
e f e

— |t Is sparse

— we can efficiently compute the nonzero entries
using the Racah formula
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* We know how to implement any sparse row-
computable Hamiltonian.

* From this we can implement any sparse row-
and column-computable unitary.

it L h & Endof P
: =1 7t o nd of Proof Sketch.
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* R is easy to implement: just a phase

b ¢ b c
- (_l)?_ﬁ+c-u
d d
 How about F?
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— |t Is sparse
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* We know how to implement any sparse row-
computable Hamiltonian.

* From this we can implement any sparse row-
and column-computable unitary.

- h Endof P
: =1 7t o nd of Proof Sketch.
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* So far we have seen:
- PQP Cc BQP
- probably PQP ¢ P
« PQP =BQP?

* | doubt it because:
_ Sn iS f|n|te

- .. no representation S, can be dense in any
unitary group.

- .-, cannot use Solovay-Kitaev




* We know how to implement any sparse row-

cognputable Hamiltonian.

* From this we can implement any sparse row-
and column-computable unitary.

FfH‘i‘T/? — 3 0 [r E
: =t gt o nd of Proof Sketch.
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PQP  BQF
Prof Sketch:

work in this basis:

make any PQP state
by polynomially many
F and R moves
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How Powerful Is It?

BQP
. What | think: .B

« What | know:
PQP c BQP

Best classical algorithms for Young's
orthogonal form are exponential time
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* So far we have seen:
- PQP C BQP
- probably PQP ¢ P
« PQP =BQP?

* | doubt it because:
_ Sn iS f|n|te

- .. no representation S, can be dense in any
unitary group.

- .-, cannot use Solovay-Kitaev




Matrix
Elements BQP-complete C BQP

Characters | DQC1-complete C BPP
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« all irreps of S.» are implementable in BQP

» exact characters of 5. are #P-complete
[Hepler]

* normalized characters of 5» are approximable
to polynomial precision in BPP

* further evidence PQP # BQP ?
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Normalized Characters of S. in BPP Proof:

Theorem 1 ( Roichman ) For any partitions p = (uy.. .., ) and A = (\q...... \i) of n. the

corresponding irreducible character of S,, is qiven by

a = Wi.(A)

A

where the sum s over all standard Young tableauxr A of shape A\ and

W.(A) = [ £.G.A)

i<k
e
3

Lk )

”-I 5

where B(p) = {p1 + ... +pl <r <l} and

—1 r"rrr_f‘ t+ 1 ri_f \!.. s In Tf}r Hrr.ftﬁ'.?n'f'r'hf of r;}H..!‘ ]
Jf' (2. A) = 0 i+ 1 s northeast H__.F i. 1+ 2 is southwest u_fi +1.andit+1¢4 BIIJ{::

1 otherwise

Theorem 2 (Greene. Nijenhuis. and WIilf) With polynomial resources. one

can sample uniformly from the standard Young Tlableaur corresponding to a

given shape (n-boxr Young diagram) using the Hook walk algorithm.
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Summary

« We formulate a model like topological QC
except we permute spin-1/2 particles instead of
braiding anyons

* The resulting complexity class PQP is in BQP

* We can compute Young's orthogonal form in
PQP thus probably PQP ¢ P

* The corresponding computational model based
on characters of S, isin BPP
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Usefulness/Open Questions

* Algorithms
v Young's Orthogonal Form (& 3nj symbols).
2Physics? Geometry? Ponzano-Regge?

* Fault Tolerance/Implementation
v angular momentum implementation

2parastistical quasiparticles?

« Complexity Theory

* New complexity class.

2 (Oracle separation between PQP and BQP?
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* For an exponentially large unitary matrix the
average magnitude of the matrix elements is

exponentially small.
* We approximate to polynomial precision?

* Is this trivial?
- For random instances: yes.
- In worst case: probably not.
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* For an exponentially large unitary matrix the
average magnitude of the matrix elements is

exponentially small.
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* For an exponentially large unitary matrix the
average magnitude of the matrix elements is

exponentially small.
« We approximate to polynomial precision?

* Is this trivial?
- For random instances: yes.
- In worst case: probably not.
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* For an exponentially large unitary matrix the
average magnitude of the matrix elements is

exponentially small.
* We approximate to polynomial precision?

* Is this trivial?
- For random instances: yes.
- In worst case: probably not.
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* The normalized character tells us the average

diagonal element.
* In certain cases this is large.

XA, (77)

~ y o=l 2 - — || /2—1
= Cr(w)n I, +O(n : )
d\
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