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Abstract: An electroweak model in which the masses of the W and Z bosons and the fermions are generated by quantum loop graphs through a
symmetry breaking of the vacuum is investigated. The model is based on a regularized quantum field theory in which the quantum loop graphs are
finite to all orders of perturbation theory and the massless theory is gauge invariant, PoincarA®© invariant, and unitary to all orders. The breaking of
the electroweak symmetry SUL (2) A— UY (1) is achieved without a Higgs particle. A fundamental energy scale >W (not to be confused with a
naive cutoff) enters the theory through the regularization of the Feynman loop diagrams. The finite regularized theory with T>W allows for afitting
of low energy electroweak data. >W ~ 542 GeV is determined at the Z pole by fitting it to the Z mass mZ, and anchoring the value of sSinAZl w to its
experimental value at the Z pole yields a prediction for the W mass mW that is accurate to about 0.5% without radiative corrections. The scattering
amplitudes for WLWL af” WLWL and e+ed” at” W+L W& L processes do not violate unitarity at high energies due to the suppression of the
amplitudes by the running of the coupling constants at vertices. There is no Higgs hierarchy fine-tuning problem in the model. The unitary tree level
amplitudes for WLWL &f” WLWL scattering and e+ed™ at” W+L W& L annihilation, predicted by the finite electroweak model are compared with
the amplitudes obtained from the standard model with Higgs exchange. These predicted amplitudes can be used to distinguish at the LHC between
the standard electroweak model and the Higgsless model.
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1. The Standard Electroweak Model with a Higgs
Particle

e The standard electroweak (EW) model gains mass for the W and
Z bosons, while keeping the photon massless by

introducing a classical scalar field into the action. This scalar
degree of freedom is assumed to transform as an isospin

doublet, spontaneously breaking the SU (2) x U, (1) by a Higgs
mechanism at the purely classical tree graph level.

elusive after almost 50 ye The standard and commonly
accepted explanatmn is a spontaneous symmetry breaking
framework in which the symmetry SU,(2) X U, (1) is not
broken by the interactions but is "softly” bruken by the
asymmetry of the ground state (vacuum state).
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e Despite its phenomenological success, theoretical problems prompt
searching for an alternative to the standard EW theory. There is the
serious Higgs hierarchy problem (unstable Higgs mass) and the

cosmolagical constant problem. The spontaneous breaking of SU(2) X
U(1) generates a value ﬁ for the vacuum density,

which is some 10°® times larger in magnitude than the observed
value pvac_, _ ~ (0.0024 eV)* and has the wrong sign.

e The tree-level (bare) Higgs mass receives quadratically-divergent
carrections from the Higgs loop diagrams.

pe

® Dlsc:uvenng a satisfactory alternative has proved to be highly no
. Proposed alternatives face severe problems. New partlcle
cnntrlbutmns at less than 1 or 2 TeV level can affect precision EW
data that can generate unacceptably large effects; significant fine-
tuning may be required at least at the 1-percent level. These models
include MSSM, Little Higgs, pseudo-Goldstone bosons. Extensions of
the standard EW model such as technicolor, and other composite
models can face unacceptably large flavor changing contributions and

CP violation.
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e The EW model with a Higgs doublet is consistent with
the experimental bounds on flavor changing neutral currents
and CP violation.

e The primary target of an EW global fit is the prediction of the
Higgs mass. The complete fit represents the most accurate
estimation of M, considering all available data
(arXiv:0811.0009[CERN]). The result is M, = 116.4+18.3—-1.3 GeV
where the error accounts for both experimental and theoretical
uncertainties . The 2o and 3o allowed regions of M, including all
errors, are [114, 145] GeV and [[113, 168] and [180, 225]] GeV,
respectively. The result for the standard fit without the direct Higgs
searches is M, = 80+30—-23 GeV and the 20 and 3o intervals are,
respectively, [39, 155] GeV and [26, 209] GeV. The 30 upper limit
is tighter than for the complete fit because of the increase of the
best fit value of M,, in the complete fit.

e We conclude from this that the EW model
requires a Higgs.
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Figure 1: The contribution to the = estimator versus Mg derived from the experimental informa-
tion on direct Higgs boson searches made available bv the LEP Higgs Boson and the Tevatron New
Phenomena and Higgs Boson Working Groups [71-73]. The solid dots indicate the Tevatron mea-
surements. Following the original figure theyv have been interpolated by straight lines for the purpose
of presentation and in the fit. See text for a deseription of the method applied
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CDF Tevatron detector at Fermi Laboratory
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The ATLAS experiment at CERN. (Courtesy CERN)

Copyright © 2006 Interactions.org
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2. The Gauge Invariant Local EW Theory

e We shall use the metric convention, n, = diag(+1,-1,-1,-1), and
set h=c = 1. The theory is based on the local SU,(2) X U, (1)
invariant Lagrangian that includes leptons and quarks (with the
color degree of freedom of the strong interaction group SU_(3)) and
the boson vector fields that arise from gauging the global SU,(2) X
U, (1) symmetries:

Llncat = LF+ LW & 2 LE E LI

e [ is the free fermion Lagrangian consisting of massless kinetic
terms for each fermion:
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F 3 o= _ i — I.?'r— : r_-“rf' - E .'_' R P R

g A
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e The SU(2) generators satisfy
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2. The Gauge Invariant Local EW Theory

e We shall use the metric convention, n,,= diag(+1,-1,-1,-1), and
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e L is an SU(2) X U(1), invariant Lagrangian.

eQuantization is accomplished via the path integral formalism:

/ifle_-}[f?.-_-f[fm [DBtine

EOBABOES S = b




e In the local case the invariant measure p,, is the trivial one.

e We have to gauge fix the Lagrangian:

e We look at diagonalizing the charged sector and mixing in
the neutral boson sector. If we write

W = i_l Wl iW?2)
)

v A

{

— 2 L FTWR . WP,

then we get the fermion interaction terms: V2
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e In the neutral sector, we can mix the fields in the usual way:

I (TTWE L JTW ) — gsy, JE A,
'.} [ o =

v 2
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3. The Gauge Invariant Regularized Theory

e To regularize the fields, we write the non-local (smeared) fields as a
convolution of the local fields with a function whose Euclidean
momentum space Fourier transform is an function. This
function can be related to a Lorentz invariant operator distribution as

where d indicates smearing of the interacting fields.
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e An essential feature of the regularized, non-local field theory is

the requirement that 2
giving us a well defined classical limit in the gauge invariant case.

JWM, Phys. Rev. D 41, 1177 (1990); D. Evens, JWM, G. Kleppe,
and R. P. Woodard, Phys. Rev. D 43, 499 (1991); JWM, ArXiv
0709.4269 [hep-ph] (2007); JWM and V. T. Toth, ArXiv 0812.1991

[hep-ph] (2008).

e We first note that we must alter the quantized form of the
theory by generalizing the path integral:

I (O[®])) x / (D] [de][DW][D B[ D] [ Dy [ D] D] O[®] exp( i So[o] + i Sp[®]).

H|rt,r— — |nf Z:L,F-| = In ( / |[} | exp ( ] / r_r",.='§£f: .- ' + i.:;;'b] + ,;.I'TE .."]{I’[..r'fj ) ) _

e We note that in momentum space, the smeared fields are
related one-to-one to the local fields:

) T o2 N
. .

Din) = “Yeol D) = exT i 1)

II,J,H (p~ ol p) i._x[.}( )-"1-“-- 19
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3. The Gauge Invariant Regularized Theory

e To regularize the fields, we write the non-local (smeared) fields as a
convolution of the local fields with a function whose Euclidean
momentum space Fourier transform is an function. This
function can be related to a Lorentz invariant operator distribution as

L1+ ,‘H: )

) = &n = exp ( —_
# ") .
- J \ _-‘L'H'

e We now write the initial Lagrangian in non-local form:

where indicates smearing of the interacting fields.
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e We first note that we must alter the quantized form of the
theory by generalizing the path integral:

I (O[®])) x / [ D] [de’|[DW][D B][Dij] [ Dy][ D& [ D] O[®] exp(iSo[o] + i Sp[®]).

H[L;ﬂ — |nf Z[L'f]| = In ( / [D,] exp ( / dr : [-f-" [‘. f oy ‘{:IE[I}] 3. k..Jr'. _f'l'*I}{-.-r’-:I ) ) |

e We note that in momentum space, the smeared fields are
related one-to-one to the local fields:

e T [p=—m"
®(p) = G(p°)olp) = exp ( olp). =
>}
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e Field redefinition:

T (O[®))) /[z'::g[n;-‘;[m'g

1

N

‘« 4

. 2: Tree graphs fixed bv the nonlocal theory
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e Field redefinition:

M |
B
u'; ; <
W
W
« W P L
ey el

Y < A

y. 2 I‘I'r‘i‘ '_t!'.'t;}h:» fixed bv the nonlos -;-.1 theorv.
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e For convenience later on, we will define another set of propagators

;i — 1 — lrrljh',j;‘

so that the sum of the tree propagators with these give the causal
propagators of theory. This is useful when calculating
tree graphs, since one can merely replace the smeared propagator
with the barred one in the amplitude, and then add the appropriate
term to the interaction Lagrangian. This procedure guarantees that
all calculated tree graphs are local and point-like to all orders of
perturbation theory.

e Along with the interaction terms of the local theory that now look
identical after having made the field redefinition, we have to second
order in coupling additional terms coming from fixing the tree
graphs.
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The regularized propagators are G2 multiplied by those given in the
local theory.
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e One can then show that to second order in coupling, the non-local
L on-1ecat 1S iNVariant under the following non-linear gauge

transformations:

~abe |
i o~

W2 =AEduc® + gAE

2 ~abec peds v 2 |
_.'f'--.\"‘_frf_.' (-

.-iB“ =.\..E_:r'!:,l 1.
ig-EAcSW

»

Y = i) 4 _ A _
.-.r,.r_f,f 71:\:"‘*8 -+ :'.r_.r_f;‘ TE.\H!}.HH — -'.._,r = (_)) E-"kn.*..r.""'B v.'f'.

—_

> . o
vio {—_‘.ljf_.,\u" v I-ij T‘E'\'”f +

."ir 'I' — -

L P @ 2 Sl . ‘
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- 2
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577 = —Aod, B,
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has a Becchi, Rouet, Stora, Tyutin
(BRST) invariance, assuring us that we have a correctly quantized
theory to second order.

e The non-local action S___ .

e We will derive the measure by requiring that the theory remain
gauge invariant to all orders in the loop expansion. This is
equivalent, at second order, to ensuring that nothing picks up a
mass term at one loop. We work in the Feynman gauge (§= 1), for it
is much simpler operationally to work with, but it should be kept in
mind that unphysical degrees of freedom will occur. The simplest
self-energy is that of the ghost in Euclidean momentum space:
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e Next we can compute the fermion self-energies with massless
fermions:

-~

ie= & P
23 = s 2 PE\
— Fidfermion - I._‘-_-_ P / il El (

(4@ )= Jo

+. £ Fermuon self-energy

. 5: Boson self-energy
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e We split the vacuum polarization tensor into longitudinal and
transverse pieces:
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e To rid ourselves of the longitudinal degrees of freedom, we include
a measure contribution for each diagram:

£ f and S = 1 otherwise.

e For the B - B sector we have

- Vi 2 gi'_': ) _ ) =y
~~BB 21g°“1 ] o ig
'I‘f‘b —_— '—”1,{“,...!1 \ () —T3)"+ 7)) = =20-

(47)2 p— (47m)2 '

Big™ A2

(d7)= (4

—"HE'E'J' = : -H (& — ‘r.'{ S = ‘.;'}d_ ) = —hi;—_
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e We split the vacuum polarization tensor into longitudinal and
transverse pieces:
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e To rid ourselves of the longitudinal degrees of freedom, we include
a measure contribution for each diagram:

Al and S =1 otherwise.

: | ’;'_:’} — T__J‘..'-u + !‘:j""‘ — _jl'l : 't

s |—L.TI“'

ig2A2. — 5 _ig?AZ,
e W D (@ —-13)"+ Q") =—"80————-

(4d7)-

| =7 )=
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e For the W, - W, sector, we find

When we diagonalize the W, - W, sector into the physical W+
fields, we get:
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e For the W5 - B mixing sector we get
"‘r"'-"’ifr
(47)2

F

24" '.ijl _l';

=
A

q

e The sum of the above two terms is zero in the gauge invariant
case. The invariant measure is then given by the product of

each piece generated above. We also note that the BRST
invariance implies Slavnov-Taylor identities analogous to those in
the local case, which also must be satisfied to all orders for a valid

perturbation theory.

b
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4. Symmetry Breaking

e We shall now address the problem of how we break the gauge
symmetry. Let us consider the simple problem of breaking the U(1)

gauge symmetry of the massless photon Lagrangian:

The propagator in momentum space for the massless (spin-1)
vector particle is
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e For the W, - B mixing sector we get

S

T
F =

q

e The sum of the above two terms is zero in the gauge invariant
case. The invariant measure is then given by the product of

each piece generated above. We also note that the BRST
invariance implies Slavnov-Taylor identities analogous to those in
the local case, which also must be satisfied to all orders for a valid
perturbation theory.
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4. Symmetry Breaking
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gauge symmetry of the massless photon Lagrangian:

The propagator in momentum space for the massless (spin-1)
vector particle is
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e We now add a photon mass term

e This mass term in the Lagrangian explicitly breaks the U(1)
gauge invariance. However, we now introduce a proper self-

e The trivial perturbative solution leads to a renormalization of the
photon self-energy by canceling the quadratically divergent self-
energy and leaving the photon massless (renormalization).

202n0s B L




e We now break the vacuum symmetry and the U(1) gauge
invariance and find the non-perturbative, self-consistent
solution:

o ]

m_ = H!'U'I — — || ;_t]_]_q_i M- = “

e The propagator solution is now given by

! !‘-}_.".I'I' | fjr ] — .r L:-}I“;' I: ‘r! | _+- ¢ l-'}__'i' .I't'- ['!f }';Hr.hllu I: I‘;_. Pf J{'-},-"I'I rl'j I’I

+iD,\(q)ilI*(q")iD . (q)ilI""(¢*)iD,, (q) + ..

1 / 1 2

o

q= q-

LY ';H !

) {1 +H‘-*’f‘f -i—HE-';fp: (

e This integral is quadratically divergent.
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e In the present context of a simple pedagogical description of the
symmetry breaking mechanism, we can use a cutoff to make the
integral convergent at high energies. However, we will implement
the non-local, regularization field theaory to make the theory
ultraviolet (UV) complete. This UV completion introduces
a fundamental electroweak energy scale A,

for it preserves gauge invariance,
unitarity and Poincare invariance in the massless limit. Moreover, as
will be shown, it does not lead to a conflict with low energy
electroweak precision data in the SU, (2) X U, (1) broken symmetry

case,

e An alternative to the standard perturbative renormalization method
is to identify the photon self-energy with the photon mass. The
photon creates a fermion-anti-fermion pair which in turn
creates a photon, producing the photon self-energy diagram. The
fermion-anti-fermion pair can be pictured as a virtual fermion
“condensate".

e Thus, the photon acquires a mass

202009 G



e Let us now consider a non-Abelian gauge vector field W2, We
assume that W2 is an SU(2) isospin vector which transforms as

e Qur action now picks up a quadratic term from the lowest order
non-Abelian self-energy diagram:

g IITx[T*. T |W S WH,

e The gauge boson mass squared are determined by the
eigenvalues of the 3 by 3 matrix:

g*IITx[T. T?]
e L et us consider the symmetry group G which is broken down to
the subgroup H. We find that N(G) - N(H) Nambu-Goldstone
bosons will be generated. We start with N(G) massless gauge
bosons, one for each generator.
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e Upon symmetry breaking of the vacuum, the N(G) - N(H) Nambu-

Goldstone bosons are eaten by N(G) - N(H) gauge bosons, leaving
N(H) massless gauge bosons. For the case of SU (2) X Uy (1), we have

N(G) =4 and N(H) = 1 and we end up with one massless gauge
boson, namely, the photon. In our Lagrangian after the breaking of the

vacuum symmetry:

* We now diagonalize (m?)_, to obtain the masses of the gauge bosons.

e The mass matrix (m?)_, is a 4 by 4 matrix with 1 zero eigenvalue for
our group SU,(2) X U, (1). Since U(1) remains unbroken by the
breaking of the vacuum symmetry, the generator T_ associated with
the U(1) symmetry satisfies T_1= 0, leaving the photon massless.

1 ) . S——— ]- -3 ' 2
L”} s’ —tf'"H]i-I _:_I‘ - F —:—_Hl”’[[ J = ”'Br; )
4 8 |

3%
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e Let us introduce the spin-1 vector V9, and from the fermion-
anti-fermion loop graph, we obtain the mass matrix:

w

L
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e The unbroken electromagnetic gauge invariance that guarantees
a massless photon dictates that the upper left 2 by 2 block of the

matrix be proportional to the unit matrix. Moreover, it also says
that the upper-right and the lower-left blocks must vanish. The

vanishing of one of the eigenvalues guarantees a massless photon,
which corresponds to:
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5. Breaking The Symmetry With A Path Integral
Measure

e We break SU (2) X U, (1) down to U_, (1) not at the
as is dane in the standard model, which generates

boson masses at tree level, but in the gquantum regime, so that all
the effects show up at loop order (which is where the non-locality
shows up as well, as both are quantum effects). This means

which alters the quantization of the theory, in order to produce the
desired results.

e The symmetry breaking measure in our path integral

2/20,/2009 X7



e Since we want to mix the W, and B to get a massive Z and a
photon, we need to work with the measure in a sector which is
common to all gauge bosons. This implies working with the fermion

contributions and leaving the bosonic and ghost contributions
invariant.

e The self-energy contribution coming from

is given by

£l
0
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where we define

e If we insert this into the quadratic terms and invert, we get
the corrected propagators (in a general gauge):
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e When the longitudinal piece I, is nonzero in the unitary gauge
(where only the physical particle spectrum remains),
we have no unphysical poles in the longitudinal sector.

e In the diagonalized W= sector, we get

e We can now postulate the non-existence of a measure for the
fermionic contribution to the W boson self-energies. This introduces
three Nambu-Goldstone degrees of freedom into the W sector and

the W bosons acquire a longitudinal part and a corresponding mass.
To see this, note that

A9
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e In the B sector we have
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e The B - W; mixing sector originally looks like

Ligq'.

T\ﬁ T‘ [T Q-T ) |

l{l'f.r;'_‘i'!:t' T‘ irj_ ::,' ( J
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e Only the diagonal Z - Z piece has a longitudinal part

L(2eh +5132(Q — T% — 1632 T3(Q — T9).
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e In the B sector we have
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where we define

e If we insert this into the quadratic terms and invert, we get
the corrected propagators (in a general gauge):
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e Only the diagonal Z - Z piece has a longitudinal part
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e We observe that 17, (0)= 0, guaranteeing a massiess photon.

e Finally we obtain for the mixing sector:

e We make the identification

e This allows us to calculate the masses of the W= and Z° bosons
or, conversely, use their experimentally known masses
to calculate A,,.

FOBABLESS 1 = AL,




6. Calculation Of The p Parameter And Ay,

e When we consider the scattering of longitudinally polarized vector
bosons, the vector boson propagator reads

This differs from the vector boson propagator of the standard model
in that the squared mass m?2, of the vector boson is replaced by

the self-energy term IN"; For an on-shell vector boson, demanding
agreement with the standard model requires that the following
consistency equation be satisfied:
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e It contains terms that include the electroweak coupling constant,
the Weinberg angle, fermion masses, and the A, parameter. As all
these except A are known from experiment, the equation

the right-hand side of which contains A, can be used to determine
N\, Using

mz> = 91.1876 + 0.0021

£

We get *
g Aw = o41.9 ( eV,

 Knowing A, allows us to solve the consistency equation for the W-
boson mass. Treating m, as unknown, we solve using

> 120/2008 mw ~ 80.05 GeV. AS




6. Calculation Of The p Parameter And Ay,

e When we consider the scattering of longitudinally polarized vector
bosons, the vector boson propagator reads

This differs from the vector boson propagator of the standard model
in that the squared mass m2, of the vector boson is replaced by

the self-energy term IN";. For an on-shell vector boson, demanding
agreement with the standard model requires that the following
consistency equation be satisfied:

1i(g2 + g2)AZ,
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e In the B sector we have
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where we define

e If we insert this into the quadratic terms and invert, we get
the corrected propagators (in a general gauge):
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e We observe that ", (0)= 0, guaranteeing a massiess photon.

e Finally we obtain for the mixing sector:

 We make the identification

e This allows us to calculate the masses of the W= and Z° bosons
or, conversely, use their experimentally known masses
to calculate A,,.
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6. Calculation Of The p Parameter And Ay,

e When we consider the scattering of longitudinally polarized vector
bosons, the vector boson propagator reads

This differs from the vector boson propagator of the standard model
in that the squared mass m2, of the vector boson is replaced by

the self-energy term I17; For an on-shell vector boson, demanding
agreement with the standard model requires that the following
consistency equation be satisfied:
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e It contains terms that include the electroweak coupling constant,
the Weinberg angle, fermion masses, and the A, parameter. As all
these except A, are known from experiment, the equation

the right-hand side of which contains A, can be used to determine
Ny Using

17 7F = Ij‘llt‘?f_; = '”l" r_}l

—_

We get

» Knowing A, allows us to solve the consistency equation for the W-
boson mass. Treating my, as unknown, we solve using

> 120/2009 mw == R0.05 GeV. a5




e This result, which does not incorporate radiative corrections, is
actually slightly closer to the experimental value m, =
80.398 £ 0.025 GeV than the comparable tree-level standard

model prediction m,, = 79.95 GeV, obtained using p = 1 where

We get from our model

which agrees well with estimates from the experimental ratio
of neutral to charged currents.

e It is anticipated that our result for my, (correct to 0.5 %) will
reach the correct value when radiative corrections are included,
for our regularization scheme will introduce some suppression of
higher-order corrections at the energy scale of m,,.
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e It contains terms that include the electroweak coupling constant,
the Weinberg angle, fermion masses, and the A, parameter. As all
these except Ay are known from experiment, the equation

the right-hand side of which contains A, can be used to determine
N\, Using

g =t O, 02312, | ™ 2 mz = 91.1876 + 0.0021

We get

» Knowing A, allows us to solve the consistency equation for the W-
boson mass. Treating m, as unknown, we solve using
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e This result, which does not incorporate radiative corrections, is
actually slightly closer to the experimental value m, =
80.398 £+ 0.025 GeV than the comparable tree-level standard

model prediction m,, = 79.95 GeV, obtained using p = 1 where

We get from our model

p =~ 1.0023.

which agrees well with estimates from the experimental ratio
of neutral to charged currents.

e It is anticipated that our result for my, (correct to 0.5 %) will
reach the correct value when radiative corrections are included,
for our regularization scheme will introduce some suppression of
higher-order corrections at the energy scale of m,,.
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7. Fermion Masses

e We will generate fermion masses from the finite one-loop
fermion self-energy graph:

e This method of deriving fermion masses is more economical in
assumptions, as we obtain the masses from our original massless
electroweak Lagrangian by calculating fermion self-energy graphs
(JWM, ArXiv 0709.4269 [hep-ph] (2007); JWM and V. T. Toth,
ArXiv 0812.1991 [hep-ph] (2008).)

e A fermion particle obeys the equation:
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e This result, which does not incorporate radiative corrections, is
actually slightly closer to the experimental value m, =
80.398 £ 0.025 GeV than the comparable tree-level standard

model prediction m,, = 79.95 GeV, obtained using p = 1 where

We get from our model

which agrees well with estimates from the experimental ratio
of neutral to charged currents.

e It is anticipated that our result for m, (correct to 0.5 %) will
reach the correct value when radiative corrections are included,
for our regularization scheme will introduce some suppression of
higher-order corrections at the energy scale of m,,.
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7. Fermion Masses

o We will generate fermion masses from the finite one-loop
fermion self-energy graph:

e This method of deriving fermion masses is more economical in
assumptions, as we obtain the masses from our original massless
electroweak Lagrangian by calculating fermion self-energy graphs
(JWM, ArXiv 0709.4269 [hep-ph] (2007); JWM and V. T. Toth,
ArXiv 0812.1991 [hep-ph] (2008).)

e A fermion particle obeys the equation:
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Here, my is the bare fermion mass, m; is the observed fermion
mass and >(p) is the finite proper self-energy part. We have

— Y . A
myg — moy = L(p.myg.g. Af)|p—m,=0.

where /A denotes the energy scales for lepton and quark masses.

e A solution can be found by successive approximations starting
from the bare mass m,, but we can also find a solution for m.#0
when m = 0 for a (Y. Nambu and
G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)).

e The one-loop correction to the self-energy of a fermion with
mass min the regularized theory for a massive vector field is
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e Promoting the propagator to Schwinger proper time integrals:
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e In addition to admitting a trivial solution at m, = 0, this equation
also has non-trivial solutions that can be computed numerically. In a
theory with a single massless vector boson, we get

Using the electroweak coupling constant g ~0.649, we obtain for
leptons

For quarks, we use the strong coupling constant g. ~ 1.5, and
also introduce a color factor 3. Thereafter, we obtain

S T
A =35m¢.
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e For a top quark mass m, = 171.2 GeV, the corresponding energy
scale is about A\, ~ 6 TeV.

e In these calculations, A; plays a role that is similar to that of the
diagonalized fermion mass matrix in the standard model. The number of
undetermined parameters, therefore, is the same as in the standard
model: for each fermion a corresponding A determines its mass.

e Qur model permits massive neutrinos. However, as the A. correspond
to the diagonal components of a fermion mass matrix, off-diagonal
terms are absent, and no flavor mixing takes place. Therefore, self-
energy calculations alone are not sufficient to account for observed

neutrino oscillations.
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e However, in addition to fermion self-energy graphs, another case
must be considered. Emission or absorption of a charged vector
boson W= can be flavor violating, through the off-diagonal
components of the CKM matrix. In the standard model, such flavor
violating terms are not considered significant, due to the smallness of
the corresponding CKM matrix elements. However, in our regularized
theory, additional factors A, enter into the picture in a manner
similar to the self-energy calculation we just described. These may
include terms that correspond to the off-diagonal elements of the
neutrino mass matrix, offering a natural explanation for neutrino
oscillations without having to introduce new interactions.
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8. Schwinger-Dyson Equations and Fermion Masses

e To solve the fermion mass problem, we must consider the integral
equation obtained from the Schwinger-Dyson equation (J. S.
Schwinger, Proc. Nat. Acad. Sc. 37, 452 (1951); F. ]. Dyson, Phys.
Rev. 75, 1736 (1949); A. Raya, ArXiv: 0902.1791 [hep-ph])).

1 (0)—1, i d*k Bo £ INTY M
S (p) =Sg (p) —ig / YESE(R)TY (K.p) D, (k — p)

(21)4

where g2 is the coupling, D, represents the complete vector particle
propagator and v the full fermion-vector particle vertex.

il 3 I.‘!I:J;F'r. 1'.f| f‘-'. _\ f !

Mo = —=

72 J (k — p )2 k2 N3 .1 _\_fl

Z/20,/2009 54




e This equation can be linearized and we set

M=k = _".Jrlilil — ru._‘:-

which yields the linearized equation:

e My = 0 is a (trivial) solution of this equation, and would
correspond to that derived in perturbation theory. However, we
are interested in a , which can be obtained
using analytical and numerical techniques. Dynamical chiral
symmetry breaking, QCD confinement and our EW model are
crucial features of this equation.
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8. Schwinger-Dyson Equations and Fermion Masses

e To solve the fermion mass problem, we must consider the integral
equation obtained from the Schwinger-Dyson equation (J. S.
Schwinger, Proc. Nat. Acad. Sc. 37, 452 (1951); F. ]J. Dyson, Phys.
Rev. 75, 1736 (1949); A. Raya, ArXiv: 0902.1791 [hep-ph])).
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where g?is the coupling, D, represents the complete vector particle
propagator and v the full fermion-vector particle vertex.
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e This equation can be linearized and we set
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which yields the linearized equation:
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e m,; =0 is a (trivial) solution of this equation, and would
correspond to that derived in perturbation theory. However, we
are interested in a . which can be obtained
using analytical and numerical techniques. Dynamical chiral
symmetry breaking, QCD confinement and our EW model are
crucial features of this equation.



S. The Running Of Coupling Constants And Unitarity

e The Higgs field resolves the issue of unitarity, by
out badly behaved terms in the tree-level amplitude of processes
involving longitudinally polarized vector bosons, for instance W+ W-, ->
W+ W- or ete- -> W* W-, . The challenge to any theory that aims to
compete with the SM without introducing a Higgs particle is to generate
the correct fermion and boson masses on the one hand, and

for these types of scattering processes on the other

(JWM and V. T. Toth, ArXiv 0812.1994 [hep-ph]).

e Given the way [T appears in the vector boson propagator, it is
reasonable to make the identification:
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e When we rewrite the theory's Lagrangian in terms of
massive vector bosons, the Lagrangian picks up a finite mass
contribution from the total sum of graphs:

o v is the electroweak symmetry breaking scale (which, in the SM,
is the vacuum expectation value of the Higgs scalar).

e Consistency requires the running of the constants g and g’.
Starting with the W mass, we obtain

g*(q*) y£(a°) , A (m7%) - X2
g4 J . i Sl T L A 2 0 ]

Y 4 3 - z Py > >y
_';klflrj—:_-.fi - I 4 :,f"‘1.r,r.-?l1
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Using the Z mass we obtain

¥ o | 2 -» 2 I .-: \
g-{qg-) _.'_”.'-_hf._:_ H-:rr-"'f }

L T N T I T
g={ms ) + g<(m=) H‘_r“ (=)
; £ s £

which establishes the running of g'(g2).

e These relationships also allow us to calculate the running of the
Weinberg angle 6, which is defined through the ratio of the

coupling constants g and g’ as

.._ta;‘: :-12:?“_-;1 H.,. + 32 a.j_];;_lw-:l'_r i [_;,! = I_ =
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e When we rewrite the theory's Lagrangian in terms of
massive vector bosons, the Lagrangian picks up a finite mass
contribution from the total sum of graphs:

) (%)

e v s the electroweak symmetry breaking scale (which, in the SM,
is the vacuum expectation value of the Higgs scalar).

e Consistency requires the running of the constants g and g’.
Starting with the W mass, we obtain

_*.Jj[*_a’: )

Z7 ~ (245 GeV)2.

ey }
g=(m=)
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Using the Z mass we obtain

¥
£ | ‘J!I )
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which establishes the running of g'(g2).

e These relationships also allow us to calculate the running of the
Weinberg angle 6, which is defined through the ratio of the

coupling constants g and g’ as
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FIG. 1: The running of the W mass {red dotted line) and £
mass (dashed ereen line) as functions of momentum. Both
axes are measured in units of GeV .
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FIG. 2: The running of the electroweak coupling constant g
as a function of momentum. measured in GeV.
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FIG. 3: The running of the Weinberg angle as a function of
momentum, measured in GeV

e The scattering of two longitudinally polarized W vector bosons can
take place through one of the following processes:
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e Feynman Rules Of The Standard Model And The FEW Theory.

For the vernces. all momenia are assumed to be pom-
ing tnward towards che vertex
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e In the high energy limit, the SM with a Higgs yields the matrix
element

iMsu(W; W, — W Wp) =

- 1':_;:-;: g4+ 3
J'i'f_ e e
) -_I:['lH-\H"rll — COs H)

e In the Higgless model we get

iMpyr =2 M, + i M + 1My

."\ru,h.

L e 41 II-LH.II'IE- - :::IIJ;,-_,- l'iJH‘:h'.! |
==l‘”"' —-'h —le ]_| L

e In the case of the Higgless FEW theory, no additive cancellation
takes place. However,
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FIG. 4: The tree-level scattering amplitude of longitudinal
W= bosons at a scattering angle # = x/2. The SM (blue
dotted line) predicts an asymptotically constant amplitude
at high energy. Without the Higgs particle (red dashed line)
the amplitude is divergent. In the FEW theorv (black solid
line) this divergent amplitude is suppressed bv the running of
the electroweak coupling constant.
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e The production of W+*W- pairs from electron-positron collisions can
take place via one of the following

Processes.
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FIG. 5: The scattering amplitude. at a scattering angle of
¢ /2. of electrons and positrons annihilating into longi-

—_—

tudinally polarized W= bosons as a function of the center-
of-mass energy /s. measured in GeV. The SM result (blue
dotted line) is indistinguishable from the SM result that was
calculated without the Higes particle (red dashed line). as due
to the smallness of m.. the divergent term that is proportional
to m./'s does not begin to dominate until much higher en-

ergies. Our Higeless theorv. however, predicts a significant

thI)prl_"h:‘:iU[l of the -Etulplitllili.* even at moderate energles.
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Running sin?6,(Q2) measured at various scales, compared with the
predictions of the SM. The low energy points are from atomic parity
violation (APV), the polarized Mgller asymmetry (PV) and deep
inelastic neutrino scattering. Q,,.., shows the expected sensitivity of a
future polarized e- measurement at Jefferson Lab. Courtesy of the
Particle Data Group.
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e

_no ZWW vertex (Gentie)
only v, exchange (Gentie)

Cross section for e-e+ -> W-W+ compared with the SM expecta-
tion. Plot courtesy of the LEP Electroweak Working
Group, http://www.cern.ch/LEPEWWG/.
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10. Conclusions

e An electroweak model without a Higgs particle that spontaneously
breaks SU,(2) X U, (1) has been developed, based on a finite
quantum field theory. We begin with a massless and gauge
invariant theory that is UV complete, Poincare invariant and unitary
to all orders of perturbation theory. A fundamental energy scale A,
enters into the calculations of the finite Feynman loop diagrams. A
path integral is formulated that generates all the Feynman
diagrams in the theory. The self-energy boson loop graphs with
internal fermions comprised of the observed 12 quarks and leptons
have an associated measure in the path integral that is
spontaneously broken to generate 3 Nambu-Goldstone scalar
modes that give the W= and the Z° bosons masses, while retaining
a zero mass photon.
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e The W W, -> W W, and e+e- -> W+, W-, amplitudes

due to the running with
energy of the electroweak coupling constants g, g’ and e.
This is essential for the physical consistency of the model as is the
case in the standard Higgs electroweak model.

» A self-consistent calculation of the energy scale yields A, = 542
GeV and a prediction of the W mass from the W-boson self-energy
diagrams in the symmetry broken phase gives m,, = 80.05 GeV,
which is accurate to 0.5%.

e The origin of mass in the universe is due to self-consistent
solutions of QFT self-energies — not to a classical scalar Higgs field
and Yukawa interactions.
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