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Abstract: We derive geometric correlation functions in the new spinfoam model with coherent states techniques, making connection with quantum

Regge calculus and perturbative quantum gravity. In particular we recover the expected scaling with distance for all components of the propagator.
We expect the same technique to be well-suited for other spinfoam models.
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Harmonic-radial gauge in

classical EM and GR

Graviton propagator in the new models
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Outline of the talk

@ Graviton propagator - the physical picture
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Outline of the talk

@ Graviton propagator - the physical picture
@ Spinfoams

@ New models

@ The new propagator

@ Conclusions, work in progress and outlook
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Colosi, Conrady, Doplicher

Graviton propagator - the physical picture yi. e Rorei Tects

3D boundary semiclassical state

/cf gravitational field )

Spinfoams assign an amplitude to this boundary state: (W/|v)
If ¥ = ¥ @ Your — (W) ~ (Your| €™ |tin)

(W codes the dynamics of quantum general relativity.
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Colosi, Conrady, Doplicher

Graviton propagator - the physical picture g o Rorei pects

3D boundary semiclassical state
of gravitational field v)

.

Spinfoams assign an amplitude to this boundary state: (W/|v))
If ¥ = ¥, @ Your — (WD) ~ (Yout| €™ |tin)
(W codes the dynamics of quantum general relativity. Define

(W)
= Wi

that we call physical expectation value, in contrast to the kinematical expectation

value |
— <L1| ; |w>kin
('>kin a—

¥ II? ¥ I|'Il> -
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Graviton propagator - the physical picture

boundary semiclassical state coding
the geometry (intrinsic and extrinsic)
of a Euclidean 3-sphere
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Graviton propagator - the physical picture

boundary semiclassical state coding
the geometry (intrinsic and extrinsic)
of a Euclidean 3-sphere

Then construct an excited boundary state by acting with metric field operators at
two points:

(g(x)— < g(x) >)(ely)— < g(y) >) [¥)
We can construct the analog of the linearized gravity propagator (0|hy, hys|0) :
((g(x)— < g(x) >)(g(y)— < g(y) >)) = (g(x)e(y)) — (g(x)){el¥))

It is called 2-point function, or graviton propagator, in (nonperturbative) quantum
gravity. What is it?
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Graviton propagator - the physical picture

boundary semiclassical state coding
the geometry (intrinsic and extrinsic)
of a Euclidean 3-sphere

Then construct an excited boundary state by acting with metric field operators at
two points:

(g(x)— < g(x) >)(g(y)— < gly) >) [¥)
We can construct the analog of the linearized gravity propagator (0|h,, hys|0) :

((g(x)— < g(x) >)(ely)— < gly) >)) = (g(x)e(y)) — (g(x))(g(¥))

It is called 2-point function, or graviton propagator, in (nonperturbative) quantum
gravity. What is it? It represents the probability of detecting two excitations at
the spacetime points x and y over flat space-time (here we consider only the
Euclidean signature). More correctly, by flat space-time we mean a semiclassical
state peaked over this classical geometry.
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Graviton propagator - the physical picture

boundary semiclassical state coding
the geometry (intrinsic and extrinsic)
of a Euclidean 3-sphere

OBS: how can a 3D boundary state code the flat 4D geometry? the boundary
data are intrinsic and extrinsic curvature, which classically determine, via Einstein
equations, the geometry in the interior.
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Graviton propagator - the physical picture

boundary semiclassical state coding
the geometry (intrinsic and extrinsic)
of a Euclidean 3-sphere

OBS: how can a 3D boundary state code the flat 4D geometry? the boundary
data are intrinsic and extrinsic curvature, which classically determine, via Einstein

equations, the geometry in the interior.

OES: in perturbative quantum gravity h = g — n is a small fluctuation of the
background flat metric i and a perturbative version of the action is considered. It

is well-known that the resulting theory is not renormalizable. In LQG and
spinfoam theory, A can assume any value but the boundary state mimic the flat
background, so that only small h matter in the calculation of n-point functions.
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Graviton propagator - the physical picture

boundary semiclassical state coding
the geometry (intrinsic and extrinsic)
of a Euclidean 3-sphere

OBS: how can a 3D boundary state code the flat 4D geometry? the boundary
data are intrinsic and extrinsic curvature, which classically determine, via Einstein
equations, the geometry in the interior.

OBS: in perturbative quantum gravity h = g — np is a small fluctuation of the
background flat metric i and a perturbative version of the action is considered. It
is well-known that the resulting theory is not renormalizable. In LQG and
spinfoam theory, A can assume any value but the boundary state mimic the flat
background, so that only small h matter in the calculation of n-point functions.

Perturbativity inside non-perturbativity!
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Spinfoams - discretization of classical

Start with a triangulated manifold (faces/triangles, edges/tetrahedra,
vertices/4-simplices) and dicretize the Holst-Plebanski action for GR:

S — Zf tr(#Bf Ur + %Bf Uf)
B=ene
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Spinfoams - discretization of classical

Start with a triangulated manifold (faces/triangles, edges/tetrahedra,
vertices/4-simplices) and dicretize the Holst-Plebanski action for GR:

S — Zf tr(#Bf Ur + %Bf Uf)
B=ene

@ Simplicity constraint *Bf - Bf =0
@ Cross-simplicity constraint *Be-Ber =0 f.f'Ct

@ Closure constraint } . . Br=0

Replace cross-simplicity by:

in, st n.l B Fc i
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Spinfoams - discretization of classical

Start with a triangulated manifold (faces/triangles, edges/tetrahedra,
vertices/4-simplices) and dicretize the Holst-Plebanski action for GR:

S — Zf tr(#Bfo ¥ %Bfo)
B=ene

@ Simplicity constraint *Bf - Bf =0
@ Cross-simplicity constraint *Bf-Bes =0 f.f'Ct

@ Closure constraint ) ., Br=0

Replace cross-simplicity by:
in, st .l B Fic

Boundary variables: B¢(t1). Br(2). Ur(t1, B2)

The variable conjugate to U is J- = «xBf + %Bf
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Spinfoams - quantization

Quantize the theory choosing an appropriate Hilbert space. Similarly to lattice
Yang-Mills theory, define the kinematical Hilbert space as (G=Spin(4))

(cY) L = # of boundary faces (links)
and quantize
Je(t1) — Li. vector field
Je(t2) — r.i. vector field

Impose strongly the simplicity and closure constraints.
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Spinfoams - quantization

Quantize the theory choosing an appropriate Hilbert space. Similarly to lattice
Yang-Mills theory, define the kinematical Hilbert space as (G=Spin(4))

[2(GhH L = # of boundary faces (links)
and quantize
Je(t1) — Li. vector field
Je(t2) — r.i. vector field

Impose strongly the simplicity and closure constraints.
@ Closure constraint project onto the gauge-invariant subspace

f(g) = f(hgh™)

Then an orthonormal basis of this subspace is given by spin-networks where
each link is labeled by irreps of Spin(4)=SU(2)=SU(2), i.e. couples of spins
(jT.j7). and each node is labeled by intertwiners between irreps
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Spinfoams - quantization

Quantize the theory choosing an appropriate Hilbert space. Similarly to lattice
Yang-Mills theory, define the kinematical Hilbert space as (G=Spin(4))

[2(GH [ = # of boundary faces (links)
and quantize
Je(t1) — Li. vector field
Je(t2) — r.i. vector field

Impose strongly the simplicity and closure constraints.
@ Closure constraint project onto the gauge-invariant subspace

f(g) = f(hgh™)
Then an orthonormal basis of this subspace is given by spin-networks where
each link is labeled by irreps of Spin(4)=SU(2)=SU(2), i.e. couples of spins
(jT.j7). and each node is labeled by intertwiners between irreps
@ Simplicity constraint restricts these spin labels to be of the form

| B8 i
1— J

P

irsa: 09020023 Page 21/87



Spinfoams - the model of Barrett and Crane

@ Strong cross-simplicity constraint In the Barrett-Crane model the
cross-simplicity constraint is imposed (too) strongly and restricts the
intertwiner space to the 1-dimensional space spanned by the BC intertwiner.
The vertex amplitude (4-simplex amplitude) depends only on the spins. Two
problems arise:
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Spinfoams - the model of Barrett and Crane

@ Strong cross-simplicity constraint In the Barrett-Crane model the
cross-simplicity constraint is imposed (too) strongly and restricts the
intertwiner space to the 1-dimensional space spanned by the BC intertwiner.
The vertex amplitude (4-simplex amplitude) depends only on the spins. Two
problems arise:

the boundary state space doesn't match with the one of LQG
and
despite some components of the graviton propagator work well (Bianchi, Modesto,
Rovelli, Speziale), the other components have the wrong scaling (Alesci. Rovelli)

These problems could trace back to the fact that we have overconstrained the
system; the intertwiner space is too small!
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Spinfoams - new models: EPRL, & FK. &5, Mo, Rovell Lvine

vV Freidel, Krasnov

Consider for simplicity the EPRL, model (=FK,, for v < 1)
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Spinfoams - new models: EPRL, & FK. g8, s, Rovelll Livine

Freidel, Krasnov

Consider for simplicity the EPRL, model (=FK,, for v < 1)

@ Weak cross-simplicity constraint We can solve weakly this constraint.
Alternatively we impose the single master constraint:

C'=B"=0 & ‘6|:0 (master constraint)
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Splnfoams - Néew models EPRLA & FK—- Engle, Pereira, Rovelli, Livine

Freidel, Krasnov

Consider for simplicity the EPRL, model (=FK,, for v < 1)

@ Weak cross-simplicity constraint We can solve weakly this constraint.
Alternatively we impose the single master constraint:

C'=B"=0 & ‘E_|:O (master constraint)

Each (j©.j~) component in the Peter-Weyl decomposition of [%(Spin(4)) can be
further decomposed:

G*.iT) =it @i~ =li* —iTle-..el* +i)

The cross-simplicity constraint selects the component j satisfying the following

relation | |
1+

:|: = ) =

Y B 5 g |

i.e. the highest or the lowest weight.
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Spinfoams - new models (2)

— intertwiners are of the form (1 — 1 with LQG intertwiner space):
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Spinfoams - new models (2)

— intertwiners are of the form (1 — 1 with LQG intertwiner space):

The 4-simplex amplitude is the contraction of 5 of them. In the recoupling basis:

Weprc (. 1) = Y _ 155G, iM)15iG . i7 ) (i if iy ) - - - F(is. i . g )
Where N s
)= G el o a
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Coherent intertwiners

Coherent states of SU(2) are defined rotating the eigenstates of J? and J* with
minimal uncertainty:

gli,. )
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Coherent intertwiners

Coherent states of SU(2) are defined rotating the eigenstates of J? and J# with
minimal uncertainty:

gU.4J)
Taking the coset SU(2)/U(1), where the U(1) subgroup is a rotation about z
axis, we define the notation

g(n)ij) =li.n)  neS% g(n)<SUR)/U(1)
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Coherent intertwiners

Coherent states of SU(2) are defined rotating the eigenstates of J? and J* with
minimal uncertainty:

gli-=j)

Taking the coset SU(2)/U(1), where the U(1) subgroup is a rotation about z
axis, we define the notation

g(n)i.j)=li.n)  neS% g(n)<SUR)/U(1)

The important property is
L= liom)G.mi = [ dgli.g).gl = [ dnij.n)(i.n

so that coherent states form an overcomplete basis of H;.
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Coherent intertwiners

Coherent states of SU(2) are defined rotating the eigenstates of J? and J* with
minimal uncertainty:

glj.+j)
Taking the coset SU(2)/U(1), where the U(1) subgroup is a rotation about z
axis, we define the notation

g(n)j.j)=li.n)  neS2 g(n)<SUR)/U(1)

The important property is
L= liom)G.mi = [ dgli.g).gl = [ dnij.n)(i.n

so that coherent states form an overcomplete basis of H;. We define a coherent
(4-valent) intertwiner by taking the tensor product of four coherent states and
then projecting onto the invariant subspace:

Ut - - - &, Py - . . Ng) :fdggp U, m) @ ... D |jg, Ng)
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Spinfoams - EPRL, model (3)

Consider the EPRL, 3 or FK, .; vertex in the coherent intertwiner basis. Using
the following decomposition property of coherent states

we can untie the nodes (see 2) and rewrite the vertex amplitude as a product of
contractions of coherent states:

W(j.n) = / &g [ [ (—nasl(g2) g |ma) e | | (—nasl(gs) g5 m5a)

a<b a<b

We have used also the tensoring property of coherent states

to write in powers of the 1/2 representation.
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AsymptOt[C ana|y515 Barrett, Fairbairn, Dowdall, Gomes, Hellmann - Conrady, Freidel

W(i.n) = / dg=eSm8) 5 =" 2% log(—nybl(g) ey nsa) + (+ — —)

a<b

Consider this expression for large j's.
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Spinfoams - EPRL., model (3)

Consider the EPRL, 3 or FK, .; vertex in the coherent intertwiner basis. Using
the following decomposition property of coherent states

we can untie the nodes (see 2) and rewrite the vertex amplitude as a product of
contractions of coherent states:

W(.n) = _/ d°g™ | [ (—nasl(€3) g5 1mba) P2 | | (—nasl(85) 2 |16a) o0
a<b a<b

We have used also the tensoring property of coherent states

11/2.MR...°(11/2.n) = |j.n
1/2. n; 11/2.n) = |j. m)
2] times

to write in powers of the 1/2 representation.
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AsymptOtIC analySIS Barrett, Fairbairn, Dowdall, Gomes, Hellmann - Conrady, Freidel

W(i.n):/dgiesu-’"'g) S = ZZ!JI,IOE{ n.pl(87) " g5 |mpa) + (+ —)

a<b

Consider this expression for large j's.
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ASymptOtIC anaIYSIS Barrett, Fairbairn, Dowdall, Gomes, Hellmann - Conrady, Freidel

W(i. n) = / dg=eSm8) 5 =" 2% log(—mybl(g) ey Insa) + (+ — —)

a<b
Consider this expression for large j's. The saddle point equations are:

max Re S — g;tnab — —ggtnba

adS ;
92 =0 = Zjabﬂabzﬂ
bta
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AsymptOtiC analySIS Barrett, Fairbairn, Dowdall, Gomes, Hellmann - Conrady, Freidel

W(i.n) = / dg=eS0m8) 5 =" 2% log(—nubl(gF) eg nsa) + (+ — )

a<b

Consider this expression for large j's. The saddle point equations are:

max Re S — gfnab = —ggtnba
oS :
Er =0 = Zjabﬂab =0
b=z

Solutions exist if the normals (boundary data) are s.t. they come from a
geometrical 4-simplex defined by the ten areas (boundary spins): n = n(j).
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AsymptOtiC aHBIYSIS Barrett, Fairbairn, Dowdall, Gomes, Hellmann - Conrady, Freidel

W(j. n):jdgiesﬁ-"-g) S =Y 2} log(—n.|(gF) g nea) + (+ = )

a<b

Consider this expression for large j's. The saddle point equations are:

max Re S — g;tnab — —gfnba
oS :
o2 =0 = Zjabnab =0
b=2

Solutions exist if the normals (boundary data) are s.t. they come from a
geometrical 4-simplex defined by the ten areas (boundary spins): n = n(j).
It follows:

( ) g:l:‘n ) = Ej¢il . nab> (D:_b s Q.a_b — ¢ab dihedral angle between 2 and ;
Then

) A(j)(e™F= +cc) n=n(j L :

W(j ﬂ) - { U)( ) (J) Sﬂeggae —= Z ’i”.fabcbab(_l)

suppressed otherwise
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The new propagator

G =B {ET- EREC - ED)

m
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The new propagator

G — (B2 . EPES, -E?) — (B2 - ER)(ES, - EY)

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around j., = jo, and 65 /jo — 0

W) = Z () 3o Q)= e 0% aditivde X, dan
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The new propagator

G —{Er-ELEC B0} —(ES- EQ(EC - BT

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around jsp = jo, and dj/jo — O

W) =Y () liJe v() = e T Tocs S

Key assumption: |j)o is the pentagonal state with coherent intertwiners at nodes.

o = lab, mali), - - - » nsa(f))

It is well-defined as a fluctuation around the equilateral configuration.
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The new propagator

G —{E- e -0 {EL - EQIE: ED)

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around jsp = jo, and dj/jo — O

W) =Y () liJe ¥() = e 0TS Tacs S
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The new propagator

G —(Er-EEC B —{(ES-EQ(EC - ED)

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around j,; = jo, and dj/jg — 0

W) =3 v lije (i) = e BT HAR T oo

J

Key assumption: |j)o is the pentagonal state with coherent intertwiners at nodes.

o = lab, mali), - - - » nsalf))

It is well-defined as a fluctuation around the equilateral configuration.
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The new propagator

G —{E - - — (B - EQ(EL L)

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around jsp = jo, and dj/jo — O

W) = Z ©(0) h)e Q)= e %1 adh-ivde X,y Oian

Key assumption: |j)o is the pentagonal state with coherent intertwiners at nodes.

It is well-defined as a fluctuation around the equilateral configuration.

OBES old: approximate coherent states (Gaussians) new: exact coherent states =
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The new propagator

& —(Er-ELE -0y (FT-ER(EL -EC)

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around jsp = jo, and dj/jo — O

. aos i s 1 5iT oSt :
W) :ZW(J) 1o Y()=e 001 adH-ivde X, O0an

J

Key assumption: |j)o is the pentagonal state with coherent intertwiners at nodes.

o = lab, mali), - - - » nsa(j))

It is well-defined as a fluctuation around the equilateral configuration.

irsa: 09020023 Page 46/87



The new propagator

G —{Ey- BB — (B - EN(ES - E)

@ New boundary state superposition of semiclassical coherent 4-simplices,
peacked around jsp = jo, and dj/jo — O

W) =Y v li)e (i) = e wT AR T oo

Key assumption: |j)q is the pentagonal state with coherent intertwiners at nodes.

It is well-defined as a fluctuation around the equilateral configuration.

OBS old: approximate coherent states (Gaussians) new: exact coherent states =
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The new propagator (2)

@ Grasping operators The grasping operator E; acts at node n creating a
3-valent node “near” the original node along the link na. Double-grasping
creates two nodes and joins the free hands.

E’-E° >< = >< (double-grasping action)
“Y ¥ Y‘ . 3 Y =0 (gauge invariance)

Where do they come from?

Pirsa: 09020023 Page 48/87



The new propagator (2)

@ Grasping operators The grasping operator E; acts at node n creating a
3-valent node “near” the original node along the link na. Double-grasping
creates two nodes and joins the free hands.

Ef: - Eﬁ >< = X (duuble—gmsping acl:iun)
'"Y + Y_ gl == (zauge invariance)

Where do they come from?
They are the LQG electric flux operators. Here they measure areas and dihedral
angles between triangles.
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The new propagator (2)

@ Grasping operators The grasping operator E; acts at node n creating a
3-valent node “near’ the original node along the link na. Double-grasping
creates two nodes and joins the free hands.

E:: - Eﬁ >< = X (duuble—gmsping actiun)
Y + Y 4 Y =l )

Where do they come from?
They are the LQG electric flux operators. Here they measure areas and dihedral
angles between triangles.

The propagator is a simplicial non-perturbative version of the standard propagator
of perturbative theory:

Gam” — G*?7(x. y) = (0| (x)** (¥)|0)
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The new propagator (3)

Consider the action on a coherent 4-simplex,
E;-Enli}o aa E}-EJEL,-Efli)o

which enter the definition of our propagator. Concentrate on the first (for the
other we can do the same reasoning). It is a state with grasped coherent
intertwiners.
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The new propagator (3)

Consider the action on a coherent 4-simplex,
E:-Eli}o aa E)-EZE; -Epli)o

which enter the definition of our propagator. Concentrate on the first (for the
other we can do the same reasoning). It is a state with grasped coherent
intertwiners. To compute its evaluation (W| E] - Eg J)o we use an untying-rule

similar to the previous one, obtained moving graspings across the node from the
SU(2) to the Spin(4) sector:
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The new propagator (3)

Consider the action on a coherent 4-simplex,
E;-Erli}a e E}-ELEL-ELli)o

which enter the definition of our propagator. Concentrate on the first (for the
other we can do the same reasoning). It is a state with grasped coherent
intertwiners. To compute its evaluation (W| E] - Eﬂ J)o we use an untying-rule

similar to the previous one, obtained moving graspings across the node from the
SU(2) to the Spin(4) sector:

/dSEi Uﬂa-. —nna|g(g:)_1gj Unae ”an} Unb- _nnbiﬂ'(gj)_lg;_ Unb- nbn>
p (non——grasped facturs) .

It is just the new vertex evaluated on a grasped-intertwiner configuration. This

Pirsa: 09020023 Page 53/87
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The new propagator (4)

... we have the identity:

(1/2. m|o(1/2. ny)
(1/2.m|[1/2. m)

. 4 (mloim) . :
U.mli.m)=j tonli) U.nlj. m)

(j.- nllﬂ-lj.- !?2> :j



The new propagator (4)

.. we have the identity:

(1/2, m|o(1/2, ) T

| _ B (my|o{my)
U.mlolj,m) =] (1/2, m|1/2, np)

Js ”1U.- ”2) =J <ﬂ1|ﬂ2>

Using this, the (grasped) 4-simplex evaluation becomes simpler...

U' ny U n?>

(WIE? - EZ[j)o = / $Fg=AZ- AL S5E)

R - "na‘ﬂ'(gn) gi|”an>

where K—A+A A =i
{ "na|(gn ) ga ‘”an)
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The new propagator (4)

.. we have the identity:

. - .<"1|‘T.f”2>
U.ml.m)=j (| m)

Using this, the (grasped) 4-simplex evaluation becomes simpler...

1/2 m|o{1/2. ”2>
1172, m|1/2. m)

J.mlolj,m) = U.mlj, m)

(WIE? - E2lj)g = / gt A2 AL S)

+
where Ai — A-;-;"— E 3 Ai— A';j: J;I;< nnaxﬂ'(gn ) g Inan>
$— "na|(gn ) lgs |nan>

Since we are interested in the large distance (large jp) limit, we may regard A as
an insertion and evaluate the integral for large spins with the saddle point

method.
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The new propagator (4)

.. we have the identity:

(1/2 m|o|1/2.mp) - =
T2 mly2m) W= (m|m)

U.mlolj, m) =

Using this, the (grasped) 4-simplex evaluation becomes simpler...
(WIE;-Ellilo = [ g* A7 - Al &5

= =
—n n
where Af; — A}Fn | Afr_ Ai; J,:,‘: na‘ff(gn ) = g | an)
nna|(g ) |n3ﬂ

Since we are interested in the large distance (large Jo) limit, we may regard A as
an insertion and evaluate the integral for large spins with the saddle point

method. Remarkably,

a -
Anlsaddle = Jnallpna

namely, on the saddle point A (that we racall we obtained recasting the action of
the grasping operator as an insertion in the group integral) is the classical
sifiptiefal quantity measured by the grasping operator.
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The new propagator (5)

All ingredients are ready. The propagator in terms of A is:

. 0() fdg=A-AA-Ae® Y w(j) [dgEA-AeS T, v ()) [ dg=A-Ae’

Zj E’U)fdgieﬁ Zj .E,U)fdg:te.‘i Zj E’U)fdgies
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The new propagator (5)

All ingredients are ready. The propagator in terms of A is:

> v() Jde=A-A A-Ae> 2. vU) [dg=A-Ae® 5 v(j) [ dgTA-Ae®

2.j0l) J de=e > vl) [dg=e® 3 u(i) [dg=e®

Since the Gaussian peaks the spins on the large background value j; we compute
this expression by the saddle point method at next to leading order (infact the
leading order gives zero). This gives

G~ OmA-AGAA (S")E  mon=jpgs

Note that this result holds because the phase in «°(j) cancels with the phase
coming from the first order variation of S w.r.t. the spins (standard mechanism of

QM).
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The new propagator (5)

All ingredients are ready. The propagator in terms of A is:

Zj LrU)fdgiA-A A-Aec’ Zj u*U)fdgiA-Aes Zj L-'.‘U)fdgj:A-Aes

Xv) [ dg=e Y.ivl) Jderes  3;90) fdete®

Since the Gaussian peaks the spins on the large background value j; we compute
this expression by the saddle point method at next to leading order (infact the
leading order gives zero). This gives

G~ OnA-AdA-A (S’ )Y  mn=jp.g
Note that this result holds because the phase in ©°(j) cancels with the phase
coming from the first order variation of S w.r.t. the spins (standard mechanism of

QM). The hessian matrix has the block-diagonal form

u 0
0| &8 | O the jj block is equal to iSf — =

0 g g -
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The new propagator (6)

e Diagonal components: 3 = b.c =d Both d,A;-A] and 9 A}, -A;, are
zero, so only the Regge block survives:

aacc W T - - y 1 T 1 =y
Gnm Lo Qf(-’r?a)aj(jﬁr)(‘rsg e j_ﬂ - 4-’5("53 = j_u){na)(mc}
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The new propagator (6)

e Diagonal components: a = b.c =d Both 9,A;-A; and 9 A}, -A;, are
zero, so only the Regge block survives:

aacc o £=F Yoy 2 : Ty < e
Gnm g QIUSE)().}UEE)(LSI:\‘: o j_g - 4-!3(;5‘3' i j_ﬂ)(na)(mc)

e Diagonal-nondiagonal components: 2 = b.c =d 9,A;-A; vanishes,
while i?gA;,-Af;, is different from zero. But since the jg block is zero, also for
those components only the Regge sector contributes:

G20 . (20 it i - o) (IS — =)
S 'i\Unz )Y \Umc)/md Nmc md R jﬂ
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The new propagator (5)

All ingredients are ready. The propagator in terms of A is:

>iv() [de=A-AA-Ae® Y d(j) [dg=A-Ae® 3 u(j) [ dg=A-Ae’
Zj o(j) [ dg=e> Zj o(j) f dg=e> Zj v(j) f dg=e®
Since the Gaussian peaks the spins on the large background value j; we compute

this expression by the saddle point method at next to leading order (infact the
leading order gives zero). This gives

G~ OnA-AdA-A(S!) Y  mn=jp.g
Note that this result holds because the phase in «°(j) cancels with the phase
coming from the first order variation of S w.r.t. the spins (standard mechanism of

QM). The hessian matrix has the block-diagonal form

] 0
0 g g’ 0 the jj block is equal to iSg — E

0 g g -
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The new propagator (6)

e Diagonal components: a = b.c =d Both 9,A;-A; and 9,A}, -A;, are
zero, so only the Regge block survives:

aacc o f=F Yoy f - o T <(7 s gy
Gnm g @Uﬁa)%b?nc)(’sg - j_g - 413(”53' - j_u)(na)(mc]
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The new propagator (5)

All ingredients are ready. The propagator in terms of A is:

>.iv() [de=A-AA-Ae® Y d(j) [dg=A-Ae® 3 U(j) [ dg=A-Ae’

2 () J dg=e> > (j) [dgTe® 2 (j) [ dg=e>

Since the Gaussian peaks the spins on the large background value j; we compute
this expression by the saddle point method at next to leading order (infact the
leading order gives zero). This gives

G~ OmA-AdA-A(SL) Y  mn=jup.g-

Note that this result holds because the phase in «*(j) cancels with the phase
coming from the first order variation of S w.r.t. the spins (standard mechanism of
QM). The hessian matrix has the block-diagonal form

u 0
o| &£& | O the jj block is equal to iSf — =

0 g g -
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The new propagator (6)

e Diagonal components: a = b.c =d Both 9,A;-A; and 9 A, -A;, are
zero, so only the Regge block survives:

aacc af-2ygy f- - y < 5
Gnm i QrUga)QrUﬁx)(’Sg o j_g - 4-}3(;53 e j_u)(na)(mc)
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The new propagator (6)

e Diagonal components: a = b.c =d Both 9,A;-A; and 9 A} -A;, are
zero, so only the Regge block survives:

aacc S f2\a[: . Q.1 =D G\ —1

G ™ Q;Uf;)c);(l,?;,._-)(ﬁé' = j_g = 413(’53 = j_u)(na)(mc)

e Diagonal-nondiagonal components: 2 = b.c =d 9,A;-A; vanishes,
while 8gA;-A‘§, is different from zero. But since the jg block is zero, also for
those components only the Regge sector contributes:

3 z : 3 3 S
Gaxcd ~ 95(in,)9;(imeimd Mme - Mma) (ISR — ﬁ) '

@ Nondiagonal components: 3 = b.c = d Here we have one contribution
from the Regge sector and one contribution from the non-Regge sector:

op g T : a, —1
G;?;Cd e ()j(fnafnbnna : nnb)aj(fmdmdnmc 3 "':'.l'mn“)("j-;lgIIr - J;) T non-Regge term
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The new propagator (7)

Final remarks

The new propagator has the right scaling properties. When all the normalizations
are correctly implemented, it reproduces the Newtonian law

1
12
for all components, contrary to the BC model, in which the sole diagonal-diagonal

components had the correct scaling. In fact that was a major motivation for
searching new (corrected) spinfoam models.
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The new propagator (7)

Final remarks

The new propagator has the right scaling properties. When all the normalizations
are correctly implemented, it reproduces the Newtonian law

1
2
for all components, contrary to the BC model, in which the sole diagonal-diagonal

components had the correct scaling. In fact that was a major motivation for
searching new (corrected) spinfoam models.

We have computed the “non-Regge term” of nondiagonal-nondiagonal
components. Though we didn't expect to find it, it seems to be there, and we
don't have a clear physical interpretation of it. Nevertheless, it could be required
in order to match the tensorial structure with the one of linearized theory. This is
a topic | am working on.
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The new propagator (8)

Checks

@ Simmetries The propagator have to respect the simmetries of the
equilateral 4-simplex: components which are linked by a global rigid motion
have to be the same.  Checked
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The new propagator (7)

Final remarks

The new propagator has the right scaling properties. When all the normalizations
are correctly implemented, it reproduces the Newtonian law

1
2
for all components, contrary to the BC model, in which the sole diagonal-diagonal

components had the correct scaling. In fact that was a major motivation for
searching new (corrected) spinfoam models.

We have computed the “non-Regge term” of nondiagonal-nondiagonal
components. Though we didn't expect to find it, it seems to be there, and we
don't have a clear physical interpretation of it. Nevertheless, it could be required
in order to match the tensorial structure with the one of linearized theory. This is
a topic | am working on.
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The new propagator (4)

.. we have the identity:

1/2 nﬂcr\l/z n25
2 m/2

J.mlalj.m) = U.mlj.m) = j—

Using this, the (grasped) 4-simplex evaluation becomes simpler...
(WIE;-Ellilo = [ g A7 A% &5

+
where Ai e A-;-;—I- S Ai— A.:_,_ J;E‘x nna}ﬂ'(gn ) g Inaﬂ>
- "na|(g ) 1gs |nan>

Since we are interested in the large distance (large jo) limit, we may regard A as
an insertion and evaluate the integral for large spins with the saddle point

method. Remarkably,

a -
Anlsaddle = Jnallpna

namely, on the saddle point A (that we racall we obtained recasting the action of
the grasping operator as an insertion in the group integral) is the classical
sifiptiefal quantity measured by the grasping operator.
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The new propagator (5)

All ingredients are ready. The propagator in terms of A is:

> ivl) Jde=A-A A-Ae> b 3A () [ dgTA-Ae > w(j) [dgeTA-Ae

Zj E’(j)fdg:l:eﬁ Zj u*(j)fdgies Zj E’U)fdgies
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The new propagator (7)

Final remarks

The new propagator has the right scaling properties. When all the normalizations
are correctly implemented, it reproduces the Newtonian law

1
2
for all components, contrary to the BC model, in which the sole diagonal-diagonal

components had the correct scaling. In fact that was a major motivation for
searching new (corrected) spinfoam models.
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The new propagator (7)

Final remarks

The new propagator has the right scaling properties. When all the normalizations
are correctly implemented, it reproduces the Newtonian law

1
12
for all components, contrary to the BC model, in which the sole diagonal-diagonal

components had the correct scaling. In fact that was a major motivation for
searching new (corrected) spinfoam models.

We have computed the “non-Regge term” of nondiagonal-nondiagonal
components. Though we didn't expect to find it, it seems to be there, and we
don't have a clear physical interpretation of it. Nevertheless, it could be required
in order to match the tensorial structure with the one of linearized theory. This is
a topic | am working on.
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The new propagator (8)

Checks

@ Simmetries The propagator have to respect the simmetries of the
equilateral 4-simplex: components which are linked by a global rigid motion
have to be the same.  Checked
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The new propagator (8)

Checks

@ Simmetries The propagator have to respect the simmetries of the

equilateral 4-simplex: components which are linked by a global rigid motion
have to be the same.  Checked

@ Linear relations Gauge invariance requires the following relations:

5
) GEd=0  Checked
a“n
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The new propagator (8)

Checks

@ Simmetries The propagator have to respect the simmetries of the
equilateral 4-simplex: components which are linked by a global rigid motion
have to be the same.  Checked

@ Linear relations Gauge invariance requires the following relations:

5
) G4 =0  Checked
Ftn

@ Numerical checks A numerical check of our analitical calculation would be
desirable. Group integrals are naively 30-dimensional (5 < 3 +5 x 3). But we
can gauge-fix the SO(4) simmery reducing by 6 and compute separately the
integrals in selfdual and anti-selfdual sectors. so that

d—12

. .and Monte Carlo integration is practicable on my own laptop.
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Conclusions, work in progress and outlook

@ We computed the full tensorial structure of graviton propagator in the new
spinfoam models with coherent states techniques. We made use of recent
understandings about the physical relevance and the techniques of coherent
states in quantum gravity (Barrett, Fairbairn, Freidel, Krasnov, Livine,
Speziale)
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The new propagator (8)

Checks

@ Simmetries The propagator have to respect the simmetries of the
equilateral 4-simplex: components which are linked by a global rigid motion
have to be the same.  Checked

@ Linear relations Gauge invariance requires the following relations:

5
) Gd=0  Checked
a=n

@ Numerical checks A numerical check of our analitical calculation would be
desirable. Group integrals are naively 30-dimensional (5 x 3 +5 x 3). But we
can gauge-fix the SO(4) simmery reducing by 6 and compute separately the
integrals in selfdual and anti-selfdual sectors, so that

d—12

. .2nd Monte Carlo integration is practicable on my own laptop.
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Conclusions, work in progress and outlook

@ We computed the full tensorial structure of graviton propagator in the new
spinfoam models with coherent states techniques. We made use of recent
understandings about the physical relevance and the techniques of coherent
states in quantum gravity (Barrett, Fairbairn, Freidel, Krasnov, Livine,
Speziale)
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Conclusions, work in progress and outlook

@ We computed the full tensorial structure of graviton propagator in the new
spinfoam models with coherent states techniques. We made use of recent
understandings about the physical relevance and the techniques of coherent
states in quantum gravity (Barrett, Fairbairn, Freidel, Krasnov, Livine,
Speziale)

@ QOur choice of boundary state, namely a coherent boundary state, has the
advantage of overcoming difficulties like abiguities in the phase choice and
pairing dependence. Coherent states implement directly the properties that a
semiclassical tetrahedron should have.
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Conclusions, work in progress and outlook

@ We computed the full tensorial structure of graviton propagator in the new
spinfoam models with coherent states techniques. We made use of recent
understandings about the physical relevance and the techniques of coherent
states in quantum gravity (Barrett, Fairbairn, Freidel, Krasnov, Livine,
Speziale)

@ Our choice of boundary state, namely a coherent boundary state, has the
advantage of overcoming difficulties like abiguities in the phase choice and
pairing dependence. Coherent states implement directly the properties that a
semiclassical tetrahedron should have.

@ We are trying to see if a suitable choice of the parameters in the boundary
state can match the graviton propagator structure with the one of linearized
theory. For the moment we have seen that the tensorial structure has the
right simmetries (simmetries of the 4-simplex, linear closure relations)
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Conclusions, work in progress and outlook

@ We computed the full tensorial structure of graviton propagator in the new
spinfoam models with coherent states techniques. We made use of recent
understandings about the physical relevance and the techniques of coherent
states in quantum gravity (Barrett, Fairbairn, Freidel, Krasnov, Livine,
Speziale)

@ Our choice of boundary state, namely a coherent boundary state, has the
advantage of overcoming difficulties like abiguities in the phase choice and
pairing dependence. Coherent states implement directly the properties that a
semiclassical tetrahedron should have.

@ We are trying to see if a suitable choice of the parameters in the boundary
state can match the graviton propagator structure with the one of linearized
theory. For the moment we have seen that the tensorial structure has the
right simmetries (simmetries of the 4-simplex, linear closure relations)

@ We should check what happens when going beyond the single 4-simplex level
and/or switching to the Lorentzian signature.
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We could...we could...we could...
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We could...we could...we could...
That’s why | love physics!

thank you for the attention

special thanks to E. Alesci, E. Bianchi, R. Pereira, C. Rovelli
for long beautiful discussions together
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