Title: An Inverted Mass Hierarchy for Excited Dark Matter

Date: Feb 24, 2009 02:00 PM

URL: http://pirsa.org/09020014

Abstract: Varied experimental results have recently sparked theoretical interest in the dark matter sector. I will review some of these results and the basic ideas in particle physics that might explain them, as well as some requirements for those models to work. Then I'll discuss a new model dark matter sector that can better explain many of the experimental results. I'll also mention the interesting cosmological history required in this type of model. Finally, if there's time, I'll discuss ongoing efforts at McGill to develop basic physics shared by many of the new dark matter models.

Pirsa: 09020014 Page 1/57

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Future

An Inverted Mass Hierarchy for Exciting Dark Matter

Andrew R. Frey

McGill University

0901.4327 and work in progress with Fang Chen and Jim Cline

Pirsa: 09020014 Page 2/57

Outline

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Future

Mints About Dark Matter?

2 The Need for Boost Factors

3 An Inverted Model of Dark Matter

4 Future Directions

Pirsa: 09020014 Page 3/57

Hints About Dark Matter?

Inverted XDM

ARF

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Mode:

Future

(Chandra, Hubble, Magellan)

Some Observations

- Direct detection
 - Seen at DAMA, not others?
 - Inelastic scattering?
- High energy e^{\pm} in astrophysics
 - PAMELA, ATIC, & other observations
 - WMAP haze from synchotron
 - TeV scale DM decays or annihilations?
 - Alternately pulsars
- 511 keV photon line
 - INTEGRAL and older (40 yrs!)
 - Strong bulge component
 - DM decays or transitions?

Direct Detection

Inverted XDM

ARE

Outline

DM Hints

Direct Detection

High-E e 511 keV Line

Particle Physics

Model

Future

DAMA vs Others

- Collisions with nuclei
- Only seen at DAMA expts (possible candidates at others)
- Main difference = heavy nuclei
- Inelastic scattering favors heavy targets

$$\delta M \lesssim \mu v^2/2$$

• Need $\delta M \lesssim 100 \; keV$

But...

- DAMA somewhat controversial
- I'll remain agnostic

Direct Detection

Inverted XDM

ARE

Outline

DM Hints

Direct Detection

High-E e
511 keV Line

Boost Factors

Mode

Cuture

DAMA vs Others

- Collisions with nuclei
- Only seen at DAMA expts (possible candidates at others)
- Main difference = heavy nuclei
- Inelastic scattering favors heavy targets

$$\delta M \lesssim \mu v^2/2$$

• Need $\delta M \lesssim 100 \; keV$

But...

- DAMA somewhat controversial
- I'll remain agnostic

Inverted XDM

ARE

Outline

DM Hints

Direct Detection High-E e

511 keV Line

Boost Factors

Mode

Future

PAMELA

- Excess e^+ fraction above $10 \ GeV$
- Possibly:
 - Pulsars
 - 100+ GeV DM Decay $\tau \sim 10^{26}~s$
 - DM Annihilation $\sigma \sim 100 \times \text{WIMPy}$ (leptophilic b/c no excess \bar{p})

ATIC/PPB-BETS, etc

- Excess e^{\pm} at 100-800 GeV
- Distinct peak
- Consistent with PAMELA
- Similar explanations

Inverted XDM

ARE

Outline

DM Hints

Direct Detection
High-E e
511 keV Line

Boost Factors

Mode

Future

PAMELA

- Excess e^+ fraction above $10 \ GeV$
- Possibly:
 - Pulsars
 - 100+ GeV DM Decay $\tau \sim 10^{26}~s$
 - DM Annihilation $\sigma \sim 100 \times \text{WIMPy}$ (leptophilic b/c no excess \bar{p})

ATIC/PPB-BETS, etc

- Excess e^{\pm} at 100-800 GeV
- Distinct peak
- Consistent with PAMELA
- Similar explanations

Pirsa: 09020014

Page 8/57

Inverted XDM

ARF

Outline

DM Hints

Direct Detection

High-E e

511 keV Line

Particle Physics

Boost Factors

Vlode:

Future

(Finkbeiner et al from WMAP data)

WMAP Haze

- Excess microwaves at galaxy center (other foregrounds subtracted)
- Synchotron of high energy e^{\pm}
- Consistent with DM annihilation

All require 100- to 1000-fold boost in cross-section for annihilation

Pirsa: 09020014 Page 9/57

Inverted XDM

ARF

Outline

DM Hints

Direct Detection
High-E e
511 keV Line
Particle Physics

Boost Factors

Mode

Future

(Finkbeiner et al from WMAP data)

WMAP Haze

- Excess microwaves at galaxy center (other foregrounds subtracted)
- Synchotron of high energy e^{\pm}
- Consistent with DM annihilation

All require 100- to 1000-fold boost in cross-section for annihilation

Pirsa: 09020014 Page 10/57

511 keV Line

Inverted XDM

ARF

Outline

DM Hints

High-E e

511 keV Line
Particle Physics

Boost Factors

Mode

Future

Observed for almost 4 decades

INTEGRAL

- \bullet e^{\pm} annihilation nearly at rest
- Dominant bulge component
- Possibly:
 - Super-/Hyper-/Novae (e⁺ escape?)
 - Light DM annihilation (cusps?)
 - Exciting DM

eXciting Dark Matter

- DM with 2 states $\delta M \gtrsim 2 m_e$
- Requires boosted cross-section
- Page 11,

511 keV Line

Inverted XDM

ARF

Outline

DM Hints

High-E e

511 keV Line

Boost Factors

Model

Future

Observed for almost 4 decades

1 2

INTEGRAL

- \bullet e^{\pm} annihilation nearly at rest
- Dominant bulge component
- Possibly:
 - Super-/Hyper-/Novae (e⁺ escape?)
 - Light DM annihilation (cusps?)
 - Exciting DM

eXciting Dark Matter

- DM with 2 states $\delta M \gtrsim 2m_e$
- Requires boosted cross-section
- Variant spectra allowed Page

Pirsa: 09020014

Page 12/57

Inverted XDM

ARE

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Vlode!

Future

Non-Abelian symmetry breaking key (Arkani-Hamed et al)

Leptophilia

- Gauge bosons naturally lighter
- Kinetic mixing with photon

$$\epsilon B_{\mu\nu} F^{\mu\nu}$$

• Resonant production at $\mu \lesssim 1~GeV$ decays to e^{\pm}

Mass Splittings

• Generated at 1-loop

 $\delta M \sim \alpha \mu$

Page 13/57

511 keV Line

Inverted XDM

ARF

Outline

DM Hints

Direct Detection High-E e 511 keV Line

Boost Factors

Mode

Future

Observed for almost 4 decades

INTEGRAL

- \bullet e^{\pm} annihilation nearly at rest
- Dominant bulge component
- Possibly:
 - Super-/Hyper-/Novae (e⁺ escape?)
 - Light DM annihilation (cusps?)
 - Exciting DM

eXciting Dark Matter

- DM with 2 states $\delta M \gtrsim 2m_e$
- Requires boosted cross-section
- Variant spectra allowed Page

Pirsa: 09020014

Page 14/57

Inverted XDM

ARE

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Mode:

Future

Non-Abelian symmetry breaking key (Arkani-Hamed et al)

Leptophilia

- Gauge bosons naturally lighter
- Kinetic mixing with photon

$$\epsilon B_{\mu\nu} F^{\mu\nu}$$

• Resonant production at $\mu \lesssim 1~GeV$ decays to e^{\pm}

Mass Splittings

Generated at 1-loop

 $\delta M \sim \alpha \mu$

Page 15/57

Inverted XDM

ARF

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Vlode!

Future

Non-Abelian symmetry breaking key (Arkani-Hamed et al)

Leptophilia

- Gauge bosons naturally lighter
- Kinetic mixing with photon

$$\epsilon B_{\mu\nu} F^{\mu\nu}$$

• Resonant production at $\mu \lesssim 1~GeV$ decays to e^{\pm}

Mass Splittings

Generated at 1-loop

$$\delta M \sim \alpha \mu$$

• Naturally MeV, possibly 100 and 100 for V

Inverted XDM

ARF

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Mode

Future

Boost Factors

$$flux \sim n^2 \langle \sigma v \rangle$$

 Or attraction of DM by gauge forces (Sommerfeld enhancement)

Putting It Together

- Production of e^{\pm} only through light bosons
- XDM: MeV scale mass splitting through 1-loop
- iDM: 100 keV scale splitting through small 1-loop
- Not as reliant on hopes for DM clumping to boost

Inverted XDM

ARF

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Vlode

Future

Non-Abelian symmetry breaking key (Arkani-Hamed et al)

Leptophilia

- Gauge bosons naturally lighter
- Kinetic mixing with photon

$$\epsilon B_{\mu\nu} F^{\mu\nu}$$

• Resonant production at $\mu \lesssim 1~GeV$ decays to e^{\pm}

Mass Splittings

Generated at 1-loop

$$\delta M \sim \alpha \mu$$

• Naturally MeV, possibly 100 and 18/5 V

Inverted XDM

ARF

Outline

DM Hints

Direct Detection
High-E e
511 keV Line
Particle Physics

Boost Factors

Model

Future

Boost Factors

Uncertainty in DM density profile

$$\mathrm{flux} \sim n^2 \langle \sigma v \rangle$$

 Or attraction of DM by gauge forces (Sommerfeld enhancement)

Putting It Together

- ullet Production of e^\pm only through light bosons
- XDM: MeV scale mass splitting through 1-loop
- iDM: 100 keV scale splitting through small 1-loop
- Not as reliant on hopes for DM clumping to boost

Inverted XDM

ARE

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Mode

Future

Non-Abelian symmetry breaking key (Arkani-Hamed et al)

Leptophilia

- Gauge bosons naturally lighter
- Kinetic mixing with photon

$$\epsilon B_{\mu\nu} F^{\mu\nu}$$

• Resonant production at $\mu \lesssim 1~GeV$ decays to e^{\pm}

Mass Splittings

Generated at 1-loop

$$\delta M \sim \alpha \mu$$

• Naturally MeV, possibly 100 - 20/5 V

Inverted XDM

ARF

Outline

DM Hints

Direct Detection
High-E e
511 keV Line
Particle Physics

Boost Factors

Model

Future

Boost Factors

$$flux \sim n^2 \langle \sigma v \rangle$$

 Or attraction of DM by gauge forces (Sommerfeld enhancement)

Putting It Together

- Production of e^{\pm} only through light bosons
- XDM: MeV scale mass splitting through 1-loop
- iDM: 100 keV scale splitting through small 1-loop
- Not as reliant on hopes for DM clumping to boost

Inverted XDM

ARF

Outline

DM Hints

Direct Detection High-E e 511 keV Line Particle Physics

Boost Factors

Mode

Future

Boost Factors

$$flux \sim n^2 \langle \sigma v \rangle$$

 Or attraction of DM by gauge forces (Sommerfeld enhancement)

Putting It Together

- ullet Production of e^\pm only through light bosons
- \bullet XDM: MeV scale mass splitting through 1-loop
- ullet iDM: 100 keV scale splitting through small 1-loop
- Not as reliant on hopes for DM clumping to boost

The Need for Boost Factors

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Sommerfeld XDM Difficulty New Spectrum

Vlodel

Future

Annihilation Case

• Early universe cross-section ($v \sim 0.2$)

$$\langle \sigma v \rangle \sim 3 \times 10^{-26} \ cm^3/s$$

- In galaxy, $\langle v \rangle \sim 10^{-3}$, $\rho_{DM} \sim 0.35~GeV/cm^3$
- Excesses require $\langle \sigma v \rangle \sim 10^{-23} \ cm^3/s$
- Perturbatively $\langle \sigma v \rangle$ constant in v
- ullet Boost at low velocity up to $\alpha M/\mu$

Review of Sommerfeld Enhancement

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Commorfold

XDM Difficulty

100-1-1

Future

s-Wave Enhancement for Annihilation

- Annihilation local $(\ell \sim 1/M)$ Only s-wave allowed
- Gauge force enhances wavefunction vs plane-wave $\sigma \sim \sigma_0 |\psi(0)|^2$
- Enhancement grows as α/v Saturates at $\sim \alpha M/\mu$
- Resonant enhancement if bound states

Higher Partial Wave

- Relevant for scattering/exciting
- Wavefunction in radius $1/\mu$

Review of Sommerfeld Enhancement

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Sommerfeld

New Spectrum

Vlode

Future

s-Wave Enhancement for Annihilation

- Annihilation local ($\ell \sim 1/M$) Only s-wave allowed
- Gauge force enhances wavefunction vs plane-wave $\sigma \sim \sigma_0 |\psi(0)|^2$
- Enhancement grows as α/v Saturates at $\sim \alpha M/\mu$
- Resonant enhancement if bound states

Higher Partial Wave

- Relevant for scattering/exciting
- Wavefunction in radius $1/\mu$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Sommerfeld XDM Difficulty

New Spectrum

Model

Future

Minimum Velocity

- Excitation requires $v \geq \sqrt{2\delta M/M}$
- $\delta M \sim 2 m_e$, $M \sim TeV$ gives $v \gtrsim 10^{-3}$ about RMS velocity
- Maxwell-Boltzmann suppression

$$\langle \sigma v \rangle \propto \int_{v_{min}}^{\infty} dv v e^{-3v^2/2v_{rms}^2}$$

- Need many partial waves
 Only few contribute
- Difficult w/o very clumpy density
 Or modified velocity profile

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Sommerfeld XDM Difficulty

Model

Future

Unitarity Limits

- For partial wave l, $\sigma_l \leq \pi (2l+1)/M^2 v^2$
- Optimal mass (with MB distribution) near 700 GeV
- Still requires density boost $\times 20$
- Yukawa potential keeps large l contribution small

Standard XDM has trouble

Pirsa: 09020014 Page 27/57

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Sommerfeld XDM Difficulty

New Spectrum

Model

Future

Minimum Velocity

- Excitation requires $v \geq \sqrt{2\delta M/M}$
- $\delta M \sim 2 m_e, \ M \sim TeV$ gives $v \gtrsim 10^{-3}$ about RMS velocity
- Maxwell-Boltzmann suppression

$$\langle \sigma v \rangle \propto \int_{v_{min}}^{\infty} dv v e^{-3v^2/2v_{rms}^2}$$

- Need many partial waves
 Only few contribute
- Difficult w/o very clumpy density
 Or modified velocity profile

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Sommerfeld
XDM Difficulty

10-1-1

Future

Unitarity Limits

- For partial wave l, $\sigma_l \leq \pi (2l+1)/M^2 v^2$
- Optimal mass (with MB distribution) near 700 GeV
- Still requires density boost ×20
- Yukawa potential keeps large l contribution small

Standard XDM has trouble

Pirsa: 09020014 Page 29/57

Inverting the DM Spectrum

Inverted XDM

ARF

Outline

DM Hints

Boost Factors
Sommerfeld
XDM Difficulty
New Spectrum

Model

Future

Spectrum Inversion

- Most models assume top spectrum
 Small gap just spectator
- But consider bottom spectrum
- Middle state has small gap to jump Then decay by e^{\pm} pair

Inversion Benefits

- Minimum velocity smaller than RMS Reduces MB suppression
- More partial waves contribute
- Page 30/57

Inverting the DM Spectrum

Inverted XDM

ARE

Outline

DM Hints

Boost Factors
Sommerfeld
XDM Difficulty
New Spectrum

Model

Future

Spectrum Inversion

- Most models assume top spectrum
 Small gap just spectator
- But consider bottom spectrum
- Middle state has small gap to jump Then decay by e^{\pm} pair

Inversion Benefits

- Minimum velocity smaller than RMS Reduces MB suppression
- More partial waves contribute
- Roughly optimized: $M \sim 500~GeV$, $\delta M \sim 86~keV$, $\mu \sim 120~MeV_{\rm age~31/57}$

Pirsa: 09020014

An Inverted Model of Dark Matter

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content Higgsing Signatures Cosmology

Future

Goals

- Engineer inverted DM spectrum for XDM
- Keep middle population stable
- Generate appropriate gauge boson mass & symmetry breaking
- Coupling to SM
 - ullet XDM decay by e^\pm
 - Annihilation spectrum (broad and peaked)
- Find consistent cosmological history

Pirsa: 09020014 Page 32/57

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Mode

Particle Content

Higgsing Signatures Cosmology

uture

SU(2) Gauge and DM Sector

• Adjoint as SO(3) vector

$$B^a_\mu = (B_\mu, B'_\mu, B''_\mu)$$

- Majorana fermion DM χ^a
- "Bare" mass $\sim 500~GeV$
- Interactions as shown
- ullet \mathbb{Z}_2 symmetry

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing Signatures Cosmology

Future

Higgs Sector

• Adjoint Δ^a :

$$(\Delta^a/\Lambda) B^a_{\mu\nu} Y^{\mu\nu}$$

• 5-plet Σ^{ab} :

$$h\Sigma^{ab}\bar{\chi}^a\chi^b$$

ullet Both add to B^a masses

Cosmological Sector

- Heavy U(1) Z' (maybe) Coupled to e_R
- Heavy scalar S:

 $(S^2/\Lambda_{GUT})\bar{\chi}^a\chi^a$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Mode

Particle Content

Higgsing Signatures Cosmology

Future

SU(2) Gauge and DM Sector

Adjoint as SO(3) vector

$$B^a_\mu = (B_\mu, B'_\mu, B''_\mu)$$

Page 35/57

- ullet Majorana fermion DM χ^a
- "Bare" mass $\sim 500~GeV$
- Interactions as shown
- ullet \mathbb{Z}_2 symmetry

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing Signatures Cosmology

Future

Higgs Sector

• Adjoint Δ^a :

$$(\Delta^a/\Lambda) B^a_{\mu\nu} Y^{\mu\nu}$$

• 5-plet Σ^{ab} :

$$h\Sigma^{ab}\bar{\chi}^a\chi^b$$

ullet Both add to B^a masses

Cosmological Sector

- Heavy U(1) Z' (maybe) Coupled to e_R
- Heavy scalar S:

 $(S^2/\Lambda_{GUT})\bar{\chi}^a\chi^a$

Particle Content and Interactions

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Mode

Particle Content

Higgsing Signatures Cosmology

Future

Higgs Sector

• Adjoint Δ^a :

$$(\Delta^a/\Lambda) B^a_{\mu\nu} Y^{\mu\nu}$$

• 5-plet Σ^{ab} :

$$h\Sigma^{ab}\bar{\chi}^a\chi^b$$

• Both add to B^a masses

Cosmological Sector

- Heavy U(1) Z' (maybe) Coupled to e_R
- Heavy scalar S:

 $(S^2/\Lambda_{GUT})\bar{\chi}^a\chi^a$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing

Signatures

Future

$V = \lambda_1 \left(\Sigma^{ab} \Sigma^{ab} - 2\Sigma^2 \right)^2 + \lambda_2 \left(\Delta^a \Delta^a - \Delta^2 \right)^2 + \lambda_3 \Delta^a \Sigma^{ab} \Sigma^{bc} \Delta^c$ $+ \lambda_4 \Delta^a \Sigma^{ab} \Delta^b + \lambda_5 \Sigma^{ab} \Sigma^{bc} \Sigma^{ca}$

Scalar VEVs

- $\langle \Delta^1 \rangle = \Delta$, $\langle \Delta^{0,2} \rangle = 0$
- $\langle \Sigma^{01} \rangle = \langle \Sigma^{12} \rangle = 0$ for $\lambda_3 \Delta^2 \gtrsim \lambda_5 \Sigma$
- \bullet $\langle \Sigma^{11} \rangle$ fixed, take small
- $\langle \Sigma^{00} \rangle \sim \Sigma$, $\langle \Sigma^{02} \rangle = 0$

Gauge Boson Masses

- $\mu = \mu'' = g\sqrt{2\Sigma^2 + \Delta^2}$
- \bullet $\langle \Sigma^{11} \rangle$ gives splitting
- $\bullet \ \mu' = g2\sqrt{2\Sigma}$
- Take $\Delta > \sqrt{6\Sigma}$ So $\mu > \mu'$

 $\Delta \sim 10~GeV$, $\Sigma \sim GeV \Rightarrow \mu \sim GeV$, $\mu' \sim 100~MeV$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Mode

article Content

Higgsing

Signatures Cosmology

Future

$V = \lambda_1 \left(\Sigma^{ab} \Sigma^{ab} - 2\Sigma^2 \right)^2 + \lambda_2 \left(\Delta^a \Delta^a - \Delta^2 \right)^2 + \lambda_3 \Delta^a \Sigma^{ab} \Sigma^{bc} \Delta^c$ $+ \lambda_4 \Delta^a \Sigma^{ab} \Delta^b + \lambda_5 \Sigma^{ab} \Sigma^{bc} \Sigma^{ca}$

Scalar VEVs

- $\langle \Delta^1 \rangle = \Delta$, $\langle \Delta^{0,2} \rangle = 0$
- $\langle \Sigma^{01} \rangle = \langle \Sigma^{12} \rangle = 0$ for $\lambda_3 \Delta^2 \geq \lambda_5 \Sigma$
- \bullet $\langle \Sigma^{11} \rangle$ fixed, take small
- $\langle \Sigma^{00} \rangle \sim \Sigma$, $\langle \Sigma^{02} \rangle = 0$

Gauge Boson Masses

- $\bullet \ \mu = \mu'' = g\sqrt{2\Sigma^2 + \Delta^2}$
- \bullet $\langle \Sigma^{11} \rangle$ gives splitting
- $\bullet \ \mu' = g2\sqrt{2}\Sigma$
- Take $\Delta > \sqrt{6}\Sigma$ So $\mu > \mu'$

 $\Delta \sim 10~GeV$, $\Sigma \sim GeV \Rightarrow \mu \sim GeV$, $\mu' \sim 100~MeV$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing

Signatures

Future

$V = \lambda_1 \left(\Sigma^{ab} \Sigma^{ab} - 2\Sigma^2 \right)^2 + \lambda_2 \left(\Delta^a \Delta^a - \Delta^2 \right)^2 + \lambda_3 \Delta^a \Sigma^{ab} \Sigma^{bc} \Delta^c$ $+ \lambda_4 \Delta^a \Sigma^{ab} \Delta^b + \lambda_5 \Sigma^{ab} \Sigma^{bc} \Sigma^{ca}$

Scalar VEVs

- $\langle \Delta^1 \rangle = \Delta$, $\langle \Delta^{0,2} \rangle = 0$
- $\langle \Sigma^{01} \rangle = \langle \Sigma^{12} \rangle = 0$ for $\lambda_3 \Delta^2 \gtrsim \lambda_5 \Sigma$
- \bullet $\langle \Sigma^{11} \rangle$ fixed, take small
- $\langle \Sigma^{00} \rangle \sim \Sigma$, $\langle \Sigma^{02} \rangle = 0$

Gauge Boson Masses

- $\bullet \ \mu = \mu'' = g\sqrt{2\Sigma^2 + \Delta^2}$
- \bullet $\langle \Sigma^{11} \rangle$ gives splitting
- $\bullet \ \mu' = g2\sqrt{2}\Sigma$
- Take $\Delta > \sqrt{6}\Sigma$ So $\mu > \mu'$

$$\Delta \sim 10~GeV$$
, $\Sigma \sim GeV \Rightarrow \mu \sim GeV$, $\mu' \sim 100~MeV$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

article Content

Higgsing

Signatures Cosmology

Future

$$V = \lambda_1 \left(\Sigma^{ab} \Sigma^{ab} - 2\Sigma^2 \right)^2 + \lambda_2 \left(\Delta^a \Delta^a - \Delta^2 \right)^2 + \lambda_3 \Delta^a \Sigma^{ab} \Sigma^{bc} \Delta^c$$
$$+ \lambda_4 \Delta^a \Sigma^{ab} \Delta^b + \lambda_5 \Sigma^{ab} \Sigma^{bc} \Sigma^{ca}$$

Scalar VEVs

- $\langle \Delta^1 \rangle = \Delta$, $\langle \Delta^{0,2} \rangle = 0$
- $\langle \Sigma^{01} \rangle = \langle \Sigma^{12} \rangle = 0$ for $\lambda_3 \Delta^2 \geq \lambda_5 \Sigma$
- \bullet $\langle \Sigma^{11} \rangle$ fixed, take small
- $\langle \Sigma^{00} \rangle \sim \Sigma$, $\langle \Sigma^{02} \rangle = 0$

Gauge Boson Masses

- $\bullet \ \mu = \mu'' = g\sqrt{2\Sigma^2 + \Delta^2}$
- \bullet $\langle \Sigma^{11} \rangle$ gives splitting
- $\mu' = g2\sqrt{2}\Sigma$
- Take $\Delta > \sqrt{6}\Sigma$ So $\mu > \mu'$

 $\Delta \sim 10~GeV$, $\Sigma \sim GeV \Rightarrow \mu \sim GeV$, $\mu' \sim 100~MeV$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing

Signatures Cosmology

Future

DM Mass Splittings

- χ^1 split from χ^0 , χ^2 by loops
- Yukawa splits χ^0 , χ^2 $\delta M \sim 2h\Sigma \sim MeV$
- ullet Plus splitting from $\langle \Sigma^{11} \rangle$

Mass eigenbasis:

$$\begin{bmatrix} M_2 \\ M_1 \\ M_0 \end{bmatrix} = M + \alpha \mu + \begin{bmatrix} h\Sigma - \frac{1}{2}\alpha(\mu - \mu') \\ 0 \\ -h\Sigma - \frac{1}{2}\alpha(\mu - \mu') \end{bmatrix}$$

Inverted XDM

Higgsing

DM Mass Splittings

- χ^1 split from χ^0 , χ^2 by loops
 - $\delta M \sim 2h\Sigma \sim MeV$
 - Plus splitting from $\langle \Sigma^{11} \rangle$

Mass eigenbasis:

$$\begin{bmatrix} M_2 \\ M_1 \\ M_0 \end{bmatrix} = M + \alpha \mu + \begin{bmatrix} h\Sigma - \frac{1}{2}\alpha(\mu - \mu') \\ 0 \\ -h\Sigma - \frac{1}{2}\alpha(\mu - \mu') \end{bmatrix}$$

inverted XDM

ARE

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing

Signatures

Cosmology

Future

Coupling to SM

- ullet B' couples to hypercharge
- Kinetic diagonalization

$$B' = \tilde{B}' + (\Delta/\Lambda)\sin\theta_W \tilde{Z} + \cdots$$

• No iDM for DAMA (due to \mathbb{Z}_2)

XDM and e^{\pm} pairs

- Enhanced $\chi^1 \chi^1 \to \chi^2 \chi^2$ scattering
- χ² decays
 - Dominantly $\chi^2 \rightarrow e^+e^-\chi^0$
 - Suppressed $\chi^2 \rightarrow \gamma \chi^0$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing

Signatures

Cosmology

Entres

Coupling to SM

- ullet B' couples to hypercharge
- Kinetic diagonalization

$$B' = \tilde{B}' + (\Delta/\Lambda)\sin\theta_W \tilde{Z} + \cdots$$

• No iDM for DAMA (due to \mathbb{Z}_2)

XDM and e^{\pm} pairs

- Enhanced $\chi^1 \chi^1 \to \chi^2 \chi^2$ scattering
- χ^2 decays
 - Dominantly $\chi^2 \to e^+e^-\chi^0$
 - Suppressed $\chi^2 \to \gamma \chi^0$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Mode

Particle Content

Higgsing

Signatures

Cosmology

Future

Annihilation

- $\chi^0 \chi^0$ or $\chi^1 \chi^1$ as before
- B' produced dominantly on-shell Hence only e^\pm
- Two e^{\pm} pairs, so broad spectrum
- Z' (introduced later) $\to e^{\pm}$ pair
- Much sharper spectrum
- ATIC peak?

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Particle Content

Higgsing

Signatures

Cosmology

Enture

Coupling to SM

- ullet B' couples to hypercharge
- Kinetic diagonalization

$$B' = \tilde{B}' + (\Delta/\Lambda)\sin\theta_W \tilde{Z} + \cdots$$

• No iDM for DAMA (due to \mathbb{Z}_2)

XDM and e^{\pm} pairs

- Enhanced $\chi^1 \chi^1 \to \chi^2 \chi^2$ scattering
- χ^2 decays
 - Dominantly $\chi^2 \to e^+e^-\chi^0$
 - Suppressed $\chi^2 \to \gamma \chi^0$

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Mode

Particle Content

Higgsing

Signatures

Cosmology

Future

Annihilation

- $\chi^0 \chi^0$ or $\chi^1 \chi^1$ as before
- B' produced dominantly on-shell Hence only e^\pm
- Two e^{\pm} pairs, so broad spectrum
- Z' (introduced later) $\to e^{\pm}$ pair
- Much sharper spectrum
- ATIC peak?

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Vlode

Particle Content

tiggsing

Signatures

Cosmology

Future

DM Thermal Relic Density

- Freeze-out density $\sim 1/\sigma$
- χ abundance too high
- Either increase gauge coupling Or introduce new Z'
- Z' would add to ATIC peak

Gauge & Scalar Relics

- Similar but lower mass propagators
- Negligible abundances
- Signals entirely too weak

Pires: 00020014

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Vlodel

Particle Content

Higgsing

Signatures

Cosmology

uture

DM Thermal Relic Density

- Freeze-out density $\sim 1/\sigma$
- χ abundance too high
- Either increase gauge coupling Or introduce new Z'
- Z' would add to ATIC peak

Gauge & Scalar Relics

- Similar but lower mass propagators
- Negligible abundances
- Signals entirely too weak

Pirsa: 09020014 Page 50/57

Inverted XDM

Cosmology

Kinetic Equilibration

- Consider $\chi\chi \leftrightarrow \chi\chi$ scattering Equilibrium at low KE depletes χ^1
- At KE $\sim 2m_e, v \sim 10^{-3}$ Sommerfeld enhanced
- Note $p \propto a^{-1} \propto T$ So $\langle \sigma v \rangle \propto 1/v \propto 1/T$, $n \langle \sigma v \rangle \propto H$
- More p removes equilibration

- Induced Yukawa with χ
 Need low χ freeze-o

$$m_S(\langle S \rangle/\Lambda_{GUT})^2$$

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Model

Particle Content Higgsing Signatures Cosmology

Future

Kinetic Equilibration

- Consider $\chi\chi \leftrightarrow \chi\chi$ scattering Equilibrium at low KE depletes χ^1
- At KE $\sim 2m_e, v \sim 10^{-3}$ Sommerfeld enhanced
- Note $p \propto a^{-1} \propto T$ So $\langle \sigma v \rangle \propto 1/v \propto 1/T$, $n \langle \sigma v \rangle \propto H$
- More p removes equilibration

Nonthermal Generation

- Take $m_S \sim \langle S \rangle \sim \Lambda$
- Thermal WIMP abundance
- Induced Yukawa with χ

Decay rate:

$$m_S(\langle S \rangle/\Lambda_{GUT})^2$$

• Need low χ freeze-out

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Model

Future

Quantum Mechanics

Improved studies of multistate Sommerfeld enhancement
 WKB when numerics are too difficult

Particle Physics

- More detailed exploration of the model
- Can other reps work for iDM?

Cosmology

- Advantages of nonthermal generation?
- More detailed calculation of signals

Dark matter is exciting right now!

Pirsa: 09020014 Page 53/57

Inverted XDM

ARE

Dutline

DM Hints

Boost Factors

Vlodel

Particle Content Higgsing Signatures Cosmology

Future

Kinetic Equilibration

- Consider $\chi\chi \leftrightarrow \chi\chi$ scattering Equilibrium at low KE depletes χ^1
- At KE $\sim 2m_e, v \sim 10^{-3}$ Sommerfeld enhanced
- Note $p \propto a^{-1} \propto T$ So $\langle \sigma v \rangle \propto 1/v \propto 1/T$, $n \langle \sigma v \rangle \propto H$
- More p removes equilibration

Nonthermal Generation

- Take $m_S \sim \langle S \rangle \sim \Lambda$
- Thermal WIMP abundance
- \bullet Induced Yukawa with χ

Decay rate:

$$m_S(\langle S \rangle/\Lambda_{GUT})^2$$

• Need low χ freeze-out

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Future

Quantum Mechanics

Improved studies of multistate Sommerfeld enhancement
 WKB when numerics are too difficult

Particle Physics

- More detailed exploration of the model
- Can other reps work for iDM?

Cosmology

- Advantages of nonthermal generation?
- More detailed calculation of signals

Dark matter is exciting right now!

Pirsa: 09020014 Page 55/57

Inverted XDM

ARF

Outline

DM Hints

Boost Factors

Model

Future

Quantum Mechanics

Improved studies of multistate Sommerfeld enhancement
 WKB when numerics are too difficult

Particle Physics

- More detailed exploration of the model
- Can other reps work for iDM?

Cosmology

- Advantages of nonthermal generation?
- More detailed calculation of signals

Dark matter is exciting right now!

Pirsa: 09020014 Page 56/57

Inverted XDM

ARE

Outline

DM Hints

Boost Factors

Model

Future

Quantum Mechanics

Improved studies of multistate Sommerfeld enhancement
 WKB when numerics are too difficult

Particle Physics

- More detailed exploration of the model
- Can other reps work for iDM?

Cosmology

- Advantages of nonthermal generation?
- More detailed calculation of signals

Dark matter is exciting right now!

Pirsa: 09020014 Page 57/57