Title: Quantum algorithm for Statistical Difference problem
Date: Feb 18, 2009 04:00 PM
URL.: http://pirsa.org/09020008

Abstract: Suppose we are given two probability distributions on some N-element set. How many samples do we need to test whether the two
distributions are close or far from each other in the L_1 norm? This problem known as Statistical Difference has been extensively studied during the
last yearsin the field of property testing. | will describe quantum algorithms for Statistical Difference problem that provide a polynomial speed up in
terms of the query complexity compared to the known classical lower bounds. Specifically, | will assume that each distribution can be generated by
guerying an oracle function on a random uniformly distributed input string. It will be shown that testing whether distributions are orthogonal
requires approximately N{1/2} queries classically and approximately N{ 1/3} queries quantumly. Testing whether distributions are close requires
approximately N*{2/3} queries classically and O(N{ 1/2}) queries quantumly. Thisis ajoint work with Aram Harrow (University of Bristol) and
Avinatan Hassidim (The Hebrew University).
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p, ¢ — unknown probability distributions on {1,2,..., N}

Oracles O,, O, return samples from p, ¢

e — constant precision parameter
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p, ¢ — unknown probability distributions on {1,2,..., N}

Oracles O,, O, return samples from p, ¢

€ — constant precision parameter

Property Accept Reject
Uniformity p=+ lp— %1 > €
Closeness p=gq lp—qlls = €
: p and g have disjoint sup- | p and ¢ have constant
Jrthogonalit
SOREEN | port, [lp — glly =2 overlap, [[p—qll: <2—e¢

irsa: 09020008 Page 4/81



p, ¢ — unknown probability distributions on {1,2,..., N}

Oracles O,, O, return samples from p, g

€ — constant precision parameter

Property Accept Reject
Uniformity = % lp — %“1 > al
Closeness =g lp—q|li = €
: p and ¢ have disjoint sup- | p and ¢ have constant
Orthogonalit
SORETY | port, [lp — gl =2 overlap, |[p—qll; <2—e¢
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H6W many samples do we need to test a property?



Motivation

Testing a property often requires only sublinear number of
samples, e.g. N2/3 or N1/2.
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Motivation

Testing a property often requires only sublinear number of
samples, e.g. N2/3 or N1/2.

Uniformity: testing whether a random walk on a black-box
graph is rapidly mixing
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Motivation

Testing a property often requires only sublinear number of
samples, e.g. N2/3 or N1/2.

Uniformity: testing whether a random walk on a black-box
graph is rapidly mixing

Closeness: testing whether statistical experimental data
agree with theoretical predictions. Testing whether a

Markov chain is rapidly mixing.
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Motivation

Testing a property often requires only sublinear number of
samples, e.g. N2/3 or N1/2.

Uniformity: testing whether a random walk on a black-box
graph is rapidly mixing

Closeness: testing whether statistical experimental data
agree with theoretical predictions. Testing whether a
Markov chain is rapidly mixing.

Orthogonality: SZK-complete problem if the oracles have
explicit description [Vadhan 97].
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Outline

(1) Statement of the problem and main results
2) Classical lower bounds (P. Valiant 2008)
Testing orthogonality and Collision Finding problem

(
(3
(

(5

)
)

4) Testing closeness
) Testing uniformity
)

(6) Conclusions
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Statement of the problem

o Classical
deterministic ~ sample i € [N]

n-bit string oracle Oy,

# inputs leading to an output ?
= :
# Inputs
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Statement of the problem

o Classical
deterministic ~ sample i € [N]
mn-bit string oracle Op

# inputs leading to an output 2
B = .
# Inputs

Quantum oracle: O, : |z) ® |0) = |z) ® |Op(z))
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Statement of the problem

o Classical
deterministic ~ sample i € [N]

n-bit string oracle Oy,

# inputs leading to an output ?
P = :
# inputs

Quantum oracle: O, : |z) ® |0) = |z) ® |Op(z))

Property tester:
Input: m, N, €, access to a (quantum) oracle

Output: Accept or Reject

irsa: 09020

constant error probability, constant precision €
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Previous work and main results

Property Cl. Upper | Cl. Lower | Q. Upper | Q. Lower
Uniformity O(N?/3) Q(N1/2) | O(N'/3) ?
Closeness O(N?/3) | Q(N?/3) | O(NY?) ?
Orthogonality | O(N'/2) | Q(N'/2) | O(NY3) | Q(N/3)

Relevant papers:
1] Batu, Fortnov et al, Testing that distributions are close, FOCS 2000
2| Valiant, Testing symmetric properties of distributions, STOC 2008
3|-&sedbedreich and Ron, A sublinear bipartiteness tester ..., STOC=4:998




Classical lower bounds (Valiant 2008)
X =(21,...,2p) — a list of M samples drawn from p

Collision of order k: Some element 7 appears in X exactly
k times
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Classical lower bounds (Valiant 2008)
X = (21,...,2p) — a list of M samples drawn from p

Collision of order k£: Some element 2 appears in X exactly
k times

Example: X = (1,3,1,2,3,1,2,4)
1 collision of order 1 (i = 4)

2 collisions of order 2 (i =2 and i = 3)

1 collision of order 3 (i = 1)
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Classical lower bounds (Valiant 2008)
X = (21,...,2p) — a list of M samples drawn from p

Collision of order k: Some element : appears in X exactly
k times

Example: X =(1,3,1,2,3,1,2,4)
1 collision of order 1 (7 = 4)

2 collisions of order 2 (i =2 and i = 3)

1 collision of order 3 (i = 1)

cr=7 collisions of order k&

Fingerprint of X: ¢ = (¢1,¢2,...,¢cMm)

Pirsa: 09020008 Page 17/81



Classical lower bounds (Valiant 2008)
X = (21,...,2p) — a list of M samples drawn from p

Collision of order k£: Some element 2 appears in X exactly
k times

Example: X = (1,3,1,2,3,1,2,4)
1 collision of order 1 (i = 4)

2 collisions of order 2 (z =2 and 7 = 3)

1 collision of order 3 (i = 1)

cr=+ collisions of order k&

Fingerprint of X: ¢ = (¢1,¢2,...,¢cMm)

Example above: ¢ =(1,2,1,0,0,0,0,0)
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Classical lower bounds (Valiant 2008)

(1) A fingerprint contains all relevant information for
testing symmetric properties (invariant under rela-
beling of elements)
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Classical lower bounds (Valiant 2008)

(1) A fingerprint contains all relevant information for
testing symmetric properties (invariant under rela-
beling of elements)

Corollary: let D)’ be a probability distribution of finger-
prints. If a tester is supposed to accept p and
reject g but

||D£:/I — Déw“j[ 4 €

then M samples is not enough to test a prop-
erty.
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Classical lower bounds (Valiant 2008)

2) Wishful Thinking Theorem (simplified version)

Suppose ||p|l« and ||g||-c are small compared with 1/M.
Then

DM _ pM||. < 01 = ALk 0 (p) — Ok(q)|
. ()kzzg v/max {0x(p), 0x(q) }

where 6 (p) = Zle p? is the k-th moment of p

3) Simple generalization to properties that involve two
distributions, such as orthogonality and closeness.
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Testing orthogonality using O(N'/3) queries

Accept if p, ¢ have disjoint support, ||[p — q||1 = 2
Reject if p, ¢ have constant overlap, |[p —¢||; <2 —¢
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Wishful Thinking Theorem provides classical lower bounds
Uniformity testing: Q(N1/2)
Orthogonality testing: Q(N/2)

Closeness testing: Q(N?2/3)

More general problem: estimating ||p —¢||; with a constant
precision. It requires Q(N'—°(1)) queries.
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Testing orthogonality using O(N'/?) queries

Accept if p, ¢ have disjoint support, ||p — ¢q||1 = 2
Reject if p, ¢ have constant overlap, |[p — ¢q||; <2 —¢
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Testing orthogonality using O(N'/3) queries

Accept if p, ¢ have disjoint support, ||p — ¢q||1 = 2
Reject if p, ¢ have constant overlap, |[p —¢q||1 < 2 —¢

X = (41,...,ip) — a list of M samples drawn from p

Collision probability: r = Z qi
e X
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Testing orthogonality using O(N'/3) queries

Accept if p, ¢ have disjoint support, |[p — q|1 = 2
Reject if p, ¢ have constant overlap, ||[p —q|l1 < 2 — ¢

X = (41,...,ip) — a list of M samples drawn from p

Collision probability: r = Z qi
€ X

Basic intuition:

p L q implies r = 0 with probability 1 (no collisions)
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Testing orthogonality using O(N'/?) queries
Accept if p, ¢ have disjoint support, ||[p — q|1 = 2
Reject if p, ¢ have constant overlap, |[p —¢||1 <2 — ¢

X = (41,...,ip) — a list of M samples drawn from p
Collision probability: r = Z q;
i€X
Basic intuition:
p L g implies r = 0 with probability 1 (no collisions)

lp — ql|l1 < 2 — € implies r > const - % w.h.p.
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Testing orthogonality using O(N'/3) queries
Accept if p, ¢ have disjoint support, ||p — ¢q||1 = 2
Reject if p, ¢ have constant overlap, |[p — ¢||1 <2 —¢

X = (41,...,ip) — a list of M samples drawn from p
Collision probability: r = Z qi
ieX
Basic intuition:
p L q implies » = 0 with probability 1 (no collisions)

lp — q|l1 <2 — € implies r > const - % w.h.p.
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X = (i1,...,ip) — a list of M samples drawn from p

Collision probability: r = Z q;
ieX

Large deviation bound:

Suppose ||[p —¢|l1 <2 —€and 327! < M < N/2. Then

- Y
Pr {r S A[] > %

— 256 N




X = (41,...,%p) — a list of M samples drawn from p

Collision probability: r = Z qi
ieX

Large deviation bound:

Suppose ||[p —¢|[1 <2 —€and 327! < M < N/2. Then

rir> e M >*l
~ BB NI 3

Remark: in the regime M ~ N1/3 the standard deviation of r is
much larger than the expectation value. One cannot use Cheby-
sirevrnequality. Page 301



Finding a collision using [BHT 97]
1. Let X = (21,...,2)) be a list of M samples drawn from p
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Finding a collision using [BHT 97]

1. Let X = (21,...,%)7) be a list of M samples drawn from p

I — 0,

» sample ¢ € [N]

m-bit string

__ # inputs leading to an output :

qi

# Inputs

2. Mark all input strings y such that O,(y) € X
Collision probability » = fraction of marked strings

irsa: 09020008
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Finding a collision using [BHT 97]

P — 0,

» sample i € [N]

m-bit string

__ # inputs leading to an output :

qi

# inputs

2. Mark all input strings y such that O,(y) € X
Collision probability » = fraction of marked strings

3. Assuming a lower bound r > r,,;, ~ M/N find a
marked string using the Grover search.

irsa: 09020008
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Finding a collision using [BHT 97]
1. Let X = (21,...,2)7) be a list of M samples drawn from p

ﬁ*ﬂﬁ e Oq » sample 7 € [N]

m-bit string
__ # inputs leading to an output :
m # Inputs

2. Mark all input strings y such that O,(y) € X
Collision probability » = fraction of marked strings

qi

3. Assuming a lower bound r > 7, ~ M/N find a
marked string using the Grover search.

4. If a marked string is found, reject. Otherwise accept.
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Finding a collision using [BHT 97]
1. Let X = (21,...,2)r) be a list of M samples drawn from p

ﬁ“’ﬁii . Oq » sample i € [N]

m-bit string
__ # inputs leading to an output 2
N # Inputs

2. Mark all input strings y such that O,(y) € X
Collision probability » = fraction of marked strings

qi

3. Assuming a lower bound r > r,,;, ~ M/N find a
marked string using the Grover search.

4. If a marked string is found, reject. Otherwise accept.

[ 1 N
rres ool queries = M + O ( - ) =M+0O ( H) = OQ(N/ 3w




Collision Finding Problem

Decide whether an oracle function F : [N] — [N] is
one-to-one or two-to-one.

1 1 1 1
2 9 5 T2
3 3 3><3
4 4 4
6 6 6 6
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Collision Finding Problem

Decide whether an oracle function F : [N] — [N] is
one-to-one or two-to-one.

1 1 1 1
2 9 50 9
3 3 3><3
4 4 4
6 6 6 6

Brassard, Hoyer, Tapp 98: O(N i 3) algorithm
Aaronson and Shi 04: Q(/N'/3) lower bound
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Collision Finding Problem

Decide whether an oracle function F : [N] — [N] is
one-to-one or two-to-one.

1 1 1 1
2 9 0 9
3 3 3><3
4 4 4
6 6 6 6

Brassard, Hoyer, Tapp 98: O(N Xl 3) algorithm
Aaronson and Shi 04: Q(N'/3) lower bound

Simple observation: Collision Finding Problem is a special
case~of orthogonality testing. -



Lower bound Q(N'/3) for orthogonality testing
Choose a random permutation o € Sy
Define a new oracle G = F oo

Partition the domain of F into 2 equal parts: [N ] D1UDs

./
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Lower bound Q(N'/?) for orthogonality testing
Choose a random permutation o € Sy

Define a new oracle G = F oo

Partition the domain of F into 2 equal parts: [N] = D;UDs

=

\
-
“hoose p = G(uniform(D;)), ¢ = G(uniform(D5)) ——

t F' is one-to-one then p L gq.

Pirsa: 09020008

f F 1s two-to-one then Pr{|jp —¢ql||: < 7/8] > 1/2.
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Testing closeness using O(N'/?) queries
Accept if p = q, reject if ||[p —q||1 > €

Brute force method: estimate ||p — ¢||; with precision ~ €
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Testing closeness using O(N'/?) queries
Accept if p = q, reject if ||[p —q||1 > €

Brute force method: estimate ||[p — ¢||; with precision ~ €

N
Step 1. |[p—q|l1 = Zi=1 pi — q;| = 2E(x)

|Pz' —Qi| c [

0,1],
Pi T q;

;s —

i is drawn from (p + ¢q)/2
Use Monte Carlo method to estimate E(x)
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Testing closeness using O(N'/?) queries
Accept if p = q, reject if ||[p —q||1 > €

Brute force method: estimate ||[p — ¢||; with precision ~ €

Step 1. |lp — qlly = i, Ipi — @] = 2E(z)

o P

0, 1],
pi + ¢
i is drawn from (p + ¢q)/2

Use Monte Carlo method to estimate E(x)

Step 2. Show that estimating x; with precision € requires es-
timating p;, ¢; with precision O(e max{p;,q;})
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Testing closeness using O(N'/?) queries
Accept if p = q, reject if ||[p —q||1 > €

Brute force method: estimate ||[p — ¢||; with precision ~ €

N
Step 1. |[p —ql|1 = Zi=1 pi — qi| = 2E(x)

. |Pz'—q1'| e[

0,1],
Pi T q;

i is drawn from (p + ¢q)/2
Use Monte Carlo method to estimate E(x)

Step 2. Show that estimating x; with precision € requires es-
timating p;, ¢; with precision O(e max {p;,¢;})

Stepr%. Use quantum counting to estimate p; and g;



Quantum counting [BHMT 00]
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Quantum counting [BHMT 00]

Theorem: For any 7 € [N]| and any precision § > 0 one can
get an estimate p; which satisfies |p; — p;| < o
w.h.p. using

M = O(1) max { ‘/f, \}3}

queries to the oracle generating p.
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Quantum counting [BHMT 00]

Theorem: For any 7 € [N]| and any precision § > 0 one can

get an estimate p; which satisfies |p; — p;| < 9
w.h.p. using

M = 0(1) max{@, \}3}

queries to the oracle generating p.

step 3. Use quantum counting to estimate p; and g;
We need precision § ~ e max {p;, ¢;} which translates

mto
e O(1)
\/HflaX {pi, i}

queries
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Quantum counting [BHMT 00]

Theorem: For any 7 € [N]| and any precision § > 0 one can

get an estimate p; which satisfies |p; — p;i| < 0
w.h.p. using

M = 0(1) ma.x{\/f, \}3}

queries to the oracle generating p.

step 3. Use quantum counting to estimate p; and g¢;
We need precision § ~ e max {p;, ¢; } which translates

into 1
w99
step 4. Show that elements with max {p;, ¢;} < 1/N are un-

Pirsa: 09020008 Page 48/81

likely to appear. Thus M = O(+/ N) queries suffices.

queries




Testing closeness using O(N'/?) queries
Accept if p = q, reject if ||p —q||1 > €

Brute force method: estimate ||p — ¢q||1 with precision ~ €
N
Step 1. |lp —qlli = 2_i—; [pi — ¢ = 2E(2)

|Pz' —q1'| c [
Di + q;

£Ir; = 0, 1],

i is drawn from (p + ¢q) /2
Use Monte Carlo method to estimate E(x)

Step 2. Show that estimating x; with precision € requires es-
timating p;, ¢; with precision O(e max{p;,q;})

Stepr%. Use quantum counting to estimate p; and g;



Quantum counting [BHMT 00]

- " EETE B8 OB 8B B _ " -E BN 4 m 8 § W LJ L 1 P w 1 ] & §F Im n» 4~ m. 1§ W " PR WwWE L awm FRooW L | - LI " FrE DN L &0 1 u
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Theorem: One can estimate ||p — ¢||; with precision ¢ and
error probability w using

VN

M = 0(1)

queries to the quantum oracles generating p and ¢
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Theorem: One can estimate ||p — ¢||; with precision € and
error probability w using

VN

et )3

M = 0(1)

queries to the quantum oracles generating p and ¢

Corollary: One can test closeness using O(v/N) queries.
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Theorem: One can estimate ||p — ¢||1 with precision € and
error probability w using

VN

et 3

M = 0(1)

queries to the quantum oracles generating p and ¢

Corollary: One can test closeness using O(v/ N) queries.

Classical lower bounds:
Closeness testing: Q(N?/3)

Estimating ||p — q|l1: Q(N1—°W)
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Theorem: One can estimate ||p — ¢||; with precision ¢ and
error probability w using

VN

et 3

M = 0(1)

queries to the quantum oracles generating p and ¢

Corollary: One can test closeness using O(v/ N) queries.

Classical lower bounds:
Closeness testing: Q(N?/3)

Estimating ||p — ¢|l1: QN1—°())
It suggests that the quantum upper bound O(v/ N) for test-
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ing closeness might be improved...



Testing uniformity using O(N'/3) queries

Accept if p=1I/N. Reject if |[p — I/N||1 > €.

Pirsa: 09020008
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Testing uniformity using O(N'/3) queries

Accept if p=1I/N. Reject if ||[p — I/N||1 > €.

What is special about statistics of samples drawn from the
uniform distribution?

X = (i1,...,ip) — a list of M samples drawn from p

r= Z p; — collision probability
1€X
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Testing uniformity using O(N'/3) queries

Accept if p=1I/N. Reject if |[p — I/N||1 > €.

What is special about statistics of samples drawn from the
uniform distribution?

X = (i1,...,2p) — a list of M samples drawn from p

e Z p; — collision probability
i€X

p is uniform iff r < % with probability 1
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Testing uniformity using O(N'/3) queries

Accept if p=1I/N. Reject if ||[p — I/N||1 > €.

What is special about statistics of samples drawn from the
uniform distribution?

X = (i1,...,ip) — a list of M samples drawn from p

r= Z p; — collision probability
1eX

P is uniform iff r < % with probability 1

If M ~ N'/3 then r = 3 w.h.p.
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p is uniform iff r < % with probability 1

Let’s say that p is e-non-uniform iff ||p — I/N||1 > €
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p is uniform iff r < % with probability 1

Let’s say that p is e-non-uniform iff ||p — I/N||1 > €

Our strategy will be to show that

: . M :
p is e-non-uniform = Pr [‘r > W(l + O)] > w

for some positive § = d(€) and w = w(e)
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p is uniform iff r < % with probability 1

Let’s say that p is e-non-uniform iff ||p — I/N||1 > €

Our strategy will be to show that

: : M .
p is e-non-uniform = Pr {r > W(l +- O)] > w

for some positive § = d(€) and w = w(e)
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Uniformity-Test(M,).w)

Let X = {%1,...,ip} be a set of M samples from p.

Let r = ) ,_x p; be collision probability.

Let 7 be an estimate of r obtained using the quantum count-
ing algorithm with a relative error 4.

If 7> (14 0)M/N then reject. Accept otherwise.
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p is uniform iff r < % with probability 1

Let’s say that p is e-non-uniform iff ||p — I/N||1 > €

Our strategy will be to show that

M :
p is e-non-uniform = Pr [’r > F(l — O)] > w

for some positive § = d(€) and w = w(e)
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Uniformity-Test(M,).w)

Let X ={i1,...,ip} be a set of M samples from p.

Let r = ) ,_x p; be collision probability.

Let 7 be an estimate of r obtained using the quantum count-
ing algorithm with a relative error 4.

If 7 > (14 0)M/N then reject. Accept otherwise.
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Uniformity-Test(M,).w)

Let X = {i1,...,ip} be a set of M samples from p.

Let r = ) ,_x p; be collision probability.

Let ¥ be an estimate of r obtained using the quantum count-
ing algorithm with a relative error 4.

If 7> (14 0)M/N then reject. Accept otherwise.

Theorem: Choose parameters of the tester as
M = 64e *N1/3,

§F—c*IB
w = 1/(2a®) where a = 64¢*.
Then

p is uniform = Pr(reject) < w,

p is enon-uniform = Pr(reject) > 3w/2
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Sketch of the proof

We have to prove that

M .
p is e-non-uniform = Pr [r > _ﬁ(l + 0)} > w
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Sketch of the proof

We have to prove that

M )
p is e-non-uniform = Pr [fr > I—\f(l + O)} > W

Simplification 1: we can assume wlog that p; < N—1/3.

Indeed, if 3p; ~ N~1/3_ such element i will appear in the
sample list with a constant probability. Then

r>p;~N"13> M/N~N"2/3,

Pirsa: 09020008 Page 67/81



Sketch of the proof

We have to prove that
M

4

p is e-non-uniform = Pr [fr o (1+ 5)} > W

Simplification 1: we can assume wlog that p; < N—1/3.

Indeed, if 3p; ~ N~1/3_ such element i will appear in the
sample list with a constant probability. Then

r>p;~N"Y3> M/N~N2/3,

simplification 2: we can assume wlog that all elements
i1,...,%)r) in a sample list are distinct. Indeed,

N
Pife£0 -ta=ig] <M*Y Bf <N

Pirsa: 09020008
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Sketch of the proof

After these simplifications we get

e — E pz-a, where (i1,...,%)7) are samples drawn from p

(r) = M Zp“ Var(r) = M (sz - [ZP?]Q)

=1 =1
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Sketch of the proof

After these simplifications we get

= E Di,, Wwhere (i1,...,1y7) are samples drawn from p

a—I1
E(r) =M Zpa, Var(r) = M (sz - [Zzﬁ]g)
=1 ] |
Fact 1: pis e-non-uniform = [E(r) > —(1+€°).

N
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Sketch of the proof

After these simplifications we get

e — Z Di,, Wwhere (i1,...,1y7) are samples drawn from p
a=—1
)= b3t Vartr) =3t (Yot - ()
=1 =1
M o
Fact 1: pis enon-uniform = [E(r)> N(l + €7).

Fact 2: If ||p]loc < N~2/3 then +/Var(r) < E(r)



Sketch of the proof

After these simplifications we get

= E Di,, Wwhere (i1,...,%1y) are samples drawn from p

a—1

(r) = M ZPM Var(r) = M (ZPE — [ZP?]Q)

=1

M
N

Fact 2: If ||p]loc < N~2/3 then +/Var(r) < E(r)

Fact 1: pis enon-uniform = E(r)> —(1 + €%).

Thus if p has no ‘big’ elements p; ~ N~2/3 then the stan-
dard.Chebyshev inequality implies » > (M /N)(1+40) w,h,p.
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Sketch of the proof

After these simplifications we get

> — E Di,, Wwhere (i1,...,1y7) are samples drawn from p

a=—1

(r) = M ZPH Var(r) = M (sz — [ZP?]Q)

=13

M
Fact 1: pis enon-uniform = E(r) > W(l + &%)

Fact 2: If ||p|loc < N=2/3 then +/Var(r) < E(r)

Thus if p has no ‘big’ elements p; ~ N~2/3 then the stan-
dard.Chebyshev inequality implies » > (M /N)(14+9) w,h.p.
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Def. An element i € [V] is called big iff p; > 2N —2/3,



Sketch of the proof

After these simplifications we get

e E pi., Where (i1,...,%)7) are samples drawn from p

{1_

() MZP“ Var(r) = M (ZPI - [prlg)

M
Fact 1: pis e-non-uniform = E(r) > ﬁ(l +&%).

Fact 2: If ||p|loc < N=2/3 then +/Var(r) < E(r)

Thus if p has no ‘big’ elements p; ~ N~2/3 then the stan-
dard Chebyshev inequality implies r > (M /N)(1+9) w,h.p.
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Sketch of the proof
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Big = {i € [N] : p; > 2N~%/3} _ a set of big elements

Whig = Z p; — a probability that 2 is big
1EBig



Sketch of the proof

Def. An element i € [N] is called big iff p; > 2N —2/3,

Big = {i € [N] : p; > 2N~%/3} _ a set of big elements

Whig = Z p; — a probability that 2 is big

1€Big

(many big elements)

Whig < N_l/s

(a few big elements)

n order to make r > (1+0)M /N
ve need only O(1) big elements
n a list of samples

e (?:1, .. ,?:;u).

show that it happens with con-
stant probability (although exp.
il 5 ¢ 2),

Show that a sample X =
(21,...,%2)) contains no big ele-
ments with a constant probabil-
ity (although exp. small in € 1).
Conditioned on having no big el-

ements we already know that » >
(1 + S)A/I/N W_h_p_ Page 80/81



Conclusions

Property Cl. Upper | Cl. Lower | Q. Upper | Q. Lower
Uniformity O(N?/3) | Q(NY2) | O(NY/3) ?
Closeness O(N?/3) | Q(N?/3) | O(NY?) ?
Orthogonality | O(N/2) | Q(N'/2) | O(NY/3) | Q(N1/3)

Open problems:

e Testing closeness: is O(N'/?) optimal?

e Quantum lower bounds
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