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Abstract: We consider the problem of how fast a quantum system can scramble (thermalize) information, given that the interactions are between
bounded clusters of degrees of freedom. Based on previous work, we conjecture: 1) The most rapid scramblers take a time logarithmic in the
number of degrees of freedom. 2)Matrix quantum mechanics (systems whose degrees of freedom are n by n matrices) saturate the bound. 3) Black
holes are the fastest scramblers in nature. The conjectures are based on the principle of black hole complementarily, quantum information theory,
and the study of black holesin string theory. Thistalk isbased on Y. Sekino and L. Susskind, arXiv:0808.2096 [hep-th].
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* We make conjectures on “scrambling” of information:

1. Fastest scramblers in nature take time ~log N to
scramble information over the whole system,
(assuming interaction involves finite clusters of

d.o.f.) .
2. Black holes saturate the bound.
3. Matrix quantum mechanics saturate the bound.

* Based on
— Black hole complementarity
— Hayden and Preskill’s work
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Black hole information puzzle

* Black hole created by N
gravitational collapse:

* |f we believe in local field theory, the d.o.f. on
spatially separated points are independent:

H(S) — H(Em) & H(Suuf)

* Qutside observer can only access d.o.f. outside BH.
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Evaporation of black hole

* Semi-classical analysis tells us that:
— Black hole emits Hawking (thermal) radiations.
— Eventually evaporates away.

— Final state: H(Z,.) with thermal excitations?

* |t appears that a pure state evolves into a mixed state
(violating unitarity).
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Complementarity

* Consistent quantum theory should be defined in a
region that a single observer can access.

— From outside: BH is a hot membrane on the
“stretched horizon” which absorbs matter and
emits Hawking radiation.

— From inside: matter falls into a BH.

R, ~/
L N . )
e * These viewpoints are
/ 7 ’”
N complementary
AR (different descriptions of

irsa: 09010033 ) ,//' \"»‘__;_\:_\ ~. th e same p h enomenon ) i Page 7/30



According to complementarity,

* Hawking radiations carry information on the
quantum states that have fallen into the BH.

* Formation and evaporation of BH is a unitary process.

* String theory supports complementarity:
In AdS/CFT, boundary theory is manifestly unitary.

* What are its consequences?
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Potential trouble

* Do we have copies of the same quantum state (matter
inside horizon and Hawking radiation) ?

* We have to make sure that a single observer cannot
make a copy of a quantum state.

Thought experiment
(Susskind-Thorlacius, "94; Preskill):
* Alice falls into the BH.

- * Bob collects Hawking radiations,
decodes Alice’s info and jumps in,
and receive message from Alice.
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e Schwarzschild black hole

. . 2GA s (. 2GM\7' ., 5.
d.s":—(l— £ [)dt"~:-(1— = I) dr? + r2dQ?
k r L ¥
* Horizon radius: R=2GM.
Entropy: o_ A _ ™R Temperature: 77— .
4G~ G 47 R
* Geometry near the horizon: Rindler space
Y- ot ds®* = —pgd:.;.:g -+—dp2
' = —dX7dX"
(_\"i‘ = :tpﬁ;*:;..')
Rindler time: (time in unit of 1/T)
w=(2xI N
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* Bobstaysat p=R
 Aftertime wret he jumps into the BH. (X7 = Rexp(wyet))
* He hits the horizon at X~ < Rexp(—wyet) .

* |f Alice wants that her message reaches Bob before
he hits the horizon. she has to send it sooner than
AX™ = At = Rexp(—w.) after crossing the horizon.

X" x*

* Assume Alice’s energy is less

XX =pf
& than the BH mass. From the
- uncertainty principle, she
% cannot send the message
sooner than A 1 _2G
M R
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Estimate for the “retrieval time”

(How many Hawking photons should Bob collect in
order to decode Alice’s info?)
* Basic fact (Page, ‘93):

Suppose a system (in a pure state) consists of
subsystems A and B. How much info does A have?

Wave function: (e, 3) a € H(A), BeH(B)
Density matrix on A: (Pa)aa = Y. U(a, B) U(, B)

;|
Entanglement entropy: Sy = —Tr(pslogps)

Information in a subsystem:
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* Average over possible pure states (unit vectors in 2%
dimensional Hilbert space) with Haar measure or U(2")

* Result: When subsystem A is smaller than half the
whole system, there is almost no info:

S'J‘ — m — O(E‘_}m—_‘\.')

2 2™ = dim(Hy), 2V = dim(Hiotal)
™

| * The “halfway point” of

: evaporation:
E o~ dM 1
z N — P = tovan ~ M>
‘ vl s, dt M? =
" Iafermatiom N
* I This is late enough to
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Smarter way to recover information
(Hayden-Preskill, ‘07)

* Suppose Bob has been collecting all the Hawking
photons (since the BH has formed). Then Alice jumps

into BH. How many additional bits should Bob collect to
decode Alice’s message?

|

| 8’ ny B:black hole (Assume dim(E)>dim(B))
' M: Alice’s message (k bits)
N: reference system (maximally
entangled with M)

b E: previously emitted Hawking rad.
R

N | Mo V: random unitary transformation on BM
‘ R: additionally emitted Hawking rad.
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For typical unitary V, subsystems B’ and N are almost
decoupled when slightly more than k bits are emitted.
(s: bits in
/dl']]p‘\*‘g'(l ) — (V) ® pB I3 < 2725 Hawking rad.)

This means the system RE is almost maximally correlated
with N after k bits of Hawking radiations are emitted. (i.e.

Bob obtains Alice’s info almost immediately.)

In the above argument, V was assumed to be completely
random.

The time scale relevant for the info retrieval will be the
time needed for this to be established (i.e. M to be
mixed (“scrambled”) with B).
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Estimate for the scrambling time

* Consider a charged particle falling into a BH.
Rindler space (near horlzon)

v

Y ds* = —p?dw? —E—d,o —rd.r
| /:_';x' — -df_ —+ d,... + ([IE
b A _
P (z = pcoshw, ¢t = psinhw)
A Electric field of the point particle'
E(: — :”)

I — - . —E,
- [(:—Z”)“—r-lqi'E P :

* “Membrane paradigm”: surface charge density

induced on the stretched horizon (p, = ¢,)
1
-lﬂ'ﬂn
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* At late (Rindler) time, surface charge density is
=

A (€,e)2[1 + (zie—=/€,) 23/

O-"'N.r

— charge spreads exponentially Az ~ € .e”

* Thus, time needed for the perturbation to spread
over the whole horizon (scrambling time) is

w, = log R/l ~ log S

— Note that this is fast. Usually, diffusion takes time

WLy ;‘\‘."2/(1’

(N: # of d.o.f.; d:spatial dimension)
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Conjectures

1. Fastest scramblers in nature take time ~log N to
scramble information over the whole system,
(assuming interaction involves finite clusters of d.o.f.)

2. Black holes saturate the bound.

3. Matrix quantum mechanics (dual to the BH)
saturates the bound.
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DO-brane black hole

* (9+1)-dim BH, charged under RR 1-form

* Remark on the causal structure:

Naively, there are inner Including back reaction,
and outer horizons causal structure will be
similar to Schwarzschild
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* Metric (in the “decoupling limit”)

.

> —1/2 = 2 1/2 oy —1
e I - { " {.'
oo [ (5) " (1 ) e () {1 ) "]

— Charge (number of the DO-branes): n

— Energy (mass above extremality), Entropy, temperature

5%

" 57792 r5/2
L 0 v n-U, T Us

R g = T2 o\ R TV
gy M (gymm)™ (g5um)

— String coupling:

— Time scale for evaporation 217 1 67
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* Classical gravity analysis: valid when string coupling
and curvature are small at the horizon.

1 < (gymn/Uy) < n''"

— BH with fixed temperature, large entropy limit

— Gauge theory in the ‘t Hooft limit

* Geometry near the horizon is Rindler.

* Scrambling time (in unit of inverse temperature):
w, = log(Ruor/ls) = log(gyym/Ug)"* ~ Clogn
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* (A “cell” of size

e . . .

AdS/CFT

Rigs ) = (cut-off cell in boundary theory)

vyt

5 5 dz* + dz*
{'L‘i e R-‘uIS

2

UV cut-off : Az =c¢€
< |R cut-off: zm =¢€

boundary

(Area) = Rju‘iS = gsﬂfj- (S — (.JLI‘E‘B.)/?}? - fl:)

* AdS black hole (large R... > Riaqs , stable BH):
Time for a perturbation to spread over the size Rygs :
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Matrix theory

 (0+1) D SYM: Lagrangian is (schematically)

oo ur = =th1%)
L=Ttr}y XeX*-Te Y [X° XT
(1 ab
X% :n xn matrices, N = n x n: total number of d.o.f.

* Localized perturbation has angular momentum
¢ ~ R, ~ (gyym/Uy)"*

Corresponding operator: Opert ~ Tr(X --- X)

"

f

* Basic picture of scrambling: At each time step, # of
element “connected” to the perturbed element
grows by a factor of 4 (due to the quartic interaction).

etAll matrix elements are “next to each other.”) =




Toward testing the conjecture

* One measure of being scrambled:
— BH: thermal ground state
— Perturbation att=0:  Opert(0)

— After time t, if system is scrambled, we will have

<Ou(t)0pert (0)>5 2= <Ou(t)>.j

for some set of {Oa}
(operators involving small subspace of matrix
elements)
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