Title: Black holes as mirrors

Date: Jan 24, 2009 02:30 PM

URL: http://pirsa.org/09010031

Abstract: I'll discuss information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the 'half-way' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. The resulting estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementary hypothesis. (Joint work with John Preskill).

Pirsa: 09010031 Page 1/124

Black Holes as Mirrors

Patrick Hayden (McGill University) John Preskill (Caltech)

Pure state

Pirsa: 09010031 Page 3/124

Pure state

Thermal Hawking radiation

Pirsa: 09010031 Page 4/124

Pure state

Thermal Hawking radiation

Radiation but no black hole

Pirsa: 09010031 Page 5/124

Pure state

Thermal Hawking radiation

Radiation but no black hole

Finer Question: Does information dropped into a black hole ever come out?

Pirsa: 09010031 Page 7/124

Finer Question: Does information dropped into a black hole ever come out?

No: Unitarity fails

Pirsa: 09010031 Page 8/124

Finer Question: Does information dropped into a black hole ever come out?

No: Unitarity fails

Yes: Copies of information exist "simultaneously" inside and outside the black hole.

Pirsa: 09010031 Page 9/124

Finer Question: Does information dropped into a black hole ever come out?

No: Unitarity fails

Yes: Copies of information exist "simultaneously" inside and outside the black hole.

Cloning is unverifiable by an experiment

Pirsa: 09010031 Page 11/124

Cloning is unverifiable by an experiment

Pirsa: 09010031 Page 12/124

Cloning is unverifiable by an experiment

Cloning is unverifiable by an experiment

Cloning is unverifiable by an experiment

Bob's delay (Sch. time)

 Alice proper time to release msg

$$au_{Al} = Cr_s \exp\left(\frac{-\Delta t}{r_s}\right)$$

Schwarzschild radius

Radial light rays:

In Out

Pirsa: 09010031

Bob's delay (Sch. time)

Alice proper time to release msg

$$au_{Al} = Cr_s \exp\left(\frac{-\Delta t}{r_s}\right)$$

Schwarzschild radius

Require expt using sub-Planck energy:

Radial light rays:

Pirsa: 09010031

In

Out

$$t_{info} > C'r_s \log r_s$$

Pirsa: 09010031 Page 17/124

Pirsa: 09010031 Page 18/124

Entanglement Entropy $S(\phi_{out})$

 $A_{init} - A$

Radiated bits

Page 19/124 Pirsa: 09010031

t_{info} via Page ansatz

Random $|\phi\rangle \in \mathcal{H}_{in} \otimes \mathcal{H}_{out} \cong \mathbb{C}^{d^2}$

Area $A \sim \log \dim \mathcal{H}_{in}$

Entanglement Entropy

 $S(\phi_{out})$

Pirsa: 09010031

 $A_{init} - A$

Radiated bits

Random
$$|\phi\rangle \in \mathcal{H}_{in} \otimes \mathcal{H}_{out} \cong \mathbb{C}^{d^2}$$

Area $A \sim \log \dim \mathcal{H}_{in}$

Random
$$|\phi\rangle \in \mathcal{H}_{in} \otimes \mathcal{H}_{out} \cong \mathbb{C}^{d^2}$$

Area $A \sim \log \dim \mathcal{H}_{in}$

"Information" in the radiation:

$$I = \log \dim \mathcal{H}_{out} - S(\phi_{out})$$

Radiated bits

Pirsa: 09010031

 $\gg \mathcal{H}_{in}$

Area $A \sim \log \dim \mathcal{H}_{in}$

"Information" in the radiation:

$$I = \log \dim \mathcal{H}_{out} - S(\phi_{out})$$

 $A_{init} - A$ $\gg \mathcal{H}_{in}$ Radiated bits

 \mathcal{H}_{out}

Pirsa: 09010031

BH lifetime Page 24/124

$$t_{info} > C'r_s \log r_s$$

Pirsa: 09010031 Page 25/124

$$t_{info} > C'r_s \log r_s$$

Page estimate: $t_{info} \sim r_s^3$

Pirsa: 09010031 Page 26/124

$$t_{info} > C'r_s \log r_s$$

Page estimate: $t_{info} \sim r_s^3$

 M_{\odot}

Pirsa: 09010031

Pirsa: 09010031 Page 32/124

Pirsa: 09010031

Assume MIX is a *random* permutation on 2^n bit strings.

Pirsa: 09010031 Page 34/124

Assume MIX is a *random* permutation on 2^n bit strings.

Assume MIX is a *random* permutation on 2^n bit strings.

Pirsa: 09010031

In annual D cok-s

Classical Model

Assume MIX is a *random* permutation on 2^n bit strings.

Pirsa: 09010031

In a new l. D. o 2k-s

Page 38/124

Pirsa: 09010031

Page 39/124

Pirsa: 09010031 Page 40/124

Purification: $|\Psi\rangle_{\chi\chi}$ is a purification of ρ_{χ} if $\mathrm{tr}_{\chi} |\psi\rangle\langle\psi| = \rho_{\chi}$.

Purification: $|\Psi\rangle_{\chi \gamma}$ is a purification of ρ_{χ} if $\mathrm{tr}_{\gamma} |\psi\rangle\langle\psi| = \rho_{\chi}$.

Purifications are essentially unique.

(Up to local unitaries on the purifying space.)

Pirsa: 09010031 Page 44/124

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$.

Purification: $|\Psi\rangle_{\chi Y}$ is a purification of ρ_{χ} if tr_{Y} $|\psi\rangle\langle\psi| = \rho_{\chi}$.

Purifications are essentially unique.

(Up to local unitaries on the purifying space.)

Pirsa: 09010031 Page 46/124

Purification: $|\Psi\rangle_{\chi\chi}$ is a purification of ρ_{χ} if tr_{χ} $|\psi\rangle\langle\psi| = \rho_{\chi}$

Pirsa: 09010031

Purification: $|\Psi\rangle_{\chi\chi}$ is a purification of ρ_{χ} if $\mathrm{tr}_{\chi} |\psi\rangle\langle\psi| = \rho_{\chi}$.

 $|\xi_{NB'R}\rangle$

Pirsa: 09010031

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$

 $|\xi_{NB'R}\rangle$

$$\operatorname{Tr}_{R} \xi_{NB'R} = \rho_{N} \otimes \sigma_{B'}$$

Pirsa: 09010031

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$

$$|\xi_{NB'R}\rangle$$
 =(id_{NB'} \otimes U_R) $|\phi_{NR1}\rangle$ $|\psi_{B'R2}\rangle$

$$\operatorname{Tr}_{R} \xi_{NB'R} = \rho_{N} \otimes \sigma_{B'}$$

Pirsa: 09010031

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$.

$$|\xi_{NB'R}\rangle$$
 =(id_{NB'} \otimes U_R) $|\phi_{NR1}\rangle$ $|\psi_{B'R2}\rangle$

$$\operatorname{Tr}_{R} \xi_{NB'R} = \rho_{N} \otimes \sigma_{B'}$$

Pirsa: 09010031

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$.

$$|\xi_{NB'R}\rangle$$
 =(id_{NB'} \otimes U_R) $|\phi_{NR1}\rangle$ $|\psi_{B'R2}\rangle$

$$\operatorname{Tr}_{R} \xi_{NB'R} = \rho_{N} \otimes \sigma_{B'}$$

Pirsa: 09010031

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$.

 $|\phi_{NR1}\rangle |\psi_{B'R2}\rangle$

Purifications are essentially unique.

(Up to local unitaries on the purifying space.)

$$\operatorname{Tr}_{R} \xi_{NB'R} = \rho_{N} \otimes \sigma_{B'}$$

Page 53/124

R1 R2

Purification: $|\Psi\rangle_{XY}$ is a purification of ρ_X if $tr_Y |\psi\rangle\langle\psi| = \rho_X$

 $|\phi_{NR1}\rangle |\psi_{B'R2}\rangle = (id_{NB'}\otimes U_R^{-1}) |\xi_{NB'R}\rangle$

Purifications are essentially *unique*.

(Up to local unitaries on the purifying space.)

$$\operatorname{Tr}_{R} \xi_{NB'R} = \rho_{N} \otimes \sigma_{B'}$$

Page 54/124

Pirsa: 09010031 Page 56/124

Pirsa: 09010031 Page 57/124

Pirsa: 09010031 Page 58/124

Pirsa: 09010031 Page 59/124

Pirsa: 09010031 Page 60/124

Pirsa: 09010031 Page 61/124

Pirsa: 09010031 Page 62/124

How long until entanglement with N escapes?

Pirsa: 09010031 Page 63/124

How long until entanglement with N escapes?

Pirsa: 09010031 Page 64/124

How long until entanglement with N escapes?

How long until entanglement with N escapes?

How long until entanglement with N escapes?

Pirsa: 09010031 Page 68/124

Haar uniform V: $\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV$

 $\leq 2^{n+k-2k}$

For good decoupling: $s \gg (n+k)/2$

Pirsa: 09010031

Haar uniform V:

$$\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV$$

$$< 2^{n+k-2s}$$

For good decoupling: $s \gg (n+k)/2$

Another modest experiment

Pirsa: 09010031 Page 72/124

Pirsa: 09010031 Page 73/124

Pirsa: 09010031 Page 74/124

Pirsa: 09010031 Page 75/124

Pirsa: 09010031 Page 76/124

Pirsa: 09010031 Page 77/124

Pirsa: 09010031 Page 78/124

Pirsa: 09010031

Pirsa: 09010031

Pirsa: 09010031

Pirsa: 09010031 Page 86/124

Pirsa: 09010031 Page 87/124

Pirsa: 09010031 Page 88/124

Haar uniform V:

$$\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV$$

$$\leq 2^{k-s}$$

For good decoupling: $s\gg k$

Haar uniform V:

$$\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV$$

$$\leq 2^{k-s}$$

For good decoupling: $s \gg k$

Pirsa: 09010031

Pirsa: 09010031 Page 91/124

Quasinormal mode ringdown ~ r_s

Pirsa: 09010031 Page 92/124

- Quasinormal mode ringdown ~ r_s
- Spreading of a charge over stretched horizon ~ r_s log r_s

Pirsa: 09010031 Page 93/124

- Quasinormal mode ringdown ~ r_s
- Spreading of a charge over stretched horizon ~ r_s log r_s
- AdS/CFT ~ 1/T_{Hawking} (~ r_s in Schwars.)

Pirsa: 09010031 Page 94/12-

- Quasinormal mode ringdown ~ r_s
- Spreading of a charge over stretched horizon ~ r_s log r_s
- AdS/CFT ~ 1/T_{Hawking} (~ r_s in Schwars.)

Suggestive, but our question is more demanding:

$$\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV \leq 2^{k-s}$$

Pirsa: 090<mark>1</mark>0031 Page 95/124

Haar random V would take exponential time

Pirsa: 09010031 Page 96/124

Haar random V would take exponential time

Haar random V would take **exponential** time

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck time at 1 proper Planck length from the horizon

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck time at 1 proper Planck length from the horizon

Thermalization in local time $log(A) \sim log(r_s)$

n qubits

Pirsa: 09010031

Haar random V would take **exponential** time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck time at 1 proper Planck length from the horizon

Thermalization in local time $log(A) \sim log(r_s)$

n qubits

Schwarzschild observer: Page 102/124(rs)

Black Hole Complementarity Consistency Condition

$$t_{info} > C'r_s \log r_s$$

New estimate: $t_{info} \sim r_s \log r_s$

Pirsa: 09010031 Page 103/124

Black Hole Complementarity Consistency Condition

$$t_{info} > C'r_s \log r_s$$

New estimate: $t_{info} \sim r_s \log r_s$

 M_{\odot}

Haar random V would take **exponential** time

r_s log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck unit of Schwarzschild time

Black Hole Complementarity Consistency Condition

$$t_{info} > C'r_s \log r_s$$

New estimate: $t_{info} \sim r_s \log r_s$

 M_{\odot}

Black Hole Complementarity Consistency Condition

$$t_{info} > C'r_s \log r_s$$

New estimate: $t_{info} \sim r_s \log r_s$

Pirsa: 09010031 Page 107/124

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck time at 1 proper Planck length from the horizon

Thermalization in local time $log(A) \sim log(r_s)$

n qubits

Schwarzschild observer: fsgel08/124(rs)

Quantum Model (v2)

Haar uniform V:

$$\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV$$

$$\leq 2^{k-s}$$

For good decoupling: $s \gg k$

Pirsa: 09010031

Quantum Model (v2)

Haar uniform V:

$$\int \|\sigma_{NB'}(V) - \sigma_N \otimes \sigma_{B'}(V)\|_1 dV$$

$$\leq 2^{k-s}$$

For good decoupling: $s\gg k$

Pirsa: 09010031

Page 110/124

Thermalization time of a Schwarzschild black hole

Pirsa: 09010031 Page 111/124

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

n qubits

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck time at 1 proper Planck length from the horizon

Thermalization in local time $log(A) \sim log(r_s)$

n qubits

Haar random V would take exponential time

log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck time at 1 proper Planck length from the horizon

Thermalization in local time $log(A) \sim log(r_s)$

n qubits

Schwarzschild observer: 1° 114/124 (rs)

Black Hole Complementarity Consistency Condition

$$t_{info} > C'r_s \log r_s$$

New estimate: $t_{info} \sim r_s \log r_s$

Pirsa: 09010031 Page 115/124

Haar random V would take **exponential** time

r_s log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck unit of Schwarzschild time

n qubits

Haar random V would take exponential time

r_s log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck unit of Schwarzschild time

Slowdown by light crossing time to compensate for local gates

n qubits

Page 117/124

Haar random V would take exponential time

r_s log(n) time steps Cheat sheet: $n \sim A$ $A \sim r_s^2$

What is a time step?

1 Planck unit of Schwarzschild time

Slowdown by light crossing time to compensate for local gates

Thermalization in local time $r_s \log(A) \sim r_s \log(r_s^{Page})^{18/124}$

Pirsa: 09010031

Pirsa: 09010031

n qubits go in, but only s qubits come out

Pirsa: 09010031 Page 120/124

n qubits go in, but only s qubits come out

Erasure channel with erasure probability (n-s)/n=1-s/n.

Pirsa: 09010031 Page 121/124

Summary

- For black holes maximally entangled with their Hawking radiation, t_{info} is determined by the time scale for thermalization
- Our best estimates are that this is just barely compatible with the black hole complementarity hypothesis

Pirsa: 09010031 Page 123/124

What next?

- Consistency of BH complementarity in other geometries
- Decoding complexity
- Thermalization
 - Study convergence of random circuits [Harrow-Lo 2007]
 - Study convergence for toy nonlocal, nonintegrable Hamiltonian QM systems [H-Lashkari-Osbourne]
 - Study thermalization in stringy models of black holes (matrix theory) [Sekino-Susskind]

Pirsa: 09010031 Page 124/124