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Abstract: I'll discuss information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly
mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already
proceeded past the 'half-way' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the
black hole is reveaed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way
point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting
codes that nearly achieve the capacity of the quantum erasure channel. The resulting estimate of a black hole's information retention time, based on
speculative dynamical assumptions, isjust barely compatible with the black hole complementary hypothesis. (Joint work with John Preskill).
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Hawking’'s Question: Is the final state mixed or pure?
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Summary

For black holes maximally entangled
with their Hawking radiation, £, . is
determined by the time scale for
thermalization

Our best estimates are that this is just
barely compatible with the black hole
complementarity hypothesis



What next?

Consistency of BH complementarity in other
geometries

Decoding complexity

Thermalization

Study convergence of random circuits [Harrow-Lo
2007]

Study convergence for toy nonlocal, nonintegrable
Hamiltonian QM systems [H-Lashkari-Osbourne]

Study thermalization in stringy models of black
holes (matrix theory) [Sekino-Susskind]



