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Abstract: In this talk | will describe a topos formulation of consistent histories obtained using the topos reformulation of standard quantum
mechanics put forward by Doering and Isham. Such a reformulation leads to a novel type of logic with which to represent propositions. In the first
part of the talk | will introduce the topos reformulation of quantum mechanics. | will then explain how such areformulation can be extended so asto
include temporally-ordered collection of propositions as opposed to single time propositions. Finally | will show how such an extension will lead to
the possibility of assigning truth values to temporal propositions.
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1. INTRODUCTION
1.1 Why a History Theory?

The standard Copenhagen interpretation cannot describe closed
systems, since the existence of an external observer is required.

This causes problems in any theory of quantum cosmology.

One significant recent attempt to deal with closed systems In
quantum mechanics Is consistent-history theory:

— Omnes, Griffiths. Gell'mann & Hartle: Histories as products of
projection operators (therefore not projectors).

—HPO formalism of consistent histories: History propositions are
iIdentified with projection operators in bigger Hilbert space.

In this talk | will describe a new type of history quantum theory: a
topos version of the tempaoral-logic part of the HPO formalism.
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1.2 Why a topos version of the temporal logic part of the HPO formalism?

@ A topos reformulation of quantum mechanics was put forward by
Isham and Daoring.

An essential ingredient is a mapping of projection operators to
certain objects in a topos.
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1.2 Why a topos version of the temporal logic part of the HPO formalism?

@ A topos reformulation of quantum mechanics was put forward by
Isham and Dadring.

An essential ingredient is a mapping of projection operators to
certain objects in a topos.

@ My aim is to extend this formulation to a history version of
quantum theory. therefore my starting point is the HPO
formalism.
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What is Topos Theory?

@ A category is a collection of objects and a collection of ‘maps’
between these objects.

The best-known example is Sets. But.......
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What is Topos Theory?

: 09010017

@ A category is a collection of objects and a collection of ‘maps’
between these objects.

The best-known example is Sefs. But.......

@ A topos is a category which is similar to Sets: fundamental
mathematical properties (disjoint union, Cartesian product. efc)
have a topos analogue. In particular

— Sub-object classifier Q: Generalises the set {0, 1} of
truth-values in the category Sets.

— Collection of all sub-objects of any object forms a
Heyting algebra:

A distributive algebra for which S v =S < 1. An internal logic,
analogue to Boolean algebra in Sets
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What is Topos Theory?

: 09010017

@ A category is a collection of objects and a collection of ‘maps’
between these objects.

The best-known example is Sets. But.......

@ A topos is a category which is similar to Sets: fundamental
mathematical properties (disjoint union, Cartesian product. etc)
have a topos analogue. In particular

— Sub-object classifier (2: Generalises the set {0, 1} of
truth-values in the category Sefs.

— Collection of all sub-objects of any object forms a
Heyting algebra:

A distributive algebra for which S v =S < 1. An internal logic,
analogue to Boolean algebra in Sets
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2.2 Why Topos Theory?

@ Kocken-Specher theaorem — non-realist interpretation of
quantum theory

For quantum cosmology, need a reformulation of quantum
theory which is ‘more realist’. Isham, Butterfield & Doéring: can
be done through fopos theory.
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2.2 Why Topos Theory?

@ Kocken-Specher theorem — non-realist interpretation of
quantum theory

For quantum cosmology, need a reformulation of quantum
theory which is ‘more realist’. Isham, Butterfield & Doring: can
be done through fopos theory.
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2.2 Why Topos Theory?

@ Kocken-Specher theorem — non-realist interpretation of
quantum theory

For quantum cosmology, need a reformulation of quantum
theory which is ‘more realist’. Isham, Butterfield & Doring: can
be done through fopos theory.

@ Reformulate quantum theory to make it ‘look like’ classical
physics:

— Classical physics uses Sets as its mathematical structure.
A topos is a category which ‘looks like” Sefts.

— Logic of subsets in Sets is Boolean logic.
Logic of subsets in a topos is a distributive logic
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2.3 Which Topos?

@ Need for contexts comes from K-S theorem: only within abelian
subalgebras of B(H) can quantum theory ‘look like’ classical
theory. Contexts form ‘classical snapshots’.

— The set of abelian subalgebras, V(H ), forms a category
under subset inclusion: iy : V C V

I.e. consider all contexis at the same time!

— Example: V' = VNV = 0 then 3 the inclusion maps i,
and i, therefore it is possible to ‘relate’ V and V'
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2.3 Which Topos?

@ Need for contexts comes from K-S theorem: only within abelian
subalgebras of B(H) can quantum theory ‘look like’ classical
theory. Contexts form ‘classical snapshots’.

— The set of abelian subalgebras, V(H ), forms a category
under subset inclusion: iy y - V' C'V

I.e. consider all contexis at the same time!

— Example: V' = VNV # 0 then 3 the inclusion maps iy
and i, therefore it is possible to ‘relate’ V and V'

@ Topos of presheaves over the category of abelian subalgebras :
SetsV(H)*.
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2.4 Topos of Presheaves

Let C, D be categories. Then a presheaf is an assignment to each
D-object A of a C-object X(A), and to each D-arrowf: A — B a
C-arrow X(f) : X(B) — X(A) such that:

-X(14) = x4

-X(foeg)=X(g)coX(f)foranyg:C — A
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3. The Isham-Doering scheme
3.1 The State Object

State spaces in physics

1. Classical physics: Physical quantity A represented f; : S — R.
2. Quantum physics: Physical quantity A represented AH-H

3. Topos physics: Spectral presheaf L : V(H) — Set such that

V — ¥, ;= {simultaneous eigenvalues of V}, i.e_, the
possible values of the physical quantities in V.

fAcV thenf;: X, — Rl

2_is the ‘'state object of the theory.
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3. The Isham-Doering scheme
3.1 The State Object

State spaces in physics
1. Classical physics: Physical quantity A represented f; : § — R.
2. Quantum physics: Physical quantity A represented A : H — H.

3. Topos physics: Spectral presheaf ¥ : V(H) — Set such that

V — L, ;= {simultaneous eigenvalues of V}; i.e the
possible values of the physical quantities in V.

fAcV thenf;: X, — Rl

2_Is the ‘state object’ of the theory.
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3. The Isham-Doering scheme
3.1 The State Object

State spaces in physics
1. Classical physics: Physical quantity A represented f; : S — R.
2. Quantum physics: Physical quantity A represented AH-H

3. Topos physics: Spectral presheaf ¥ : V(H) — Set such that

V — L, ;= {simultaneous eigenvalues of V}; i.e, the
possible values of the physical quantities in V.

fAcV thenf;: L, — Rl

2_Is the ‘'state object of the theory.
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3. The Isham-Doering scheme
3.1 The State Object

State spaces in physics
1. Classical physics: Physical quantity A represented f; : § — R.
2. Quantum physics: Physical quantity A represented AHH

3. Topos physics: Spectral presheaf L : V(H) — Set such that

V — ¥, ;= {simultaneous eigenvalues of V}; i.e_, the
possible values of the physical quantities in V.

fAcV, thenf;: L, — Rl

2_Is the ‘'state object of the theory.
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3. The Isham-Doering scheme
3.1 The State Object

State spaces in physics

1. Classical physics: Physical quantity A represented f; : S — R.
2. Quantum physics: Physical quantity A represented AH-H

3. Topos physics: Spectral presheaf ¥ : V(H) — Set such that

V — L, ;= {simultaneous eigenvalues of V}; i.e., the
possible values of the physical quantities in V.

fAcV thenf;: L, — Rl

2_Is the ‘'state object’ of the theory.
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3. The Isham-Doering scheme
3.1 The State Object

State spaces in physics
1. Classical physics: Physical quantity A represented f; : S — R.
2. Quantum physics: Physical quantity A represented A H—H.

3. Topos physics: Spectral presheaf ¥ : V(H) — Set such that

V — ¥, ;= {simultaneous eigenvalues of V}; i.e., the
possible values of the physical quantities in V.

fAcV thenf,: X, — Rl

2_is the ‘'state object of the theory.
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3.2 Propositions

Propositions

1. Classical physics:

‘Ac A’ (A)={seS|fa(s) e A} C S

2. Quantum theory:

e ~

P = EJA € A] € P(H)

3. Topos physics: Need to identify P with sub-objectof X_; I.e, for
each V need subset of L, ; i.e.. a projection operator in V.
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3.3 Daseinisation

@ ‘Daseinisation’:
0: P(H) — P(V)
P — §(P)y

where §(P )v = AN{a € P(V)|la > ﬁ’}: the ‘best’ approximation of
P (from above) by projectors in V.

@ Relation to Sub(X):

Any projector in V gives a subset of L,,. Therefore get map, for
each V, P — b(P)

Can show that this corresponds to ¢ : P(H) — Sub(X)!

Thus ¢ maps propositions about a quantum system to a
distributive lattice in a contextual manner.
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3.3 Daseinisation

Pi

IIIII

@ ‘Daseinisation’:

0: P(H) — P(V)
P — 5(P)y

where 4( )v = AN{a € P(V)la > P} the ‘best’ approximation of
= (from above) by projectors in V.

@ Relation to Sub(X):

: 09010017

Any prOJector In V gives a subset of L ,,. Therefore get map, for
each V, P — o(P)

Can show that this corresponds to ¢ : P(H) — Sub(X)!

Thus ¢ maps propositions about a quantum system to a
distributive lattice in a contextual manner.
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3.4 States

@ States in classical physics

In classical physics a microstate is a point in the state space.
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3.4 States

@ States in classical physics

In classical physics a microstate is a point in the state space.

@ States in the topos formulation of quantum theory

— 2 has no ‘points’ =— Equivalent to the K-S theorem

— Topos analogues of a state is a (hon-pointl) sub-object of
the state object L:

Pseudo-state: w/¥ = §(|v)(v|) T X .

s(|v)(w))y == \{& € P(V)| |¥)(¥| < a}

n'¥’ is the ‘closest’ one can get to defining a point in L.
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3.4 States

@ States in classical physics

In classical physics a microstate is a point in the state space.

@ States in the topos formulation of quantum theory

— 2 has no ‘points’ =— Equivalent to the K-S theorem

— Topos analogues of a state Is a (hon-pointl) sub-object of
the state object X:

Pseudo-state: w/? = §(|v) (v]) T X .

(5( |t;:_j:: :::IUI)V L= /\{a = P(V) | |Lf L,f o &}

mw'* Is the ‘closest’ one can get to defining a point in .
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3.4 States

@ States in classical physics

In classical physics a microstate is a point in the state space.

@ States in the topos formulation of quantum theory

— 2 has no ‘points’ =— Equivalent to the K-S theorem

— Topos analogues of a state Is a (hon-pointl) sub-object of
the state object L:

Pseudo-state: w/" = §(|v)(v|) T X .

5([v)(w))y == \{a € P(V)| |[¥)(¥| < a}

n'?’ is the ‘closest’ one can get to defining a point in L.
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3.5 Truth Values

@ Truth values in classical physics

A proposition Q C Sistfrue inastate siff s € Q.
This is equivalent to {s} C Q.
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3.4 States

@ States in classical physics

In classical physics a microstate is a point in the state space.

@ States in the topos formulation of quantum theory

— 2 has no ‘points’ =— Equivalent to the K-S theorem

— Topos analogues of a state is a (hon-pointl) sub-object of
the state object 1_:

Pseudo-state: w/? = §(|v)(v|) T X .

5([v)(@))y == \{a € P(V)| |[¥)(¥| < a}

n'*’ is the ‘closest’ one can get to defining a point in L.

Pirsa: 09010017

- Pageb9/117 . . .
1 E — - g_: o ~ e

e T T gy oSSR A Sl el R TNE BN . ael MOl TSy eemsd Ay SETPIEEONET SOWCSIC R, el el




3.5 Truth Values

@ Truth values in classical physics

A proposition Q C Sisfrue inastate siff s € Q.
This is equivalent to {s} C Q.
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3.5 Truth Values

@ Truth values in classical physics

A proposition Q C Sistrueinastate siff s € Q.
This is equivalent to {s} C Q.

@ Truth values in the topos formulation of quantum theory

— In topos quantum theory, we define the proposition 5{!5) o

be ‘totally true’ given the pseudo state w ¥ iff w ¥’ C 5(P).

s

This means that, for all V. /¥ < §(P)y.

— However, In a topos a proposition can be ‘partially true’
using ‘contextual truth values'. At stage V we define

vim!® C8(P)y ={V cV|n} céP),}

={V C V| @§(P)v &) = 1}

Pirsa: 09010017

=] = = -

I o Srils o e gy AT el (o - DN wrAMCTR R g ] wARSARED WIS SO0, - e e i

Page61/117 .. . .
_: J.._‘_ - ke




3.5 Truth values

— This is called a sieve on V.

The collection, £2,,. of all sieves on V forms a Heyting algebral

— For varying V such truth values form a global section (2 of the
sub-object classifier 2.

The set [ Q2 is itself a Heyting algebral

— Thus we have a Heyting algebra of propositions and a Heyting
algebra of ‘generalised’ truth values!
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4. TOPOS THEORY AND THE HPO FORMALISM
4.1 HPO Formulation of Quantum Temporal Logic

@ |dentify the set of all history propositions with projection
operators in a new Hilbert space H;, @ Hs, @ --- @ He

— ‘Homogeneous histories’: Tensor products of projection
operators
a =0 Doy, D--- D ay,

— ‘Inhomogeneous histories’:

~ ~ o ~

== CEE-, : t'f]:r,., —— :i . : :I L == D:':-,: e {,'I:r,__
: He © 1o,

-~

= (—ay, R ag,) V(@ D Tag,) V (—ay R —ay,)

=

— “Type lII' propositions
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4. TOPOS THEORY AND THE HPO FORMALISM
4.1 HPO Formulation of Quantum Temporal Logic

@ ldentify the set of all history propositions with projection
operators in a new Hilbert space H;, = Hs, @ --- @ He

— ‘Homogeneous histories’: Tensor products of projection
operators

a =0, Doy, D--- D ay,
— ‘Inhomogeneous histories’:

~ i . ~

—(a, D ay,) = 'I'--H,__: 2 1Hfz — G, D Qy,

= (—r&rr = x f?_) W/ ( ‘ii‘! R _’&!‘;)

— “Type lII' propositions

® |.e_, the tensor product implements the ‘and then’ temporal
connective in quantum temporal logic.
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4.2 Temporal Structure in a Heyting algebra

@ Aim: Find a fopos representation of the homogeneous history
a= (A1 € Q1) M(Az € Az)t,---TT(An € Ap)s,

— Individual-time propositions are identified with sub-objects
of the .spectral presheaf ¥ V*4)  Collection of all such
sub-objects, Sub(L"")). forms a Heyting algebra.

— Temporal structure of Heyting algebras requires tensor
product of Heyting algebras? Yes!
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4.2 Temporal Structure in a Heyting algebra

@ Aim: Find a fopos representation of the homogeneous history
a= (A1 € Q) MM(Az2 € Az)t,---TT(An € Ap),

— Individual-time propositions are identified with sub-objects
of the .spectral presheaf ¥ V*4)  Collection of all such
sub-objects, Sub(L"*)). forms a Heyting algebra.

— Temporal structure of Heyting algebras requires tensor
product of Heyting algebras? Yes!

@ | will identify homogeneous histories with elements in
Sub(X¥ )y @ Sub(XV*He)) @ - - - 2 Sub(XV*Hn))

The definition of the tensor product of Heyting algebras allows
for both homogeneous and inhomogeneous propositions.
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4. TOPOS THEORY AND THE HPO FORMALISM
4.1 HPO Formulation of Quantum Temporal Logic

@ |dentify the set of all history propositions with projection

operators in a new Hilbert space H;, @ He, @ --- @ Hy,
— ‘Homogeneous histories’: Tensor products of projection
operators
a=0a Vo, D--- D oy,
— ‘Inhomogeneous histories’:
(&, ® @y,) =1y, @ 1;{:2 — Gy, D Qy,
= (_réffr 2 d‘;?_) (&r! = —&i‘;) (—'(i'z-. 3 —.-&!.2)

— “Type lII' propositions

® |.e_, the tensor product implements the ‘and then’ temporal
connective in quantum temporal logic.
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4.2 Temporal Structure in a Heyting algebra

@ Aim: Find a fopos representation of the homogeneous history
a = (A1 = &1)h (A = Az)fz - e[ (Ar; & An)fn

— Individual-time propositions are identified with sub-objects
of the .spectral presheaf $ V%) Collection of all such
sub-objects, Sub(L" ")), forms a Heyting algebra.

— Temporal structure of Heyting algebras requires tensor
product of Heyting algebras? Yes!

@ | will identify homogeneous histories with elements in
Sub(X¥*)) ® Sub(£¥*)) @ - -- ® Sub(X¥H))

The definition of the tensor product of Heyting algebras allows
for both homogeneous and inhomogeneous propositions.
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4.2 Temporal Structure in a Heyting algebra

Given two Heyting algebras A and B the tensor product A = B is
defined as the Heyting algebra generated by elements a = b for all
a< Aandb < B subject to

— (a4 @ b1} A (32 X bz) — (i A 32) 2 ( by A bg)
— (a1 @b)v(a2b)=(a1Va)=2b

—(@azab)vi@az b)) =a=z (b Vb)

Therefore

(a1vbr)=2(az2vbr) = (a12az)V(ar12b2)V(bi2az)V(b12b2) > ar@azvbi2bs
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4.2 Temporal Structure in a Heyting algebra

Given two Heyting algebras A and B the tensor product A = B is
defined as the Heyting algebra generated by elements a = b for all
a < Aandb < B subject to

— (@ @b)A(az22 b)) =(a1 Aaz) @ (b1 A b2)
— (a1 @b)v(aa2b)=(atVa)=2b
a=(by Vv b)

—(@a@aby)Vv(azb):

Therefore

(a1Vb1)2(a2vhr) = (a13az)V(a1@b2)V(b1®a2)V(b12b2) > a1@a2vVb12b;
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4.3 Tensor Product in a Topos

@ We need to relate the Heyting algebra
Sub(X¥ ")) 2 Sub(XY'*2)) to sub-objects of some ‘state
object’ in some topos related to quantum theory.

&p, — 8(6y,) € Sub(ZV*)) € SEts‘*’if”wf”"
Gy, — 8(és,) € Sub(Z¥He)) < Sets”!
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4.3 Tensor Product in a Topos

@ We need to relate the Heyting algebra
Sub(X¥'*1)) o Sub(XY**2)) to sub-objects of some ‘state
object’ in some topos related to quantum theory.

{if' — 1(5”' ) = SUb(Zv{'Hft :’) et Setsb’[_'HlT}m

@ To what topos does the history proposition
8(ée,) @ 8(as,) = Sub(X¥ 7)) 2 Sub(X"7*2)) belong?

Need to find a common topos to which both the topol SetsV(#4)”
and Sets""2)" can be related.
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4.3 Tensor Product in a Topos

Intermediate topos: Sets¥ My )™ xV(Hy)™
p1: V(Hsy ) x V(He,) — V(Hy,)
{ V1 : V2 § =x V1
p2 1 V(Hy ) x V(Hy) — V(Hy,)
Vi, Vo) — V>

from which we can obtain

p; - SetsV(Hn)™ _, SetsV(Hn )T xV(Hy)*

p5 - SetsVHa)” _, SetsVHn )T xV(Hy )™

which gives the well-defined product in Sets¥(*: )™ xV(Hy)™

V = V(H: % S Vv ¢ | & Vv &
(; (He, ) x ¥ EHEJ){V-,VQE - (p1 (; KHJ) b pZ(Z {H"z})){‘.«"hvg}
_ ;Ef;{rr) . ;EE{HFQ}
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4.4 Topos Formulation of HPO

Theorem: Sub(X ¥ ")) @ Sub(X¥Y2)) = Sub (XY™

ZL[H J']

@ Conjecture: Proposition a4 M a3 should be represented by
8(a1) @ 8(az) € Sub(XVHu) x FVHy))

: 09010017
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4.2 Temporal Structure in a Heyting algebra

Given two Heyting algebras A and B the tensor product A = B is
defined as the Heyting algebra generated by elements a = b for all
a < Aand b < B subject to

— (@ @b) A (a2 b2) = (a1 A az) @ (b1 A b2)

— (a1 @2b)v(a,2b)=(agVa)=2b
aX [b1 bz)

—(@a@2b1)Vv(@azb):

Therefore

(a1Vvbi)2(avbhr) = (a12az)V(a12b)V(bi2az)V(bi12b2) > ar2azVbi2bs
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4.3 Tensor Product in a Topos

@ We need to relate the Heyting algebra
Sub(X¥'*1)) o Sub(XY**2)) to sub-objects of some ‘state
object’ in some topos related to quantum theory.

Gt, — 0(ae,) € Sub(X¥ 7)) € Sets¥Ha)®

&, — 8(4y,) € Sub(X¥ %)) € SetsVHa)”

@ To what topos does the history proposition
5(ée, ) @ 8(é,) € Sub(XV 7)) 2 Sub(XY'*2)) belong?

Need to find a common topos to which both the topoi Sets”(*:)”

and SetsY*2)™ can be related.

: 09010017
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4.2 Temporal Structure in a Heyting algebra

Given two Heyting algebras A and B the tensor product A = B is
defined as the Heyting algebra generated by elements a = b for all
a < Aandb < B subject to

— (a1 @by) A (az 2 by) :=(ay A az) @ (by A\ b2)
— (a1 @2b)v(a2b)=(atVa)=b

—(@aab)vi@az b)) =a=z (b Vb)

Therefore

(a1Vbi)2(azvbr) = (a12az)V(a12b2)V(bi2az)V(b12bs) > ajzazVvbi2bs
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4.4 Topos Formulation of HPO

Theorem: Sub(X¥'"4)) @ Sub(XY2)) = Sub(XV ) x TV {Hs))

@ Conjecture: Proposition a4 M a> should be represented by
8(a1) ® 8(az) € Sub(XVHu) x ¥ VHy))
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4.4 Topos Formulation of HPO

Theorem: Sub(X¥ ")) @ Sub(XY*2)) = Sub(XV ) x TV {Hy))

@ Conjecture: Proposition a4 M a3 should be represented by
(1) @ 8(az) € Sub(LVHa) x TV He))

@ But, the HPO-representative, a; == a,. of the history propaosition
a1 Maz belongs to H:, = H:, and is daseinised by

5(61 ® ap) € XV Ha®Hy) o geatsV(Ha®Hy)”

V(He, & Hfg) contains entangfed contexts W =V, 2o Vo V32V,
and so SetsV(*1%%,)” L gatgV(Hy )™ X V()™
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4.4 Topos Formulation of HPO

Theorem: Sub(XV*4)) @ Sub(XV*2)) =~ Sub (V) x ¥VHs))

@ Conjecture: Proposition «+ M a> should be represented by
(}(&1) ((12) - SUb Z‘w Hey ) Z]’*{-'Hf‘i}]

@ But, the HPO-representative, a = a,. of the history propaosition
a1 M az belongs to H;, = H;:, and is daseinised by

-t P } + s V( t, & )
Mar @ az) € ZM Hy@Hy) ¢ gets(Hn@Hy)

V(H: = 'Hfg) contains entang!ed contexts W =V, 2 Vo +-Vz 3 Vy
and so Sets”V(*13H,)” L getgV(Hn)™ xV(Hy)™
@ Want to find a relation between *
5(&}:1) 2 & ‘(&E) — p:(z'\»f{}{r _]) > pz(z]/[ H:-_;__}) and
oa1 ® az) € LY Hu®@Hy)
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4.4 Topos Formulation of HPO

Must find a relation between Sets”(*1)"*V(*2)™ gnd sets?(Hu &He)”

— Relation between context categories:

8:V(H: ) x V(He,) — V(Hey @ He)
Vi, Vo) — Va2 Vs

— Induced relation between topoi:

g - Sets¥(Ha®Hy)™ _, getgV(Hu )™ xV(#s)*

e VIH:, @H: ) . ViH:, 2H LtHL 2 H"
(F LT v = (& 2 Yol ) =y an,

V(H;, V(Hy,)

= ;V[ X ): +
using the fact that, for contexts of the form V; = V5,
V(Hey @Hy) o, < VI(He,) V(H,)
ZV‘. Vs Z ZVE
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4.4 Topos Formulation of HPO

Conclusion: To account for both homogeneous and inhomogeneous
(‘logically entangled’) propositions the infermediate topos

Sets” 7 ) V(He )T guffices.

But. in full topos Sets”*12%2)" there also arise (i) entangled
contexts W = V1 @ Vb, + V3 = V4; and (ii) a third type that cannot be
expressed in this way. The physical significance of these needs to be
explored further.
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5. Truth Values

Claim: because of the absence of state-vector reduction in the topos
approach, it is meaningful to define the truth value of a
(homogeneous) history propaosition in terms of the truth values of the
individual time components:

V((A1 € A1),M(A2 € D3)y,: |[¥)y,) == V(A1 € Aq: |U)y, )2V (A2 € A |)y,)
where [¥),, = U(t2, t1) [y,

Want to find a ‘topos interpretation’ of the above equation.
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Truth values

Problem: truth values belong to different topoi

5(Py)) € TQVPHa)

I

V(A1 € As; [¥)y) == v(m ¥t

V(A2 € Ag; [9)y) = v(wV)e C §(Py)) € FQ" )

I

Solution: pull back to the ‘intermediate topos’ Sets” 7)™ V(7)™

In Sets” (1) *V(H,)™ e have:

v(m ¥ C §(Py))e

using the fact that (theorem)

il P

I-QV{'HE, ) = erf'Hh} ~ rQV{'Hr— )X V(Hg )
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Tensor products of Truth values

Therefore, so long as entangled contexts (plus type lll) are not
considered it Is possible to define truth values of history propositions
as tensor products of truth values of individual-time propositions.

In particular, to obtain a topos formulation of quantum history theories
the intermediate topos suffices.
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5. Summary

@ The aim was to obtain a topos formulation of the temporal
quantum logic in the HPO formalism.

The strategy adopted was to extend the topos formulation of
gquantum mechanics put forward by Isham and Doring so as to
Include temporal propositions.
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5. Summary

@ The aim was to obtain a topos formulation of the temporal

Pirsa: 09010017

guantum logic in the HPO formalism.

The strategy adopted was to extend the topos formulation of
guantum mechanics put forward by Isham and Doring so as to
Include temporal propositions.

| have been able to represent both homogeneous and

inhomogeneous history propositions as elements of the Heyting
algebra Sub(X¥ ")) = Sub(X¥ 7))

¥ '!' -2 0 Ly, P w } o
Sub(X¥*1)) g Sub(XV*)) c Sets¥*a )"V He)"-j o no
entangled contexts

—_ Page91/117 . . .
| E —r - g_: e ~ e

Y T o P e e e D T e ] s - R et R S L i - I e




5. Summary

@ The aim was to obtain a topos formulation of the temporal

Pirsa: 09010017

quantum logic in the HPO formalism.

The strategy adopted was to extend the topos formulation of
quantum mechanics put forward by Isham and Doring so as to
Include temporal propositions.

| have been able to represent both homogeneous and
inhomogeneous history propositions as elements of the Heyting
algebra Sub(X¥ ")) 2 Sub(X""2))

- 2R, ) He VExVY 2
Sub(X¥ 1)) g Sub(XV*)) c Sets¥*u )" *VHe)"-j o no
entangled contexts

The topos that represents the full HPO formalism is the topos
Sets' V(71 @%2))" which includes entangled and type |1l contexts.
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5. Summary

Pirsa: 09010017

The aim was to obtain a topos formulation of the temporal
guantum logic in the HPO formalism.

The strategy adopted was to extend the topos formulation of
gquantum mechanics put forward by Isham and Doéring so as to
Include temporal propositions.

| have been able to represent both homogeneous and
inhomogeneous history propositions as elements of the Heyting
algebra Sub(X¥' ")) 2 Sub(X¥ "))

S T TR NH. VP <V o
Sub(Z¥V?4)) @ Sub(X¥*2)) c Sets”Hn)"*VHe)"- j o no
entangled contexts

The topos that represents the full HPO formalism is the topos
Sets' V(71 @%u))" which includes entangled and type |1l contexts.

For non-entangled contexts the two topoi coincide.
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Future Work

1. Is it possible to represent, with a novel mathematical structure,
type lll propositions in topos-theoretical terms?

— Logical entanglement is captured by the notion of tensor
product of Heyting algebra.

— Quantum entanglement might be captured by the notion
(yet to be defined) of ‘quantum’ tensor product.
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Future Work

1. Is it possible to represent, with a novel mathematical structure,
type lll propositions in topos-theoretical terms?

— Logical entanglement is captured by the notion of tensor
product of Heyting algebra.

— Quantum entanglement might be captured by the notion
(yet to be defined) of ‘quantum’ tensor product.

2. Extend the topos reformulation of history theory to the case of
continuous time.
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Future Work

1. Is it possible to represent, with a novel mathematical structure,
type lll propositions in topos-theoretical terms?

— Logical entanglement is captured by the notion of tensor
product of Heyting algebra.

— Quantum entanglement might be captured by the notion
(yet to be defined) of ‘quantum’ tensor product.

2. Extend the topos reformulation of history theory to the case of
continuous time.
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Future Work

1. Is it possible to represent, with a novel mathematical structure,
type Ill propositions in topos-theoretical terms?

— Logical entanglement is captured by the notion of tensor
product of Heyting algebra.

— Quantum entanglement might be captured by the notion
(yet to be defined) of ‘quantum’ tensor product.

2. Extend the topos reformulation of history theory to the case of
continuous time.

3. Construct a history version of quantum field theory using the
topos reformulation of history theory.
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4.4 Topos Formulation of HPO

Theorem: Sub(XV %)) o Sub(XV®2)) = Sub(XVH+) x V(Hz))

@ Conjecture: Proposition a4 M a3 should be represented by
(1) @ 8(az) € Sub(LVHa) x TV Ha))

@ But. the HPO-representative, a1 == a,. of the history propaosition
a1 M az belongs to H;, = H;:, and is daseinised by

B e A (He, M V(H: D H, )
51 @ ) € LV Ha®Hy) ¢ getsHa®He)

V(H:, = ’Hfg) contains entang!ed contexts W =V, 2 Vo - V332 Vy
and so SetsV(*u®H,)™ L getsV(Hu )™ xV(Hy)”
@ Want to find a relation behﬂeen ‘
5(@1) = 8(az) € p;(Z77)) x p3(£V*2)) and
(a1 @ ag) € TV Ha®Ha),
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4.3 Tensor Product in a Topos

@ We need to relate the Heyting algebra
Sub(XY*1)) @ Sub(X¥'*2)) to sub-objects of some ‘state
object’ in some topos related to quantum theory.

&, — () € Sub(X¥ M) € sgtsvt% )
&y, — 8(ay,) € Sub(XV*2)) ¢ SetsV'

@ To what topos does the history proposition
5(ée, ) @ 8(é,) € Sub(XV ™)) 2 Sub(XY'*2)) belong?

Need to find a common topos to which both the topoi SetsV(#4)"
and Sets¥"2)" can be related.
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3.5 Truth values

— This is called a sieve on V.

The collection, £2,,. of all sieves on V forms a Heyting algebral

— For varying V such truth values form a global section {2 of the
sub-object classifier {2.

The set [ Q2 Is itself a Heyting algebra!

— Thus we have a Heyting algebra of propositions and a Heyting
algebra of ‘generalised’ truth values!
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3.5 Truth Values

@ Truth values in classical physics

A proposition Q C Sistrue inastate siff s € Q.
This is equivalent to {s} C Q.

Pirsa: 09010017 Pagel05/117 . - -

e

T == = -

I S pCen ool o |- gy et el el SECIE TR T oo DMCEEINpe Y = el wegweny  GCSTRTONNT SONWCRNESee o ol S e l



3.4 States

@ States in classical physics

In classical physics a microstate is a point in the state space.

@ States in the topos formulation of quantum theory

— 2 has no ‘points’ =— Equivalent to the K-S theorem

— Topos analogues of a state Is a (hon-pointl) sub-object of
the state object 1_:

Pseudo-state: w!/*’ := §(|v)(v|) C L.

5(1)(@1)y = /\{& € P(V) | [¥)(v] < &}

n'*’ is the ‘closest’ one can get to defining a point in L.
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3.3 Daseinisation

@ ‘Daseinisation’:
0: P(H)— P(V)
P — 5(P)y

where §(P)y = A{a = P(V
= (from above) by prOJectors in V.

@ Relation to Sub(X):

Any projector in V gives a subset of 2,,. Therefore get map, for
each V, P — a(P)

Can show that this corresponds to ¢ : P(H) — Sub(X)!

Thus ¢ maps propositions about a quantum system to a
distributive lattice in a contextual manner.
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3.3 Daseinisation

Pi

IIIII

@ ‘Daseinisation’:

0: P(H) — P(V)
P — 5(P)y

where §( )v = AN{a € P(V)|a > P} the ‘best’ approximation of
= (from above) by projectors in V.

@ Relation to Sub(X):

: 09010017

Any projector in V gives a subset of 2,. Therefore get map, for
each V, P — a(F’)

Can show that this corresponds to ¢ : P(H) — Sub(L)!

Thus ¢ maps propositions about a quantum system to a
distributive lattice in a contextual manner.
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4.2 Temporal Structure in a Heyting algebra

@ Aim: Find a fopos representation of the homogeneous history
a = (A1 = L\LT )t, B (AZ = AZ)@ - -1 (An & An)fn

— Individual-time propositions are identified with sub-objects
of the .spectral presheaf ¥ V*1)  Collection of all such
sub-objects, Sub(L" ")), forms a Heyting algebra.

— Temporal structure of Heyting algebras requires tensor
product of Heyting algebras? Yes!
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4.4 Topos Formulation of HPO

Theorem: Sub(X¥'"4)) @ Sub(XY*2)) = Sub(XV ) x TV Hs))

@ Conjecture: Proposition «+ M a> should be represented by
8(a1) @ 8(az) € Sub(XVHu) x FVHy))
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4.4 Topos Formulation of HPO

Theorem: Sub(X ¥\ ")) @ Sub(XY*2)) = Sub (V) x TV {H))

@ Conjecture: Proposition a4 M a3 should be represented by
(}[{11) — O:"') c SUb ZLEH[ _ ZV{_?{.;E}']

@ But, the HPO-representative, a = a,. of the history propaosition
a1 M az belongs to H;, @ H;:, and is daseinised by

§(&1 ® 62) € TV Hu®Hs) c gatsVHu®He)

V(H:, € ’Hfg) contains entangled contexts W = V1 2 Vo + Vs @ Vy
and so SEtS (Hey @Hy, J= £ Setsvf?{f, )E x YV He, )8
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