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Abstract: As LHC erais coming close, all sorts of ideas about physics beyond the standard model are being explored. It remains possible that a
strong-coupling chiral theory could appear at TeV scale. When it comes to strongly coupled theories, lattice is still the most reliable and
straightforward regularization method. But defining a chiral gauge theory on the lattice is formidable on its own. In this talk, | will present some
most recent theoretical developments in attempt to tackle this problem, and explain some general theorems we proved for generic chiral gauge
theories on lattice. These results should be useful in future studies in the field. | will also present some numerical results suggesting that the idea of
constructing a chiral gauge theory by decoupling the mirror fermions using a high scale strong- coupling gauge symmetric phase suffers from severe
constraints. | will end my talk by abrief outlook on how one may hope to reach a conclusive prove on the feasibility of thisideain general.
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Motivation and idea Why need the idea of “decoupling of mirror fermions™

Might be possible on the lattice

Strong-coupling symmetric phase

= Everybody knows that four-fermi interactions, if coupling taken
strong enough, break chiral symmetries

fz(av)(av). oN > 872

= However, if one takes coupling even stronger, the theory enters a
“strong-coupling symmetric phase”: with only massive excitations
and unbroken chiral symmetry

= These phases are “lattice artifact” as the massive excitations are
heavier than the UV cutoff

= Strong coupling expansion has a finite range of convergence and
Is applicable in any dimension.
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Mativation and idea Why need the idea of “decoupling of mirror fermions™

“SU(4)” toy model continues . ..

s On each lattice site, thereare 16 states=1+1" -4 -4 L6

m H,. conserves F mod 4, and connects 1 (zero occupation) and 1’
(full occupation) only. The spectrum:

D+

4) 6, 4

D -1

-8

A unique ground state with a gap= g, singlet of SU(4).
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Moativation and idea Why need the idea of “decoupling of mirror fermions™

“SU(4)” toy model continues . ..

s On each lattice site, thereare |16 states=1+1" -4 -4 L6

m H,. conserves F mod 4, and connects 1 (zero occupation) and 1’
(full occupation) only. The spectrum:

D +1>

H 6 W

-1

-8

A unique ground state with a gap= g, singlet of SU(4).

= At first order in 1, hopping turns on, site-localized states form
bands and propagate. The propagating degree of freedom is
heavy, mass ~ £ > 1

m 1 /g strong-coupling expansion has a finite radius of convergence.
For sufficiently large g, the ground state analysis remains valid
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Motivation and idea Why need the idea of “decoupling of mirror fermions™

“SU(4)” toy model continues . ..

a If we turn on the gauge field, it appears only in hopping terms and

the contributions to heavy sector should be ~ .

a With a bit more group theory, same can be rehéated for SU(5) of
E-P.

= Singlet needed:

a2 W — =51
2> : 10 — 10" — 10° — 5

to break all mirror global symmetries, including anomalous ones to
prevent extra zero modes (more explanations come later). At infinite
g1. 82, SU(5) ground state is unique and singlet.

m [he idea is essentially to use this to decouple the mirror fermions
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“SU(4)” toy model continues . ..

s On each lattice site, thereare 16 states=1+-1" -4 -4 -6

m H,,. conserves F mod 4, and connecits 1 (zero occupation) and 1’
(full occupation) only. The spectrum:

D+

A unique ground state with a gap= g, singlet of SU(4).

= At first order in - L hopping turns on, site-localized states form
bands and pmpagate The propagating degree of freedom is
heavy, mass ~ £ > 1

m 1 /g strong-coupling expansion has a finite radius of convergence.
For sufficiently large g, the ground state analysis remains valid
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Motivation and idea Why need the idea of “decoupling of mirror fermions™

“SU(4)” toy model continues . ..

= |f we turn on the gauge field, it appears only in hopping terms and

the contributions to heavy sector should be ~ .

= With a bit more group theory, same can be re;;eated for SU(5) of
E-P.

= Singlet needed:

g1 :100—-5-5-1
2100 —-10" — 10" —5

to break all mirror global symmetries, including anomalous ones to
prevent extra zero modes (more explanations come later). At infinite
g1- g2, SU(5) ground state is unique and singlet.

m [he idea is essentially to use this to decouple the mirror fermions
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Maotivation and idea Why need the idea of “decoupling of mirror fermions™

Gauged XY model

Unitary higgs field can induce a strong-coupling symmetric phase in
lattice gauge theories.

L
—S. =) ( [Tvu+= Zo Ux x_pox_#) +he.
X plaq
where o, = ¢~ is a unitary field.

m x < 1, the theory is in a strong-coupling symmetric phase

= D. R. T. Jones, J. B. Kogut and D. K. Sinclair, Phys. Rev. D 19
(1979) 1882. ...

“‘Light from chaos’ in two dimensions,”

E. Poppitz and YS, arXiv:0801.0587 [hep-lat].
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Motivation and idea Why need the idea of “decoupling of mirror fermions™

Gauged XY model

Unitary higgs field can induce a strong-coupling symmetric phase in
lattice gauge theories.

L |
3 K =
=) (E [[v~+ S Y. oIUI_I_ﬁox_ﬁ) + h.c.
X plag 7
where o, = ¢~ is a unitary field.
m « < 1, the theory is in a strong-coupling symmetric phase

= D. R. T. Jones, J. B. Kogut and D. K. Sinclair, Phys. Rev. D 19
(1979) 1882. ...

“‘Light from chaos’ in two dimensions,”

E. Poppiiz and YS, arXiv:0801.0587 [hep-lat].
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“’Light from chaos’ in two dimensions,”

E. Poppiiz and YS, arXiv:0801.0587 [hep-lat].

Sirmg tersor:. M=i§ Povasov fine: =15

2

Figure: String tension vs « for Figure: Polyakov line vs « for
N=16 N = 16.
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Mativation and idea Why need the idea of “decoupling of mirror fermions™

Gauged XY model

Unitary higgs field can induce a strong-coupling symmetric phase in
lattice gauge theories.

2
—S. =) ( HU+ Zo Uy 1_#01_#) + hec.
X plag
where o, = ¢~ is a unitary field.

m « < 1, the theory is in a strong-coupling symmetric phase

= D. R. T. Jones, J. B. Kogut and D. K. Sinclair, Phys. Rev. D 19
(1979) 1882. ...

“‘Light from chaos’ in two dimensions,”

E. Poppitz and YS, arXiv:0801.0587 [hep-lat].
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“’Light from chaos’ in two dimensions,”

E. Poppiiz and YS, arXiv:0801.0587 [hep-lat].
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Figure: String tension vs « for Figure: Polyakov line vs « for
N=16 N = 16.
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Mativation and idea Why need the idea of “decoupling of mirror fermions™

So why wasn’t this problem solved long ago?

= It was not known how to define an exact (non-gauged) chiral
symmetry on the lattice.
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Mativation and idea Why need the idea of “decoupling of mirror fermions™

So why wasn'’t this problem solved long ago?

= It was not known how to define an exact (non-gauged) chiral
symmeiry on the lattice.

= After a series of seminal papers in the 90’s (Ginsparg/Wilson,
Kaplan, Narayanan/Neuberger, Neuberger, P.
Hasenfratz/Laliena/Niedermayer, Luescher, Neuberger), it was
realized that an exact chiral symmetry can be defined on a lattice
with finite spacing.

s Can defined L and R components of a Dirac spinor (Not the usual
Weyl): overlap (domain wall) fermions.

= LUscher proved the consistency of a chiral U(1) gauge theory
using the overlap fermions. (More on this later:)
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Motivation and idea Why need the idea of “decoupling of mirror fermions™

So why wasn’t this problem solved long ago?

= It was not known how to define an exact (non-gauged) chiral
symmeitry on the lattice.

= After a series of seminal papers in the 90’s (Ginsparg/Wilson,
Kaplan, Narayanan/Neuberger, Neuberger, P.
Hasenfratz/Laliena/Niedermayer, Luescher, Neuberger), it was
realized that an exact chiral symmetry can be defined on a lattice
with finite spacing.

s Can defined L and R components of a Dirac spinor (Not the usual
Weyl): overlap (domain wall) fermions.

= LUscher proved the consistency of a chiral U(1) gauge theory
using the overlap fermions. (More on this later:)

m An obvious question: can the “E-P” dream be resurrected now? Some
earlier numerical simulation suggested the answer might be yes

il
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Maotivation and idea Does it work: early numerical work suggest maybe

A toy model using overlap fermions: 0—1 model

J. Giedt and E. Poppitz, JHEP 0710, 076 (2007)
[arXiv:hep-lat/0701004].

s Using overlap fermions, studied a toy model:

S =Stight + Smirror
Stight =(¢,, Di¥y) + (X_. Dox-)

Smirror =(V_. D1¥—) + (X4 Dox+)

+y{(v_. 6"x+) + (Xy. 0v_)

+ h[(¥L, dvaxy) — (X, 20" Y)]}
K 5 .
Sk =5 Y 2 — (0iUsxxtabxin +he)]
% i

ox = €™ is a unitary higgs field and (V. x) =Y ¥x - xx
+4Ero gauge field background




Found evidence that while y large and h > 1, the charged
mirror fermions and ¢ are heavy

Evidence: scalar is heavy

N=4
N=8
8- I N=18
6 — % —
!
=
' o -
= l-'_ﬁ,
e
s :-.: e o
e R e e mm e m—mm—m—— - - - -
B~ E — =
.:' . - .- . . e e .- - IPN——
- >
0 h 20 0 50

Figure: Susceptibilities of © for « = 0.1 and N = 4. 8. 16. Dash line indicates
the susceptibility of © in pure X¥Y-model
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Motivation and idea Does it work: early numerical work suggest maybe

A toy model using overlap fermions: 0—1 model

J. Giedt and E. Poppitz, JHEP 0710, 076 (2007)
[arXiv:hep-lat/0701004].

= Using overlap fermions, studied a toy model:

S =Stight + Smirror
Stighe =(¢¥.. D1¥1) + (X_. Dox—)

Smimror =(¥_, D1%—) + (X Dox+)

+y{(V_, 0"x4) + (XX, O¥_)

. E
+h[(vL, dvaxs) — (Xer 120°0_)]}

K *
Sk =5 Z[z — (O Uxxtraxri +hc)]
X, 1

ox = €= is a unitary higgs field and (V. x) =Y ¥x - xx
+4Ero gauge field background




Found evidence that while y large and h > 1, the charged
mirror fermions and ¢ are heavy

Evidence: scalar is heavy

lﬂ S . e e ——
N=4
N=8
A - N=18
6 — % —
o
=
] e -
= *ﬁ
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= :-._,. -
I-."“-*._ g | — e—
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Figure: Susceptibilities of o for « = 0.1 and N = 4. 8. 16. Dash line indicates
the susceptibility of © in pure X¥Y-model
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Numerical evidence continues . . .

fermions are heavy

10l

100

Nmin()'

10-2

Figure: The lower bound on the charged mirror fermion mass for x = 0.1
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Motivation and idea Does it work: early numerical work suggest maybe

So did the dream come true?

= |f the mirror parts are all heavy, at the low energy we get a chiral
gauge theory on the lattice automatically, circumventing the
difficulty of defining it explicitly. Great!

= Are we sure? Two big questions:

= [hat entire mirror sector is heavy?
= Is the continuum limit unitary?
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Motivation and idea Does it work: early numerical work suggest maybe

So did the dream come true?

= |f the mirror parts are all heavy, at the low energy we get a chiral
gauge theory on the lattice automatically, circumventing the
difficulty of defining it explicitly. Great!
= Are we sure? Two big questions:
= [hat entire mirror sector is heavy?
= Is the continuum limit unitary?
= Why are we worried?
The light content is anomalous (and so is the mirror sector).

Stight = (¥, D1vr1) + (X_. Dox-)

The splitting between light and mirror, with both sectors
anomalous but the mirror sector all heavy, in fact appears
paradoxical.
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Theoretical difficuities with Iattice chiral gauge theory

Outline

B A quick review of some most recent theoretical developments
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Thearetical difficuities with |attice chiral gauge theary Exact lattice chiral symmeiry

Fermion doubling problem

Naive discretization of Dirac operator causes fermion species
doubling. On a finite lattice, the momentum is an angular variable that
lives on a circle. The continuum limit is the small sin & limit, which is

always paired.

contimuum himit

rs .

=

e | e,

doublers
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Ginsparg-Wilson operator

Ginsparg-Wilson, 1982: "A remnant of chiral symmetry on the lattice”
{D, v} =abDyD
a = 1 in our convention. D is s Hermitian:

(vsD)! = vsD

As
D~k

In the continuum limit: k — 0, the usual anti-commutative relationship
between Dirac operator and +s recovered
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retical difficuities with Iattice chiral gauge theary Exact [attice chiral symmetry

No fermion doubling problem

The GW properties imply that the eigenvalues of D, A\, satisfy
(AX=-1D(A-1)=1
The “doublers” become heavy with mass equals 2 in lattice unit.

continuum limat

|
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gl drmcLites wiih [aifiice cniral ga

. e Hhe
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Ginsparg-Wilson operator

Ginsparg-Wilson, 1982: "A remnant of chiral symmetry on the lattice”
{D. v} =abysD
a = 1 in our convention. D is s Hermitian:

(vsD)! = vsD

As
D~k

In the continuum limit: k — 0, the usual anti-commutative relationship
between Dirac operator and +s recovered
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heoretical difficuities with lattice chirai gauge theory Exact lattice chiral symmetry

No fermion doubling problem

The GW properties imply that the eigenvalues of D, A\, satisfy
(X—-1)(A-1)=1
The “doublers” become heavy with mass equals 2 in lattice unit.

continuum limat
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arefical anmncuines wiin [3iice chiral gauge neory

A new kind of “chiral symmetry” on the lattice

e

A new “7ys

If we define: s = (1 — D)~s, GW implies
5 =1 and 5D = —Drys

= A new exact “chiral symmetry” on the lattice
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Theoretical difficuities with lattice chiral gauge theory Exact lattice chiral symmetry

No fermion doubling problem

The GW properties imply that the eigenvalues of D, )\, satisfy
(X =-1D(A-1)=1
The “doublers” become heavy with mass equals 2 in lattice unit.

continuum limait
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Ginsparg-Wilson operator

Ginsparg-Wilson, 1982: "A remnant of chiral symmetry on the lattice”
{D, v} =abDysD
a = 1 in our convention. D is s Hermitian:

(vsD)! = vsD

As
D~k

In the continuum limit: k — 0, the usual anti-commutative relationship
between Dirac operator and ~s recovered
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refical anmcuities wiin [aiiice chiral gauge meary

A new kind of “chiral symmetry” on the lattice

re»

A new “"'fj

If we define: s = (1 — D)~s, GW implies
¥ =1 and *sD = —Drs

= A new exact “chiral symmetry” on the lattice
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Ginsparg-Wilson operator

Ginsparg-Wilson, 1982: "A remnant of chiral symmetry on the lattice”
{D, v} =abDysD
a = 1 in our convention. D is s Hermitian:

(+sD)! = vsD

As
D~k

In the continuum limit: k — 0, the usual anti-commutative relationship
between Dirac operator and +s recovered
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heoretical difficuities with Iattice chiral gauge theary Exact lattice chiral symmetry

A new kind of “chiral symmetry” on the lattice

e

A new “s

If we define: -5 = (1 — D)~s, GW implies

_n.-.’

%5 =1 and 45D = —Dns

= A new exact “chiral symmetry” on the lattice
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Theoretical difficuities with lattice chiral gauge theory Exact lattice chiral symmeiry

No fermion doubling problem

The GW properties imply that the eigenvalues of D, A\, satisfy

" — A1) —1

The “doublers” become heavy with mass equals 2 in lattice unit.

continuum limat
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heoretical difficuities with Iattice chirai gauge theory Exact latiice chiral symmetry

A new kind of “chiral symmetry” on the lattice

»

A new “y5’

If we define: -5 = (1 — D)~s, GW implies
52=1 and #sD = —Dns

= A new exact “chiral symmetry” on the lattice

The kinetic term in the action:
5= %.Daty
X

Is invariant under the rotation:

Efaf":_! Il_‘i'f v — L_Telaﬁ?’._“_i

.*;_,' —y
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Theoretical difficuities with lattice chiral gauge theory Exact Iattice chiral symmetry

The GW (overlap) chiral fermions

= Define chiral projection operator for > and «’ separately:

H_

= L F %5
P:|: — D d Pi == 2 2

= defined the chiral components of a Dirac spinor as
UL :P:E;'. _: :L—P:

m then, build the “chiral theories” in terms of these new chiral

SpINors:
3= Z v, Dy
X
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Theaoretical difficuities with |attice chiral gauge theary Exact latiice chiral symmetry

Fascinating theoretical achievement on lattice chiral gauge
theory

Ginsparg, Wilson (1982); Callan, Harvey (1985): D.B. Kaplan (1992);
Narayanan, Neuberger (1994); Neuberger (1997); P. Hasenfraiz,
Laliena, Niedermaier (1997); Luescher (1998); Neuberger (1998),

= No fermion doubling problem

m exact lattice chiral symmetry

m exact lattice gauge anomaly and lattice index theorem
= exact Ward identities, axial charge violation, . ..
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Theoretical difficuities with |attice chiral gauge theory Exact lattice chiral symmeiry

But chiral gauge theory remains a hard problem

The fermion measure is ambiguious

= While gauging the chiral symmetry, D is convariantized. It
depends on the gauge field background, so are 45 and P.

= Defining fermion measure in gauge theory becomes difficult

Only theories well studied before us were U(1) gauged fermion
bi-linear theory: S = ¢, Dv», for which a non-ambiguous measure
proven to exist by Luscher

We need something more general to understand our “0-1” model
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retical difficuities with |attice chiral gauge theory Exact lattice chiral symmetry

A new kind of “chiral symmetry” on the lattice
A new “vy5”

If we define: °s = (1 — D)~s, GW implies

¥ =1 and 5D = —Drys

= A new exact “chiral symmetry” on the lattice

The kinetic term in the action:
S=Y  U.Duty
X

Is invariant under the rotation:
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| difficuities with |attice chiral gauge theory Exact lattice chiral symmetry

T'he GW (overlap) chiral fermions

= Define chiral projection operator for +» and > separately:

75

1

H_

e

Pr=— 2

= defined the chiral components of a Dirac spinor as

L.' — P—_‘—L‘- .Lw: — L-P:

H

= then, build the “chiral theories” in terms of these new chiral

SpINOrs:
= Z v, Dy
X
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Theoretical difficuities with lattice chiral gauge theory Exact lattice chiral symmeiry

But chiral gauge theory remains a hard problem

The fermion measure is ambiguious

= While gauging the chiral symmeitry, D is convariantized. It
depends on the gauge field background, so are 45 and P.

= Defining fermion measure in gauge theory becomes difficult

Only theories well studied before us were U(1) gauged fermion
bi-linear theory: S = ¢>. Dv», for which a non-ambiguous measure
proven to exist by Luscher

We need something more general to understand our “0-1” model
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oretical difficuities with latlice chiral gauge theory Put the formalism on a compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]
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chiral gauge theory Put the formalism on a compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action S, a functional of the spiniors that satisfies:

S[¥, ¥, 0] = S[ Py, v, 0] = S[v,vP, O]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
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Theoretical difficuities with |attice chiral gauge theary Put the formalism on a compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action S, a functional of the spiniors that satisfies:

S[ v, ¥, 0] = S[ Py, v, O] = S[¢, ¥P, 0]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

=, 1ITP = 13
and defined the partition function

s [ l=en =0
L]
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tical difficuities with lattice chiral gauge theory Put the formalism on a compietely general ground

Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, i unitary
matrix, then Z — detl{ - Z, the ambiguity is always a pure phase

s Usually not a problem because this phase is just an unphysical
constant

Space of all Drac fields

subspace moves with
the gauge held
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Theoretical difficuities with lattice chiral gauge theary Put the formalism on a2 compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action §, a functional of the spiniors that satisfies:

S[v, v, 0] = S[ Py, v, 0] = S[v, ¢¥P, 0]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

Pu, —u;, 1:1?’ — L[T
and defined the partition function
s — 7ol
7 — /Hd(‘gdf‘} ES[Z:““!'ZJ GV, .OJ
Lj
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retical difficuities with |attice chiral gauge theory Put the formalism on a compietely general ground

Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, U unitary
matrix, then Z — detl{ - Z, the ambiguity is always a pure phase

= Usually not a problem because this phase is just an unphysical
constant

Space of all Dirac hields

subspace moves with
the gauge held
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Theoretical difficuities with |atlice chiral gauge theary Put the formalism on a compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action §, a functional of the spiniors that satisfies:

S[¥,¥,0] = S[ Py, v, 0] = S[v,vP, O]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

Pu, —u;, 1ITP = '.zf
and defined the partition function

Z:/dejdz:j ES[ZIU"““ZJE"‘}T'O}
Ij
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heoretical difficulties with |athce chiral gauge t

Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, U unitary
matrix, then Z — detlf - Z, the ambiguity is always a pure phase

a Usually not a problem because this phase is just an unphysical
constant

Space of all Drac fields

subspace moves with
the gaunge held
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Theoretical difficuities with Iattice chiral gauge theory Put the formalism on a compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action §, a functional of the spiniors that satisfies:

S[ ¥, ¥, 0] = S[ Py, v, 0] = S[v,vP, O]

-

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

Pu;, — u;, 1ITP = LIT
and defined the partition function

2o [ =en =00
[J
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Theoretical difficuities with lattice chiral gauge theory Put the formalism on a compietely general ground

Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, U unitary
matrix, then Z — det{ - Z, the ambiguity is always a pure phase

s Usually not a problem because this phase is just an unphysical
constant

Space of all Dirac ficlds

subspace moves with
the gaunge held
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Theoretical difficuities with |attice chiral gauge theory Put the formalism on a compiletely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

a Chiral action §, a functional of the spiniors that satisfies:
S[v¥, ¥, 0] = S[ Py, v, 0] = S[v,vP, 0]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

_ T __ )
Pui=u;, v;P=y,

and defined the partition function

_ S[\_‘ iUl -_*-1*-i_.01
s /Hdc‘que 2. cittin 3 2;6%; .0 |
L
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retical difficuities with |attice chiral gauge theory Put the formalism on a compietely general ground

Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, U unitary
matrix, then Z — det{ - Z, the ambiguity is always a pure phase

s Usually not a problem because this phase is just an unphysical
constant

Space of all Dirac fields

subspace moves with
the gauge held
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Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, U unitary
matrix, then Z — det/ - Z, the ambiguity is always a pure phase

m Usually not a problem because this phase is just an unphysical
constant

= A serious problem in GW-formalism:

P depends on the gauge
backgroud. = chiral spinors
live in different subspace
when the gauge field varies.
It appears that the effective K
action of the gauge field U

contains a completely
arbitrary phase.
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Theoretical difficuities with lattice chiral gauge theary Put the formalism on a compietely general ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action §, a functional of the spiniors that satisfies:

S[¥, ¥, 0] = S[ Py, v, 0] = S[v, ¥P, O]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

Pu,—un; 1ITP — ;{T
and defined the partition function

_ S[T“L‘fﬂg-ziEﬂ'T.O*
Z:/qu—dfje = J
N
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Theoretical difficuities with |atlice chiral gauge theory Put the formalism on a compietely general ground

Chiral partition function is ambiguous

= Suppose we choose a different set of basis v; = U;;v;, i unitary
matrix, then Z — det{ - Z, the ambiguity is always a pure phase

= Usually not a problem because this phase is just an unphysical
constant

= A serious problem in GW-formalism:

P depends on the gauge
backgroud. = chiral spinors
live in different subspace
when the gauge field varies.
It appears that the effective
action of the gauge field U
contains a completely e
arbitrary phase.

irsa: 09010016 Page 57/130

Space of all Dirac fields




A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
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Thearetical difficuities with |attice chiral gauge theary A powerful simpie thearem
A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies

S[t, ¥, 0] = S[Pv, ¥, O] = S[v, ¥P, O]
Ignoring the ambiguity, the partition function is given by

£ = /Hdc;dfjeS[Zi“"“*'ZJEﬂ}T-O]
i
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A splitting theorem for general chiral partition functions
(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
m For any general chiral action that satisfies
S[t, ¥, 0] = S[Pw, ¥, O] = S[v, ¥P, O]
Ignoring the ambiguity, the partition function is given by

 — /HdLIdEj ES[Z;"—'HM-Z}- Eﬂ‘j.O]
. ii

= Let us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. v; = v; +0v;. O — 00
we proved that

irsa: 09010016 Page 60/130




A splitting theorem for general chiral partition functions
(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies
S[v, ¥, 0] = S|Py, ¥, O] = S[v, ¥P, O]
Ignoring the ambiguity, the partition function is given by

= /deidfj ES[ZEL‘fE‘E-ZjEjl‘_;.O]
J i

= Let us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = v;i +0v;. O — 00
we proved that
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A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies

S[t), ¥, 0] = S[Pv, ¥, O] = S[¢, ¥P, O]
Ignoring the ambiguity, the partition function is given by

£ = /HdL‘fdfj ES[Z"E"“?'ZE"‘}T'O]
J

= Let us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = vi +0v;. O — 00
we proved that
. oS
dloeZ =0 ov, -vi) +{( —00
og +Zl:( v; - V) <00 >
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A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies

S[w, ¥, 0] = S[Py, v, O] = S[i, ¥P, O]
Ignoring the ambiguity, the partition function is given by

2~ [ [[acee[Zon Tt

m L et us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = v; +0v;.O — 60
we proved that
_ oS
dlogZ = —00
LS r <00 >
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The topological obstruction

J is the “measure” current and it captures all

The measure current defined as

51??
Tu(x) = Z (5Ap(.r) : Vi)

I

plays an essential role in this study. 7, is v;-choice dependent. It
captures all the ambiguity of the gauge field dependent phase of the
chiral partition function Z explained above.
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Theoretical difficulties with |attice chiral gauge theary A powerful simpie theorem

The topological obstruction

A v;-choice independent quantity

While the measure current 7, (x) depends on the choice of the

eigenvectors v;, it may appears surprising that the “curvature” defined
as

Fuw =0Ty — 0Ty =Tr (ﬁ[éﬂﬁ’ 5"'13])

Is basis choice independent and well-defined on the entire gauge field
configurations space.
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Theoretical difficuities with Iattice chiral gauge theary A powerful simple theorem

Gauge anomaly back in the picture

Gauge anomaly is related to the topological property of the measure current |

The integration of F,,, over any non-trivial cycles in the gauge field
configuration space is quantized:

:)(qu Zq‘ in 2-D, or
<Y q.— Y q_ indD.
t J

It is non-vanishing if the gauge anomaly cancellation is not satisfied,
(Neuberger, Luscher), making a smooth definition of .7,, impaossible. It's |
just like the magnetic monopole and Dirac string.

_l'll
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Theaoretical difficuities with lattice chirai gauge theary A powerful simple thearem

T'he topological obstruction

No “magnetic monopoles” iff anomaly cancellation conditions are
satisfied.

Lischer proved that 7,, can be chosen uniquely as a smooth current of |
the U(1) gauge field, and vanishing along the directions of gauge |
transformations, if and only if anomaly cancellation condition is

satisfied (1999-2000).
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T'he topological obstruction

No “magnetic monopoles” iff anomaly cancellation conditions are
satisfied.

Lischer proved that 7, can be chosen uniquely as a smooth current of |
the U(1) gauge field, and vanishing along the directions of gauge
transformations, if and only if anomaly cancellation condition is

satisfied (1999-2000).

Remark

despite the fact that 7, maybe be smooth, some of the vectors v; are
necessarily singular somewhere in the gauge field configuration space, |
gauge anomaly cancellation conditions satisfied or not.

For non-Abelian groups, the problem still remains open.
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Gauge invariance

= If under the gauge variation:

Oq..-‘X = wX, (ibY = ¥, C)‘_‘__O — I[HL.- . O]

the chiral action S[X. Y. O] is invariant:

0—55—05‘X+o‘ﬁ55+“"550
N = Xt T SO0
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Theaoretical difficuities with lattice chirai gauge theory A powerful simple theorem

T'he topological obstruction

No “magnetic monopoles” iff anomaly cancellation conditions are
satisfied.

Lischer proved that 7, can be chosen uniquely as a smooth current of |
the U(1) gauge field, and vanishing along the directions of gauge
transformations, if and only if anomaly cancellation condition is

satisfied (1999-2000).

Remark

despite the fact that 7, maybe be smooth, some of the vectors v; are
necessarily singular somewhere in the gauge field configuration space, |
gauge anomaly cancellation conditions satisfied or not.

For non-Abelian groups, the problem still remains open.

irsa: 09010016 Page 70/130




heoretical difficuities with lattice chiral gauge theory A poweriul simple theorem
A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
m For any general chiral action that satisfies

S[w, ¥, 0] = S[Py, v, O] = S[i, ¥P, O]
Ignoring the ambiguity, the partition function is given by

= /defdfj ES[Z;'UE“&-ZJ Ejl}-i_.()]
. T

m L et us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = v;i +0v;. O — 00
we proved that
_ oS
dlogZ = + ( —00
e2=7+(55%)
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A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies

S[v, ¥, 0] = S[P¥, ¥, O] = S[v, ¥P, O]
Ignoring the ambiguity, the partition function is given by

“- /H dc;dc; ES[Z*“"“"'ZJ@‘}T'O]
:

m Let us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = v; +ov;.O — 00
we proved that

s 0S
og +Z( v - V;) <00 0>
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Theoretical difficuities with |attice chiral gauge theary Put the: formalism on a compietely generai ground

Some general results in the GW formalism:

E. Poppitz and YS, “Lattice chirality and the decoupling of mirror
fermions,” JHEP 0708, 081 (2007) [arXiv:0706.1043 [hep-th]]

m Chiral action §, a functional of the spiniors that satisfies:

S[¥,¥,0] = S[ Py, v, 0] = S[v,vP, 0]

O denotes any local operators the theory may introduce. P and P
are the projection operators.
m Choose particular sets of orthonormal basis {u;. v;}:

= i - S
Pui=u;, v;P=y,

and defined the partition function

= / H dt‘;‘df‘} 85[’;“ citti, 3 ; €jv; .0
Lj

S |
-
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A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies

S[t, ¥, 0] = S[Pv, ¥, O] = S[¢, ¥P, O]
Ignoring the ambiguity, the partition function is given by

L= /Hdc;dfj eS[Z”"“f'ZJEﬂ}T-O]
-~

m Let us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = v;i +0v;. O — 00
we proved that
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A splitting theorem for general chiral partition functions

(E. Popptiz and YS, JHEP 0708, 081 (2007) [arXiv:0706.1043])
= For any general chiral action that satisfies

S[, ¥, 0] = S|Py, ¥, O] = S, ¥P, O]
Ignoring the ambiguity, the partition function is given by

2— [ [[acdeel= Tl

= Let us study its variations. Under any variation of both the basis
vectors and the operators:

u; — u; +ou;. vi = v; +0ov;.O — 40
we proved that
- oS
ologZ = —00
g o £ <00 >
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T'he topological obstruction

A v;-choice independent quantity

While the measure current 7, (x) depends on the choice of the

eigenvectors v;, it may appears surprising that the “curvature” defined
as

Fuv =0uTy — 0T =Tr (ﬁ[éﬁ‘ﬁ" 5";)])

Is basis choice independent and well-defined on the entire gauge field
configurations space.
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T'he topological obstruction

No “magnetic monopoles” iff anomaly cancellation conditions are
satisfied.

Lischer proved that 7, can be chosen uniquely as a smooth current of |
the U(1) gauge field, and vanishing along the directions of gauge
transformations, if and only if anomaly cancellation condition is
satisfied (1999-2000).

Remark

despite the fact that 7, maybe be smooth, some of the vectors v; are
necessarily singular somewhere in the gauge field configuration space, |
gauge anomaly cancellation conditions satisfied or not.

For non-Abelian groups, the problem still remains open.
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Gauge invariance

= If under the gauge variation:

(L__.-X —5 "%, C"..;..'Y — N ¥ . 54_0 — I|:...L- . 0]

the chiral action S[X. Y. O] is invariant:

0= ‘S—oS‘XJro‘ Y*és +5S.§ O
= 6.8 = 4. 8 g ’
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Smoothness

For a general chiral action, must apply our “splitting theorem”
recursively:
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Theoretical difficuities with lattice chiral gauge theory A powerful simple theorem

Gauge invariance

= If under the gauge variation:

O_u-X = 1wX. d‘_‘JY — ¥, (i_‘__O — I[u{.- o O]
the chiral action S[X. Y'. O] is invariant:

0=9 5—555X+o‘ Yf55+55.50
Y. G ) A T2

= then by the “splitting theorem”, for any chiral partition function:
o,logZ =7, + %Tr;.u%

s Anomaly free: Trwys =0, and 7, = 0,
therefore: 4. log Z = 0 completely general
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T'he topological obstruction

No “magnetic monopoles” iff anomaly cancellation conditions are
satisfied.

Lischer proved that 7, can be chosen uniquely as a smooth current of |
the U(1) gauge field, and vanishing along the directions of gauge
transformations, if and only if anomaly cancellation condition is

satisfied (1999-2000).

Remark _;

despite the fact that 7, maybe be smooth, some of the vectors v; are
necessarily singular somewhere in the gauge field configuration space, |
gauge anomaly cancellation conditions satisfied or not.

For non-Abelian groups, the problem still remains open.
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Gauge invariance

= If under the gauge variation:

(L_.-X = 1wX. 64,}7 = ua2¥ (5&0 — I|:u:..- . O]
the chiral action S[X. Y. O] is invariant:
oS oS oS

0=hS— AXrAF 0
= TR T s

= then by the “splitting theorem”, for any chiral partition function:
o logZ =T, + %Tn.uﬁ-5

= Anomaly free: Trwys =0, and 7, = 0,
therefore: 4. log Z = 0 completely general
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Smoothness

For a general chiral action, must apply our “splitting theorem”
recursively:
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Gauge invariance

= If under the gauge variation:

0.X = iwX. 6,Y =iwY. 6,0 =ilw. O]
the chiral action S[X. Y. O] is invariant:
oS oS oS

0=0,S=—0, X+, YT — —0.0
- aR 0Y+OO“'

= then by the “splitting theorem”, for any chiral partition function:
ol =7} %Tn.u"}s

s Anomaly free: Trwys =0, and 7, = 0,
therefore: 4. log Z = 0 completely general
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Smoothness

For a general chiral action, must apply our “splitting theorem”
recursively:
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Smoothness

For a general chiral action, must apply our “splitting theorem”
recursively:

= Assuming that action S[X, ¥, O] has no poles. Therefore
<%0'0> < o

= Proved that {2560) can be viewed as the partition function of a
new “chiral action” 'V

= Apply the “splitting” to S'" while taking further derivatives

m Since ¢" log Z is finite for any n, we proved that log Z is smooth as
long as J is.

m Remarks:

= although 7 = 3. dv] - v; is smooth, always some of the v; is singular
= “splitting theorem”™ also useful in deriving correlation functions
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A brief recap
s Combining Luscher’s proof and our “splitting theorem™ = splitting
of log Z of a vector-like theory into chicral sectors:
log Z = log Zjight + 10g Znmirror 1S SmMooth iff both sectors are anomaly
free.




Theoretical difficuities with lattice chiral gauge theory A powerful simple thegrem

A brief recap

s Combining Luscher’s proof and our “splitting theorem” = splitting
of log Z of a vector-like theory into chicral sectors:
log Z = log Ziigit + 10g Zmirror 1S SMooth iff both sectors are anomaly
free.

= With dynamical gauge field, the splitting of the spectrum of the
0 — 1 model into the anomalous light and mirror sector doesn't
make sense.
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A brief recap

s Combining Luscher’s proof and our “splitting theorem” = splitting
of log Z of a vector-like theory into chicral sectors:
log Z = log Zjight + 10g Znmirror 1S Smooth iff both sectors are anomaly
free.

m With dynamical gauge field, the splitting of the spectrum of the
0 — I model into the anomalous light and mirror sector doesn't
make sense.

= But in anomalous cases, the obstacle is topological (“magnetic
monopoles” and “Dirac string”). Can always be circumvented
locally (in gauge field configuraiton space) by tuning the boundary
conditions. = GP’s study on the 0 — 1 model at vanishing gauge
field background is still correct.
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A brief recap

Combining Luscher’s proof and our “splitting theorem™ = splitiing
of log Z of a vector-like theory into chicral sectors:

log Z = log Zijight + 102 Zmirror IS Smooth iff both sectors are anomaly
free.

With dynamical gauge field. the splitting of the spectrum of the

0 — 1 model into the anomalous light and mirror sector doesn't
make sense.

But in anomalous cases, the obstacle is topological (“magnetic
monopoles” and “Dirac string”). Can always be circumvented
locally (in gauge field configuraiton space) by tuning the boundary
conditions. = GP’s study on the 0 — 1 model at vanishing gauge
field background is still correct.

Lischer’s proof of the smoothness of 7 is “constructive” but
computationally unuseful, because The proof is inductive on the

- s dimension of the gauge field configuration space (N> + 2 in.2:4).
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A brief recap

s Combining Luscher’s proof and our “splitting theorem” = splitting
of log Z of a vector-like theory into chicral sectors:
log Z = log Zjight + 10g Zmirror 1S Smooth iff both sectors are anomaly
free.

= With dynamical gauge field, the splitting of the spectrum of the

0 — 1 model into the anomalous light and mirror sector doesn't
make sense.

= But in anomalous cases, the obstacle is topological (“magnetic
monopoles” and “Dirac string”). Can always be circumvented
locally (in gauge field configuraiton space) by tuning the boundary
conditions. = GP’s study on the 0 — 1 model at vanishing gauge
field background is still correct.
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A brief recap

s Combining Luscher’s proof and our “splitting theorem” = splitting
of log Z of a vector-like theory into chicral sectors:
log Z = log Zjight + 10g Zmirror 1S Smooth iff both sectors are anomaly
free.

» With dynamical gauge field, the splitting of the spectrum of the
0 — 1 model into the anomalous light and mirror sector doesn't
make sense.

= But in anomalous cases, the obstacle is topological (“magnetic
monopoles” and “Dirac string”). Can always be circumvented
locally (in gauge field configuraiton space) by tuning the boundary
conditions. = GP’s study on the 0 — 1 model at vanishing gauge
field background is still correct.

m Luscher’s proof of the smoothness of 7 is “constructive” but
computationally unuseful, because The proof is inductive on the

-« saimension of the gauge field configuration space (N* + 2 in.2s4).
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A paradox and the unitarity

Outline

A paradox in the O — 1 model and the unitarity of the GW formalism
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A paradox and the unitarity

A paradox of the O — 1 toy model

So we still have a “paradox” in the 0-1 model at the zero gauge field
background (Erich Poppitz and YS, soon to appear on arXiv.)

= If we study the photon polarization operator, focusing only on the
mirror sector, at vanishing gauge field background. we find

*mZ[A]  0T.(x)
5‘4#(1)5141;(}) 0Ay(y)

o <f’0 >
2 0AL(x) \0AL(x)

m O represents a complicated operator in terms of the original mirror
fermions and o.

1T, (x.5)

I, (xy) =

= Using the splitting theorem, one can verify that <
choice independent and gauge invariant.
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A paradox and the unitarity

Photon polarization operator

= Notice while I1,,,, is symmetrical, IT),,, is not. Amusingly, its
anti-symmetric part IL3 (x.y) = 17, is theory & basis
independent and known!

= The divergence of F,, can be computed exactly:

g = —Tr[6, PP(wP — Pw) — P§,P(wP — Pw)|

o

W
P I . 5
=1 d—TI'OI,PLJ — ;GUU”'}'J

—

m A very useful identity is used:

where J_. denote the gauge variation of any operator and w is the gauge
Pi 0901R§r3m913r A == T

||||| _u. [ | Page 96/130




A paradox and the unitarity

The anomaly equation on lattice and the paradox

The symmetric part of IT, ,, IL, satisfies:

1*?

=71 S N ~5
V#I—‘[ﬂv — ZOVH’.]"_D:
Precisely the anomalous divergence of I1,,.. In the continuum limit:
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A paradox and the unitarity

T'he anomaly equation on lattice and the paradox
. S . . .
The symmetric part of IT/,,,, IT 3, satisfies:

. ¥ |
V#H,tfv — Eovtr]’it
Precisely the anomalous divergence of I1,,.. In the continuum limit:

The only solution to the anomaly equation at £ — 0 limit is

" HPk k, + €"Pk k : :
H#Sy(k) " Z;E ZE 1 any divergence free piece

It indicats a light degree of freedom in the continuum limit,
contradicting GP’s finding.
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A paradox and the unitarity

Constraints by unitarity

Is the “massless pole” a sufficient evidence for a massless fermion?
After all, the anomaly is cancelled in the full theory.
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A paradox and the unitarity

T'he anomaly equation on lattice and the paradox

The symmetric part of IT),,, ILS, satisfies:

ol oy
o

e o 5
Oy t[""}f_ﬂ

Precisely the anomalous divergence of I1,,.. In the continuum limit:

The only solution to the anomaly equation at £ — 0 limit is

= HPk k, + €"Pk k _ :
IL,, (k) ~ il :;E ZE 1 any divergence free piece

It indicats a light degree of freedom in the continuum limit,
contradicting GP’s finding.
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A paradox and the unitarity

Constraints by unitarity

Is the “massless pole” a sufficient evidence for a massless fermion?
After all, the anomaly is cancelled in the full theory.
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A paradox and the unitarity

Constraints by unitarity

Is the “massless pole” a sufficient evidence for a massless fermion?
After all, the anomaly is cancelled in the full theory.

a In continuum limit, if the mirror is unitary, apart from a contact
term, the photon two point polarization operator is given by

I (x.¥) ~ Ju(x)iv(y))

where j,.(x) is just the current that couples to the photon, and in
2-D, it can always be decomposed into

Ju(x) = Oun(x) + i€y, 0, m(x)
Here, n(x) and m(x) are real. We therefore have

I (x) ~0u0y (n(x)n(y) + m(x)m(y))

+ i€y, (n(x)m(y)) + p = v,x =y
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A paradox and the unitarity

s Unitarity demands that ((n(x) — m(x))(n(y) —m(y))) > 0, therefore

(n(x)n(y) +m(x)m(y)) = 2 (n(x)m(y))

We conclude that

ﬁpy(k) g Ak,uky _L g#pkl __iB E#pkpky —t €Upkpkp

and
A > 2|B|

if the theory is unitary in the continuum limit.

= A free fermion saturates the bound precisely.
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A paradox and the unitarity

Possible resolution to the paradox

Two possibilities to resolve the paradox
= The theory does not have a unitary continuum limit. Very bad.

= The theory does contain a light degree of freedom, but it's a |
non-local composite state in terms of the original fields and eluded |
the examinations carried out by GP.

.
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A paradox and the unitarity

Possible resolution to the paradox

Two possibilities to resolve the paradox
m The theory does not have a unitary continuum limit. Very bad.

= The theory does contain a light degree of freedom, but it's a
non-local composite state in terms of the original fields and eluded |
the examinations carried out by GP.

How can we tell which is the answer?

s We had to resort to numerical tests as we don't have the analytic
power to compute everything at this moment.

= But the theoretical develoments, in particular the
“splitting-theorem”, are vitally important even for numerical
simulations to become possible.

irsa: 09010016 Page 105/130




irsa: 09010016

A paradox and the unitarity

A bit more analytic work

= Again, using the splitting theorem many times, we can derive in
y — o limit:

I, =1L, +15, +1E,

)

where
K " * ¢ < '
H#y =5 (0" -0,0,U-¢) +hc.)
+ 5 ([(6" - 8uU - 6) +he] (67 - 5,U - &) +he])C
VK Fh i : | la j’ I i

+het B, (ulvya - 6 - 5,PT - w;)] Y+ (u o ,,)}
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A paradox and the unitarity

B, =—y (@ @ (w -8,(P+0,Py) - 6*v)))

— vh {5'_7_ (z-t_;_‘j;g -0 - 51,(5”;{ = AL w;))

I

+_v3< ('cT‘_ j’_(rﬁ -0, P - O*v;) + hﬁf;?;(ll;ff: - Q" - %Pi '“’f-ﬁ))

+ : _ * . C
X (ﬁ;‘__;)’i(wi, -0,P. -0"v;) + hﬁiﬁi(u; v - OF - 6, PL - uf)) >
m Expand the Ginsparg-wilson operators to the second order in
terms of the gauge field, all the expressions inside (-) can be
computed exactly.

= Put on to a cluster to run simulations. A huge number of momenta
sum requires computing power of a super computer. We ran it on
400 CPU’s on CITA’s Sunnyvale and it takes 5 hours for each run.
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A numerical trick

But, how do we distinguish the possible scenarios on a 8 x 8 lattice?

Angular singularity:
= If there’s a massless mode, Re(Ily(k)) ~ 25
(ko.k1) = (kcosf.ksin#f).

= If all excitations are massive, I1,,,,(k) — 0 when k — 0.

~ —sin” #, where

hir =f L | stk 1]

Figure: T1,,,(k) of a massless Figure: 11, (k) of a massive
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A paradox and the unitarity

a Unitarity demands that ((n(x) — m(x))(n(y) —m(y))) > 0, therefore

et

(n(x)n(y) + m(x)m(y)) = 2 (n(x)m(y))

We conclude that

- EE— o K k k., ok K
I, (k) ~ A2 kzg# _ig e ifpﬂ#

and
A > 2|B|

if the theory is unitary in the continuum limit.

= A free fermion saturates the bound precisely.
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A paradox and the unitarity

The numerical results

= After a series non-trivial checks (divergences and so on)
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Figure: l:I“ (k) of a massless

Figure: l:[;fy(k) of the mirror :
fermion

sectorat y — oc
Indeed a fermionic light degree of freedom in the mirror sector.
= [he imaginary part is also checked to give rise the precise angular
singularity of ;= (e, k k. + €,,kok,)/k*, and the unitary bound is
satisfied.
~modmvidence that the theory is indeed unitary in the continuum.dimast




A paradox and the unitarity

A numerical trick

But, how do we distinguish the possible scenarios on a 8 x 8 lattice?

Angular singularity:
u If there’s a massless mode, Re(TIyo(k)) ~ 2
(ko.k1) = (kcosf.ksin#f).

= If all excitations are massive, I1,,,,(k) — 0 when k — 0.

~ —sin” #, where

Figure: 11, (k) of a massless Figure: 11, (k) of a massive
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A paradox and the unitarity

The numerical results

= After a series non-trivial checks (divergences and so on)
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Indeed a fermionic light degree of freedom in the mirror sector.
= The imaginary part is also checked to give rise the precise angular
singularity of ;= (e, k k. + €.,k k) /k*, and the unitary bound is
satisfied.
~modmvidence that the theory is indeed unitary in the continuum.dimst




A paradox and the unitarity

So, what about anomaly free theories?

Trivial cancellation of gauge anomaly will not help

This model is bound to have
light fermionic degrees of

freedom

. 4- 5+
o+ 0+ 0 -
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A paradox and the unitarity

So, what about anomaly free theories?

Trivial cancellation of gauge anomaly will not help

This model is bound to have
light fermionic degrees of

freedom

3 4- S+
O+ o+ 0 -

Most generally, if there exists a charge re-assignment that allows the
theory to become anomalous, it must contain mode.

In other words, if there exists any anomalous global symmetry, there
exists light modes (thinking of gauging this symmeitry to make an
anomalous theory, t' Hooft anomaly matching.).
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A paradox and the uniarity

Anomaly free theories ...

s More involved models may still survive

break all global symmetries

= e that involve mirror fields, so
» i > that at g = 0, only global
symmetries are the trhee
2 2 - light chiral U(1)s.

= We have no convincing evidence that such theories won't work.

s However, some analytic considerations might lead to an argument
disproving such possibilities.

s Numerical experiment is doable in 2-d as most of the groundwork
Is done. 345 or 11112 are ready to be tested.
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Toward 2 more analytical approach

Outline

Toward a more analvtical approach
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Toward 2 mare analytical approach

A different viewpoint

= [he mirror sector at y — oc limit:
Skjﬂetic = _(E+DIU ) (Y D )
¥ )

SYukawa = ¥ {(E*O*\ c) + (X_ov-) + h[(V_ov2xs) — (Y_'“::O*;i)]}

s Make a variable transformation:
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Toward 2 maore analytical approach

A different way of understanding

= Now we find
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Toward 2 more analytical approach

A very interesting observation
m The key point is

S D _1_,
2-D”  P2-D’ 2-D" " f

chiral fermions v, and Y_ are the usual Weyl fermions defined
with ~5 now.

Z —det _(2 == Dg)det_(?_ — Dl) /d'L'_d'L—‘_d)(__dT_doe_S:mkuwu

Chiral anomalies are captured by the variation of the det _(2 — D).
m det _(2 — D,) contains 3 light fermions, the three doublers at D ~ 2.

= when i > 1, the Majorana coupling terms evidently contains two
0o dNOSE” fermions (the kinetic term has a pole near Dy ~ 2).... ...




Toward 2 more analytical approach

A conjecture

m Most generally, any lattice chiral gauge theory defined with
overlap fermions

S[X.Y',0] =S[PX,Y',0] =S[X,Y'P,0]

with the orthonormal basis {u;. v;}. Pu; = u;.v! P = v, the partition
function is given by:

m After the field redefinition

. S .6V .0 Dy (2—Dy) !
Z:dEt—(z_DD)dEt—(z_Dl)/Hd(‘idfjestz‘h i Z_; 1% 0 .Di(2—Dg) }

- codNEre u; and v; are usual Weyl fermions.




Toward 2 mare analytical approach

A conjecture
Any chiral lattice gauge theory with overlap fermions are equivalent to
7 cv.' 2—Dy) !
Z = det _(2 — Dp)det _(2 -Dl)fHdc,dE;eS[ s, ;51,0 Dy (2-Dy) |
ij

. ————— ————



Surmmary

Summary

s GW formalism is theoretically elegant but not so practically useful
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Summary
s GW formalism is theoretically elegant but not so practically useful

s Combining GW formalism and the idea of decoupling of the mirror
fermions appeared to make chiral lattice gauge theories possible
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Summary

Summary

s GW formalism is theoretically elegant but not so practically useful
s Combining GW formalism and the idea of decoupling of the mirror
fermions appeared to make chiral lattice gauge theories possible
s Some earlier numerical work was encouraging but also

paradoxical
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Summary

Summary

s GW formalism is theoretically elegant but not so practically useful
s Combining GW formalism and the idea of decoupling of the mirror
fermions appeared to make chiral lattice gauge theories possible
s Some earlier numerical work was encouraging but also

paradoxical

= QOur “splitting theorem” is a general and powerful result, which
often leads to surprisingly strong conclusions.
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Summary

Summary

s GW formalism is theoretically elegant but not so practically useful
s Combining GW formalism and the idea of decoupling of the mirror
fermions appeared to make chiral lattice gauge theories possible

s Some earlier numerical work was encouraging but also
paradoxical

= QOur “splitting theorem” is a general and powerful result, which
often leads to surprisingly strong conclusions.

s Examining the photon polarization operator “proved” the existence
of light fermions in the mirror sector, and excluded a large class of
candidate models even if they are anomaly free.
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Summary

Summary

s GW formalism is theoretically elegant but not so practically useful
s Combining GW formalism and the idea of decoupling of the mirror
fermions appeared to make chiral lattice gauge theories possible

s Some earlier numerical work was encouraging but also
paradoxical

= QOur “splitting theorem” is a general and powerful result, which
often leads to surprisingly strong conclusions.

= Examining the photon polarization operator “proved” the existence
of light fermions in the mirror sector, and excluded a large class of
candidate models even if they are anomaly free.

= Open questions
= Is this the end or would more involved models survive?
= A general proof might be more easily achieved after a field
redefinition (in progress).
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Summary

THANK YOU
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A paradox and the unitarity

A numerical trick

But, how do we distinguish the possible scenarios on a 8 x 8 lattice?

Angular singularity:

ks —k=

= If there’s a massless mode, Re(IIyg(k)) ~ ~ —sin” #, where
(ko.k1) = (kcosf.ksin#f).

= [f all excitations are massive, 11,,,,(k) — 0 when k£ — 0.

Figure: T1,,, (k) of a massless Figure: 11, (k) of a massive
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A paradox and the unitarity

a Unitarity demands that ((n(x) — m(x))(n(y) —m(y))) > 0, therefore

(n(x)n(y) + m(x)m(y)) = 2 (n(x)m(y))

We conclude that

and
A > 2|B

if the theory is unitary in the continuum limit.

= A free fermion saturates the bound precisely.
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