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Abstract: The essential ingredients of a quantum theory are usually a Hilbert space of states and an algebra of operators encoding observables. The
mathematical operations available with these structures translate fairly well into physical operations (preparation, measurement etc.) in a
non-relativistic world. This correspondence weakens in quantum field theory, where the direct operational meaning of the observable algebra
structure (encoded usualy through commutators) is lost. The situation becomes even worse when we want to give a more dynamical role to
spacetime as for example in attempts to formulate a quantum theory of gravity. | argue that a revision of the structures that we think of as
fundamental in a quantum theory isin order. | go on to outline a proposal in this direction, based on the so called 'general boundary formulation’,
emphasizing the operational meaning of the ingredients. If time permits | will also comment on the relation to the framework of algebraic quantum
field theory.
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Abstract

¥he fundamental ingredients for the description of a quantum system
are usually taken to be a Hilbert space of states and an operator
algebra of observables. In this talk | want to argue against this. In
moving from a non-relativistic via a special relativistic to a general
relativistic world, the standard ingredients of a quantum theary become
Increasingly inadequate in their operational relation with reality. | will
outline a proposal for more adequate foundations and discuss how the
usual structures are recovered.
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QOutline

o The standard framework and its problems

@ The need for new foundations
@ A lesson from Quantum Field Theory

o The general boundary formulation
@ Overview
@ Prabability interpretation
@ Observables

o Where are the commutators?

€ Towards a new correspondence principle
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Ingredients of standard Quantum Theory

Quantum theory is modeled after non-relativistic classical mechanics.

» classical mechanics quantum theory

states phase space (manifold) P | Hilbert space H
infinitesimal | Hamiltonian vector field H < | Hamiltonian operator H
dynamics [(TP) H—H

finfe dynam- | symplectic transiormation | time-evolution operator
ICS U[n.:‘;] -P—P U’[h gl - H—H
instantaneous | form an algebra of functions | form an algebra A of opera-
observables | A:P—R torsA.-H—H

® The operational role of the quantum mechanical structures is quite
different from that of their classical counterparts.

@ Quantum theory is tied much more strongly to a non-relativistic
setting than is classical mechanics.
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Operational meaning tied to background time

The physical role of key ingredients of Quantum Theory. ..

@ A Hilbert space H of states.
o » A state encodes Information about the system between
measurements.
» The inner product allows o exiract probabilities.
@ An algebra of observables A.

» An observable encodes a possible measurement on the system.
» A measurement changes a state to a new slate.
» The product of A encodes temporal composition of measurements.

@ Certain unitary operators describe evolution of the system in time.
» Probability is conserved in time.

... makes reference to an external notion of ime. I.e.. a notion of time
Independent of a state.
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The background time problem

e

o
The operational meaning depends on a background time. but. . .

@ in special relativistic physics there is no preferred frame and
hence no preferred background time. (This problem can be fixed.)

@ in general relativistic physics there i1s no fixed metric and hence no
background time at all.
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The quantum cosmology problem

@ In a fundamental quantum theory a state is a priori a state of the
universe. But, in quantum theory the observer must be outside the
observed system. Also. we cannot hope to be able to describe the

» universe in all its details.

@ In quantum field theory distant systems (with respect to the
background metric) are independent. Cluster decomposition
means that the S-matrix factorises, S = $;S5:

AR | S2,77 S
™ r® o
% e & . _-"'f. .

- Gl large distance V' _ o 7
~ ’ S -

T —

We can thus successfully describe a local system as if it was
alone in a Minkowski universe.
@ In the absence of a background metric there is no known solution
w10 this problem.




The need for new foundations

Conclusion

v
The standard ingredients (state space plus observable algebra) are
unsuitable as a foundation for quantum theory in general.

@ Because of the background time problem we need an
Interpretation that does not refer explicitly to a background
(space|time.

@ Because of the quantum cosmology problem we need structures
that can describe physics in a manifestly local way.
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A lesson from Quantum Field Theory

@ Standard observables of QFT are values of fields and their
derivatives at spacetime points.

. These observables carry a label specifying when (and where) they
*  are applied.

@ There is only one operationally meaningful composition of two
such observables, given by the commutative time-ordered product.

@ In QFT all physically measurable quantities are constructed via
the time-ordered product. The noncommutative operator product
IS never used.

@ The equal-time commutation relations can be recovered:
[A(t. x). B(t.y)] = lim._q TA(t+€. x)B(t—¢. y)— TB(t—¢. y)A(t—€. X)
@ To ensure consistency under change of reference frame the
operator product must satisfy [A(p). B(q)| = 0 if p and g are not
causally related.
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Another ingredient: Locality

Consider classical field theory:.
@ The physics in a region M of spacetime is described by the space
L4 of solutions of the equations of motion in M.
@ The observables in a region M form an algebra C(Ly) of functions

¥

LM — R
Suppose we have regions N — M. Then. M
Lys — Ly by restriction. This induces )
C(N) — C(M).
Suppose we have adjacent regions M. N.
Then, Ly n — Ly x Ly and N

C(Ly) @ C(Ly) — C(Lyun)-
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Another ingredient: Locality

Consider classical field theory:.
@ The physics in a region M of spacetime is described by the space
Ly of solutions of the equations of motion in M.
29 The observables in a region M form an algebra C(Ly) of functions

LM — R,
Suppose we have regions N — M. Then. M
Lyy — Ly by restriction. This induces )
C(N) — C(M).

Suppose we have adjacent regions M_N.
Then, Ly, — Ly x Ly and
S(LM] ' C:(LNII — Cf L.H'_-N:'-
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General boundary formulation: Basic idea

Cusved Spacethme  2m¥al H0myd
: ctomdard QM Q M am R

e

X)) ewhdia

X /r‘ luside
-

th G lialo gl.,% IQQJ ShaitS
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Basic structures

Basic spacetime structures:

" regioh s ¢ oriepnded A(ﬁ#.swch:::
ke /1 r
M~ erisdnbion : chaite of side

E) ==

+a e
o/  bumdary
Basic algebraic structures:

@ To each hypersurface ¥ associate a Hilbert space Hy of states.

@ To each region M with boundary ¥ associate a linear amplitude
map py : Hy — C.
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Main axioms

The structures are subject to a number of axioms. The most important
are:

¥ is T with opposite orientation. Then Hg = Hj.

> = ¥4y Is adisjoint union of hypersurfaces. Then
Ny =iy, @ Ry

@ If M and N are adjacent regions. then pys v = oy © py- The

compasition ¢ involves a sum over a complete basis on the
boundary shared by M and N.
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Main axioms
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i
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Recovering standard transition amplitudes

Consider the geometry of a standard transition.

57 AT ya e region: M = [t;. t] x B
» Pl / o
///M / £ 4 ® boundary: OM =% UL,
L /// /’ /" //,, ® state space:

jim-— — .;jfuJﬂj — F1i§:| }1{§iz — .};51:1

n Zg

@ Via time-translation symmetry identify Hy, = Hg, = H, where A
Is the state space of standard quantum mechanics.

@ Write the amplitude map as pyy : H 2 H* — C.

@ The relation to the standard amplitude Is:

or i
' TI — "-..'jl ;--\- S !.-‘
#1 o
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Generalized probability interpretation

Consider the context of a general spacetime
region M with boundary L.

Frobabilities in quantum theary are generally conditional probabilities.
They depend on two pieces of information. Here these are:

® S C Hy representing preparation or knowledge

® A C Hy representing observation or the question
The probability that the system is described by .4 given that it is
described by S Is:

OM ~ 'Db\ 2 P*_jl 2
2

|fn.‘g - F:{;I

® Ps and P 4 are the orthogonal projectors onto the subspaces.
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Generalized probability interpretation

Consider the context of a general spacetime
region M with boundary L.

Frobabilities in quantum theary are generally conditional probabilities.
They depend on two pieces of information. Here these are:

® S C Hy representing preparation or knowledge

® A C Hy representing observation or the question
The probability that the system is described by .4 given that it is
described by S is:

11!'1 L ID:.,\ P,_-lt .

AV )] = : .
E.I'I.H "Dx‘:|2

® Ps and P, are the orthogonal projectors onto the subspaces.
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Recovering standard probabilities

.——~———>+_, Recall the geometry for standard transition
7Sy amplitudes with H;y = H @ H* and

A A AR 4Y B | f /£,

Ry . pul n) = ':‘\U( b — 1)),

We want to compute the probability of measuring 5 at & given that we
prepared « at t;. This is encoded via

-
||‘

L pe—nd .

H* A="H

/
J-

The resulting expression yields correctly

: - P 2 , £ =

b | V o _'-1 -”ﬁ."(' -'ri f % 2
P(AIS) = = . = (Ut — )i
lom © Ps 1
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Probability conservation

Probability conservation in time is generalized to probability
conservation in spaceatime.

Consider a region M and a
region N “deforming” it. Call
2 the boundary of M UN
and ¥’ the boundary of M.

@ The amplllude map for N induces a unitary map j : Hy — Hy.
® LetS T Hy and 4 C Hy. Define ' := 3(S) and A" := ( A).
@ Then, probability is conserved, P(A|S) = P(A|S").

10002




Observables

@ Observables are associated to spacetime regions.
@ For a region M an cbservable 7 is encoded in a modified

amplitude map pj, - Hay — C

L

Suppose we have regions N Z M. An M
observable in N gives rise to an

ki f 3
observable in M, P N = Pu © PM N-

Suppose M and N are adjacent regions
with observables f in M and g in N. Then p
we can form a composit: observable in

1r — f E;
M N given by p ,f N = P © PN-
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Main axioms
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Another ingredient: Locality

Consider classical field theory.
@ The physics in a region M of spacetime is described by the space
Ly of solutions of the equations of motion in M.
o® The observables in a region M form an algebra C(Ly) of functions
f_m — R

Suppose we have regions N — M. Then. M \
Lys — Ly by restriction. This induces /
C(N) — C(M).

Suppose we have adjacent regions M. N.
Then, Ly n — Ly x Ly and M N
C(Ly) @ ClLy) — ClLyun)-
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Another ingredient: Locality

Consider classical field theory:.
@ The physics in a region M of spacetime is described by the space
Ly of solutions of the equations of motion in M.
® The observables in a region M form an algebra C(Ly) of functions

L,’,; — R
Suppose we have regions N — M. Then. M 1
Lys — Ly by restriction. This induces /
C(N) — C(M).
Suppose we have adjacent regions M. N.
Then, Lyn — Ly x Ly and M N
C:(LM} G(LN? = C{ L.V*--N:’-
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Generalized probability interpretation

Consider the context of a general spacetime
region M with boundary L.

Frobabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

® S C Hy representing preparation or knowledge
® A C Hy representing observation or the question

The probability that the system is described by .4 given that it is
described by S Is:

M ~ Pb\ P,—l .

D.|2

P(A|S) = |
|f".'H’ 'S

® Ps and P 4 are the orthogonal projectors onto the subspaces.
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Recovering standard probabilities

AT 77 7__; Recall the geometry for standard transition
7/ )/, amplitudes with Hay = H @ H* and
c:x o, FF r _’__” I'.F,-ﬁ‘ *'.]: ',‘"U(I2_I1]’

We want to compute the probability of measuring 5 at & given that we
prepared « at t;. This is encoded via

S=y3H ., A=Hen
The resulting expression yields correctly
| JD*-:' P 2 i) ) "'l: 2 |
P(J|C‘ = !.f‘:fl'." “ A = M( 0y = 0 L}r::!-E_h:lir, 4
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Observables

@ Observables are associated to spacetime regions.
@ For a region M an observable 1 is encoded in a modifiea

amplitude map py, - Hay — C

T
Y

observable in N gives rise to an

Suppose we have regions N — M. An M )
observable in M, ":.J_N = | J{.J OM' N-

Suppose M and N are adjacent regions
with observables f in M and g in N. Then p
we can form a composite observable in

f
MU N given by pp9\ = ol 0 3.
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Expectation values

Consider the context of a general spacetime
oregion M with boundary L.
The expectation value of the cbservable f conditional on the system
being prepared in the subspace S — Hy can be represented as
follows:

o
flo — MM

-~

pl°

b

Here we write gy, == py ¢ Ps.
(We also use a certain simplifying condition which in the standard formalism is always
safisfied.)
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Where are the commutators?

Given a metric background
structure we can recover the usual
operator algebras (and
scommutators). Consider a
spacetime region M containing a
Cauchy hypersurface C, say a ‘
causal diamond. X

lightiike
boundaries

V2 Decompose the region into three pieces.
M =M, U C U M. We think of C as an
~_~__, 'infinitely thin" region. For an observable f in
M there is a unique p/, such that
;u';_,, = PM, ,{: pm,. We can then interpret f:
as an operator on He.
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Towards a new correspondence principle

Suppose we have a map that associates to every classical observable
A = C(Ly) a quantum observable , -f;I - Hay — C. For classical
coservables A, B in adjacent regions M and N we can consider the
product cbservable A- B in the joint region M N. We can then
demand:

B o N

This could be an ingredient of a new carrespondence principle.
This Is satfisfied in quantum field theory!
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Recovering standard probabilities

_ Recall the geometry for standard transition
;E/ AALL S amplitudes with H;y = H @ H* and

. V) . # u "_'_, I._*hﬁ_, "uJ — ';“U( r2 = r]) Jg

We want to compute the probability of measuring 5 at & given that we
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-
*:‘:..

. A=K

The resulting expression yields correctly

. / p‘-: P - () ) : . n
PAIS) = 1PM kP A _ M| 1 U — )|
Mo Fs‘
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Generalized probability interpretation

Consider the context of a general spacetime
region M with boundary L.

R2obabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

® S C Hy representing preparation or knowledge

® A C Hy representing observation or the question
The probability that the system is described by .4 given that it is
described by S Is:

om0 Ps o Py

D;|2

PLAIS) = —
PM*~ T ¢

® Ps and P, are the orthogonal projectors onto the subspaces.
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Another ingredient: Locality

Consider classical field theory.
@ The physics in a region M of spacetime is described by the space
Ly of solutions of the equations of motion in M.
o® The observables in a region M form an algebra C(Ly) of functions

Suppose we have regions N — M. Then. M

Lys — Ly by restriction. This induces )
C(N) — C(M).

Suppose we have adjacent regions M. N.

Then, Ly n — Ly x Ly and M N
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10002




A lesson from Quantum Field Theory

® Standard observables of QFT are values of fields and their
derivatives at spacetime points.

_@ These observables carry a label specifying when (and where) they
*  are applied.

@ There is only one operationally meaningful composition of two
such observables, given by the commutative time-ordered product.

@ In QFT all physically measurable quantities are constructed via
the time-ordered product. The noncommutative operator product
IS never used.

@ The equal-time commutation relations can be recovered:
[A(t. x). B(t.y)] = lim._q TA(t+€. x)B(t—¢. y)— TB(t—¢. y)A(t—€. X)
@ To ensure consistency under change of reference frame the
operator product must satisfy [A(p). B(q)| = 0 if p and g are not
causally related.
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Towards a new correspondence principle

Suppose we have a map that associates to every classical observable
A = C(Ly) a quantum observable ,j::‘,, - Ham — C. For classical
coservables A, B in adjacent regions M and N we can consider the
product cbservable A- B in the joint region MU N. We can then
demand:

AB 8. .. M N

This could be an ingredient of a new correspondence principle.
This is safisfied in quantum field theory!
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Main axioms

The structures are subject to a number of axioms. The most important
are:

@.’ ¥ is T with opposite orientation. Then Hg = Hj.
o2

i

= 111U L5 Is adisjoint union of hypersurfaces. Then
Hy = Hy, € Hyg,.

@ If M and N are adjacent regions. then ppp v = oy © py- The

compasition < involves a sum over a complete basis on the
boundary shared by M and N.
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Basic structures

Basic spacetime structures:

o oTiended ﬁ(f#.swchcs
&
M ennnil
4tale
o/  bumdary

@rlgidhﬁ

oritadnfon cheire CI{.S;JC

Basic algebraic structures:
@ To each hypersurface ¥ associate a Hilbert space Hy of states.

@ To each region M with boundary ¥ associate a linear amplitude
map py : Hy — C.
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Another ingredient: Locality

Consider classical field theory.
@ The physics in a region M of spacetime is described by the space
Ly of solutions of the equations of motion in M.
o® The observables in a region M form an algebra C(Ly) of functions

f_m — R,
Suppose we have regions N — M. Then. M
Ly — Ly by restriction. This induces
C(N) — C(M).

Suppose we have adjacent regions M. N.
Then, Ly n — Ly x Ly and M N
S(Lm] ' S(LNI — O L.W'_-N:'-
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A lesson from Quantum Field Theory

@ Standard observables of QFT are values of fields and their
derivatives at spacetime points.

@ These observables carry a label specifying when (and where) they
*  are applied.
@ There is only one operationally meaningful composition of two
such observables, given by the commutative time-ordered product.

@ In QFT all physically measurable quantities are constructed via
the time-ordered product. The noncommutative operator product
IS never used.

@ The equal-time commutation relations can be recovered:
[A(t. x). B(t.y)| = lim._q TA(t+€. x)B(t—e. y)—TB(t—e. y ) A(t—€. X)
@ To ensure consistency under change of reference frame the
operator product must satisfy [A(p). B(q)| = 0 if p and g are not
causally related.
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Generalized probability interpretation

Consider the context of a general spacetime
region M with boundary L.

Frobabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

® S C Hy representing preparation or knowledge

® A C Hy representing observation or the question
The probability that the system is described by .4 given that it is
described by S Is:

M - lDH_Q J A -

oM © Ps|?

® Ps and P 4 are the orthogonal projectors onto the subspaces.
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Towards a new correspondence principle

Suppose we have a map that associates to every classical observable
A £ C(Ly) a quantum observable /4, : Hay — C. For classical
¢oservables A, B in adjacent regions M and N we can consider the
product observable A- B in the joint region M N. We can then
demand:

AB A B M N

FPMUN — PM Y PN

This could be an ingredient of a new correspondence principle.
This is satisfied in quantum field theory!
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