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Some fundamental laws of physics are inherently
probabilistic

Probability in physics

Macroscopic domain

= Maximum entropy
thermodynamics

R = Often difficultto grasp

conceptually
= Discussions up to this day

Microscopic domain
= Quantum theory




oday‘s topic is the first part of a larger program to
ejlucidate the role of probability in mathematical physics

Program overview
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n the modern Bayesian view probability theory
onstitutes an extension of logic

Probability as extended logic

.,Probability”
= embodies some agent's state of knowledge
= degree of belief rather than limit of relative frequency
= can be legitimately assigned not just to ensembles but also to individual systems

Cox 1945 Jaynes 2
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n the modern Bayesian view probability theory
onstitutes an extension of logic

Probability as extended logic

..Probability”
= embodies some agent's state of knowledge
= degree of belief rather than limit of relative frequency
= can be legitimately assigned not just to ensembles but also to individual systems

Consistency o

Differentways of using the same information mustlead to the
same conclusions, irrespective of the particular path chosen

= Sum rule
= Bayesrule

Framework for plausible reasoning
in the absence of full information

Cox 1948 Jaynes 2




aws of physics = laws of thought?

Physics as extended logic

‘Physics is to be regarded not so much as the study of
something a priori given, but rather as the development of
methods for ordering and surveying human experience.”

— Niels Bohr




or example, the second law reflects a basic constraint
on any form of reasoning about the macroscopic world

Second law

Macroscopic process
is reproducible

\ 4

A prediction never contains
more information than the
data on which it is based
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or example, the second law reflects a basic constraint
on any form of reasoning about the macroscopic world

Second law

Macroscopic process
is reproducible

$

Prerequisite for
being able to subject a
macroscopic process

to scientific inquiry

A prediction never contains
more information than the -
data on which it is based

$

Second law
=5,

£

Jaynes




Ike classical probability theory, quantum theory
deals with hypotheses and their probabilities

Quantum probability

Mathematical object Interpretation

Subspace of Hilbert space Hypothesis
or projector thereon

Embedding into a larger subspace Logical implication

Orthogonaility Logical contradiction
Density matrix, statistical operator Probability distribution, knowledge
fr (pP,) prob (x|p): probability that

hypothesis x (represented by
projector P,) is true given p
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Quantum mechanics as extended logic?

undamental issue

Traditional language:

Classical probability Quantum mechanics Quantum mechanicsis
theory constitutes is a peculiar variant of l? an alternative, equally
a framework for classical probability . consistentframework
plausible reasoning theory for plausible reasoning

Modern language:

quantum information
theory ? processing




arly attempt: ,,quantum logic*

Quantum logic

Idea
= Propositions form a lattice that is

— complete

— orthocomplemented
— weakly modular

— atomic

= Boolean operation (.and”)is de-
fined, albeitin a non-classical way
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Idea
= Propositions form a lattice that is

— complete

— arthocomplemented
— weakly modular

— atomic

= Boolean operation (.and”)is de-
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a “quantumlogic” canbe
identified with subspaces
of a Hilbert space over
some skew field

Birkhoff & v. Neumann 1934 Geneva Schoo! (Jfauch, Piron ef af) 715




arly attempt: ,.,quantum logic*

Quantum logic

Idea Result
= Propositions form a lattice that is Propasitions within such
— complete a “quantum logic” can be
— orthocomplemented identified with subspaces
— weakly modular of a Hilbert space over
some skew field

— atomic

= Boolean operation (.and”)is de-
fined, albeitin a non-classical way

Only partially successful
» skew field unspecified
—mightalsobeR or H

» only for Hilcert space

dimension =3

i1

i

o

Sirkholf & v. Neumann 1934 Geneva Schoo!l (fauch, Piron ef




ore recent attempt: ,,Five reasonable axioms*

ardy‘s approach

Quantum theory follows uniquely from five
,reasonable axioms™:

1. Probabilities: are well defined as limits of
relative frequencies

2. Simplicity: minimise the number of degrees
of freedom

3. Subspaces: constrained big
system = small system

4. Composite systems: dimension and number
of degrees of freedom are multiplicative

5. Continuity: There exists a continuous reversible
transformation between any two pure states

Hardy 21




ore recent attempt: ,,Five reasonable axioms*

ardy‘s approach

Quantum theory follows uniquely from five
.reasonable axioms™:

i

z

. Continuity: There exists a continuous reversible

not in keeping with
Probabilities: are well defined as limits of s gpp?,uach

relative frequencies

Simplicity: minimise the number of degrees
of freedom why?
. Subspaces: constrained big

system = small system

. Composite systems: dimension and number

of degrees of freedom are multiplicative why a special status
for pure states?

transformation between any two pure states

Hardy 2/




he past few years have seen the emergence of
a Bayesian view on quantum theory

Quantum Bayesianism

= embodies some agent's knowledge about, rather than an objective
property of, a physical system

~otate” = yields probabilities that reflect degrees of belief rather than limits of
relative frequencies

= can be legitimately assigned to individual systems

Schack. Brun and Caves 2001, Caves. Fuchs and Schack 2




he past few years have seen the emergence of
a Bayesian view on quantum theory

Quantum Bayesianism

Lotate”

Quantum
Bayesrule

embodies some agent's knowledge about, rather than an objective
property of, a physical system

yields probabilities that reflect degrees of belief rather than limits of
relative frequencies

can be legitimately assigned to individual systems

quantum analog of the classical Bayesrule
ensures consistency of probabilistic reasoning

allows agents to progress -via measurements on exchangeable sequences
from a diverse array of subjective priors to a consensus posterior distributic
(Such a consensus is implicit when one speaks of the state of a system
as being the result of a well-defined, “objective” preparation procedure. )

Schack_ Brun and Caves 2001. Caves. Fuchs and Schack 2
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= \What are the essential differences between classical
and quantum probability?

= What do they have in common?

= |s it conceivable that beyond these two theories there
are still further frameworks for plausible reasoning?




oday | will address three questions

Questions

= \What are the essential differences between classical
and quantum probability?

= What do they have in common?

= |s it conceivable that beyond these two theories there
are still further frameworks for plausible reasoning?

- Conjecture: No, not if they have to satisfy
a minimal set of consistency requirements




shall assume that in both cases resources are finite

odel size

Size of probabilistic model

classical: cardinality of hypothesis space
quantum: Hilbertspace dimension

Storage capacity

Maximum amount of information that can be
extracted by way of measurement, or stored
by way of preparation:

log d (both classical and quantum cases)




shall assume that in both cases resources are finite

odel size

Size of probabilistic model

classical: cardinality of hypothesis space
d=—
quantum: Hilbertspace dimension
— = Resource available for

information processing

Storage capacity = Assumption: finite

Maximum amount of information that can be
extracted by way of measurement, or stored
by way of preparation:

log d (both classical and quantum cases)
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n four important respects

ey differences

Classical

Determinism

Atomism

Realism

Discreteness

ziven complete information, there
Is no residual uncertainty; all
proabilities are then 0 or 1

The whole can be dissected into
parts. Complete descriptions of
the parts then wield 3 complete
description of the whole

There is a preexisting reality that is
merely revealed, rather than infiu-
enced, by the act of measurement

The hypothesis space 15 a discrete
sat, and reversible transformations
are discrete permutations
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Quantum probability differs from classical probability

n four important respects

ey differences

Classical

Determinism

Atomism

Realism

Discreteness

Ziven complete information, there
Is no residual uncertainty; all
probabilities are then 0 or 1

The whole can be dissected intc
parts. Complete descriptions of
the parts then yield a complete
description of the wihaole

There s a preexisting reality that is
merely revealed, rather than infiu-
enced, by the act of measurement

The hypothesis space i1s a discrete
set, and reversible transformations
are discrete permutations

Quantum
- In every state, even if pure, thers
Irreducible Ry e B
rohabiicm are hypotheses whose probabilities
P are neither 0 nor 1
The whale is more than the sum of its
Holism parts; it may be In a pure state that is
not & product of constituent states
The image of reality that emerges
Observer- through acts of measurement reflects
dependency as much the history of intervention
as it reflects the external world
Hypotheses and reversible transfor-
mations form continua. Under the
Smoothness - '

latter, probabilities change in a
continuous fashion




he irreducible probabilism of quantum mechanics
s reflected in uncertainty relations

rreducible probabilism

Accuracies satisfy uncertainty relations

Observables do not commute

' There are always hypotheses
t — whose probabilities are

. : neither O nor 1
Hypotheses are not jointly decidable

Boolean operation N (,and”) is not defined

—_—
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he holism of quantum mechanics has its origin
n the possibility of entanglement

olism

A Pure states:

Composite system
IS in a pure state
Informationis lost
A <~————— ~— Wwhenthewholeis
| ifentangied dissected into parts
States of individual
constituents are pure

B Mixed states:
There exist states that cannotbe represented as mixtures of product states,

Pse®2 Pi Ps' %P5
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1 Measurement postulate:

= Measurement affects the state

= The unknown prior state of an individual system cannot
be learned by measurement




he innate observer-dependency of quantum
echanics manifests itself in multiple ways

Observer-dependency

1 Measurement postulate:

= Measurement affects the state

= The unknown prior state of an individual system cannot
be learned by measurement

2 Kochen-Speckerand Bell's theorems:

It is impaossikle to assign to hypotheses truth values that are
preexisting (i.e., merely revealed rather than influenced by
the act of measurement) and at the same time...

a. ...noncontextual.i.e., independentof whichever group of
mutually commuting observables one might chooseto
measure with it (Kochen-Specker theorem)

b. ...unaffected by any actions ata causally disconnected
distance (Bell's theorem)




Quantum theory is ,,smoother* than classical
probability theory

Smoothness (1/2)

Hypothesis space,
set of pure states

Reversible
Operations

Change of probability
distribution under
reversible operation

Classical

discrete set

symmetric group
S4 (permutations)

discontinuous

Given finit
resource:
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Quantum theory is ,,smoother* than classical
probability theory

Smoothness (1/2)

Hypothesis space,
set of pure states

Reversible
Operations

Change of probability
distribution under
reversible operation

Classical

discrete set

Givenfinit
resource:
Quantum
E[ continuous
: manifold

symmetric group [[ S Lie group U(d)
S4 (permutations)

discontinuous

[[ | continuous

MNot to be confused with the _discontinuity” of
state change upon measurement:

« Reflects process of learning

« Occurs in classical probability, too (Bayes rule)




States change in a continuous fashion under
eversible operations

Smoothness (2/2)

Probabilities that are initially greater than zero will not suddenly jump to zero
upon an infinitesimal transformation:

‘_'r-r".lr -|.'E|.‘i. .-!]j :;Ii.'.rlﬂl_:':- > U v ,: hll[]l.ﬁ'{;]‘ .*"—_—:L-'i'.
g < E;.w"f;' .
4
smallest non-vanishing eigenvalue of p
é(p) =mn{p(r) | r T supplp), t#F0} >0
o A J_ hll[}[)lf” = N o = !

neighborhood of identity on Lie group G(d)=U(d
'!:;'\ | I4":| - : LI._' '—: E:f l..fl ‘ t[iht | fj' i-i._? ) -




Real-, atom- and determinism are traded for the ability
o reason about continua with only finite resources

rade-off

iven finite resources

*» Realism
» Atomism

« Determinism

: e ——
classical quantum

Smoothness




Real-, atom- and determinism are traded for the ability
o reason about continua with only finite resources

rade-off

iven finite resources Givensmoothness
*» Realism + Realism
« Atomism « Atomism
« Determinism « Determinism
) L ——— . | ————
classical quantum classical —— quantun

Smoothness Finite resources




ontents

Introduction

How quantum probability differs from classical
probability

What quantum and classical probability have in
common

Tertium non datur



he innate observer-dependency of quantum
echanics manifests itself in multiple ways

Observer-dependency

1 Measurement postulate:

= Measurement affects the state
= The unknown prior state of an individual system cannot
be learned by measurement

2 Kochen-Speckerand Bell's theorems:

It is impaossikle to assign to hypotheses truth values that are

preexisting (i.e., merely revealed rather than influenced by

the act of measurement) and at the same time...

a. ...noncontextual.i.e., independentof whichever group of
mutually commuting ocbservables one might chooseto
measure with it (Kochen-Specker theorem)

b. ...unaffected by any actions ata causally disconnected
distance (Bell's theorem)
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Determinism
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Realism

Discreteness

ziven complete information, there
Is no residual uncertainty; all
prababilities are then 0 or 1

The whole can be dissected into
parts. Complete descriptions of
the parts then vield a complete
description of the whaole
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Quantum probability differs from classical probability

n four important respects

ey differences

Classical

ziwen complete information, there
Determinism s no residual uncertainty; all
prababilities are then 0 or 1

The whole can be dissected into
parts. Complete descriptions of
the parts then vield a complete
description of the whole

Atomism

There is a preexisting reality that is
Realism merely revealed, rather than influ-
enced, by the act of measurement

The hypaothesis space is a discrete
Discreteness Sct, and reversible transformations
are discrete permutations

i

JL

Quantum
In every state, even if pure, thers
Irreducible : : =
. are hypotheses whose probabilities
R are neither 0 nor 1
The whale is more than the sum of its
Holism parts; It may be In a pure state that is
not & product of constituent states
The image of reality that emerges
Observer- through acts of measurement reflects
dependency as much the history of intervention
as it reflects the external world
Hypotheses and reversible transfor-
mations form continua. Under the
Smoothness -

latter, probabilities changs in a
continuous fashion




Quantum theory is ,,smoother* than classical
probability theory

Smoothness (1/2)

Hypothesis space,
set of pure states

Reversible
Operations

Change of probability
distribution under
reversible operation

Classical

discrete set

symmetric group
S4 (permutations)

discontinuous

Given finit
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hy talk about commonalities?

otivation

= Ever since the Einstein-Bohr debate the fundamental differences between
quantum and classical probability have been scrutinised extensively

= Yetequally interesting. and less known, is the fact that both theories share
some important commonalities

= These commonalities hintat the structure of a more general, over-arching
framework for plausible reasoning that incorporates both classical and
quantum probability as special cases
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lassical and quantum probability are special cases
of a more general framework for plausible reasoning

eneric notation (1/2)

Mathematical manifestation

Classical

Quantum

Symbol Meaning
Most accurate
hypothesis

A, b, X,y 2 Hypothesis

% Absurd hypothesis

Cy Logical implica-
tion. refinement

1y Contradiction

X.F Set of alternatives

Element of hypothesis space

Subset of hypothesis space

Empty set
Set inclusion

Disjointedness

Collection of mutually disjoint
subsets

1-dim. subspace of Hilbert space
(ray) or projector thereon

Subspace of Hilbert space or
projector thereon

Zero (Pz=0)
Embedding

Orthogonality

Collection of mutually orthogona
subspaces




lassical and quantum probability are special cases
of a more general framework for plausible reasoning

eneric notation (1/2)

Mathematical manifestation

Classical

Quantum

Symbol Meaning
Most accurate
hypothesis
A, b, X,y 2 Hypothesis
% Absurd hypothesis
Cy Logical implica-
tion, refinement
1y Contradiction
4 Set of alternatives
X} <{¥iha  Fine-graining

Element of hypothesis space

Subset of hypothesis space

Empty set
Set inclusion

Disjointedness

Collection of mutually disjoint
subsets

Cut into smaller subsets
yi=Uia X . 1FU iy

1-dim. subspace of Hilbert space
(ray) or projector thereon

Subspace of Hilbert space or
projector thereon

Zero (P5=0)
Embedding

Orthogonality

Collection of mutually orthogona
subspaces

Orthogonal decomposition
P'_-,-'i..= Zi;!kp}{; ’ I=U!ﬂ~:lf< Ik
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lassical and quantum probability are special cases
of a more general framework for plausible reasoning

eneric notation (2/2)

Mathematical manifestation

Symbol Meaning Classical Quantum

(%) Granularity Cardinality of subset Dimension of subspace

: Model size Cardinality of hypothesis space Hilbert space dimension

’ State. knowiedge Probability distribution on Density matrix. statistical operati
hypothesis space on Hilbert space

p(x)=prob{x|p) Probability Lo ple) tripP.)

3, Test Map p p-8, where Mapp P.pP,
8.(e)=1 (eCh) or 0 (otherwise)

; Reversible Permutation of hypothesis space Unitary transformation

operation




lassical and quantum probability are special cases
of a more general framework for plausible reasoning

eneric notation (2/2)

Mathematical manifestation

Symbol Meaning Classical Quantum

(%) Granularity Cardinality of subset Dimension of subspace

) Model size Cardinality of hypothesis space Hilbert space dimension

D State. knowiedge Probability distribution on Density matrix. statistical operati
hypothesis space on Hilbert space

p(x)=probi(x|p) Probability Lo ple) tripP.)

8 Test Map p —-p-8, where Mapp P,pP,
8.(e)=1(eChb) or 0 (otherwise)

; Reversible Permutation of hypothesis space Unitary transformation

operation

Not defined in general framework: N, U
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Universality: Sets L. M, S and group G fall int«
equivalence classes that have granularity as th
sole parameter. Fine-grainings with identical gr
nularities are connected by reversible operatior
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1.<.d.p.6.g(butnot N, U) are well defined and
satisfy basic consistency requirements

Universality: Sets L. M, S and group G fall int«
equivalence classes that have granularity as th
sole parameter. Fine-grainings with identical gr
nularities are connected by reversible operatior

Combinability: Most accurate hypotheses
pertaining to different constituents can be freeh
combined into most accurate hypotheses abou
the composite system. Arbitrary concerted
action of reversible operations on different
constituents renders an allowed reversible
operation on the composite system




lassical and quantum probability have
onsiderable overlap

Principal commonalities -
|

» Realism
« Atomism

» Determinism
e—

Smoothness even
with finite resources

180 2
-
34 |

classical quantum |

1]

2]

3]

Minimal structure: The relations and maps <
1.<.d.p.6.g(butnot N, U)are well defined and
satisfy basic consistency requirements

Universality: Sets L. M, S and group G fall int«
equivalence classes that have granularity as th
sole parameter. Fine-grainings with identical gr
nularities are connected by reversible operatior

Combinability: Most accurate hypotheses
pertaining to different constituents can be freeh
combined into most accurate hypotheses abou
the composite system. Arbitrary concerted
action of reversible operations on different
constituents renders an allowed reversible
operation on the composite system

Learning: Itis possible to learn the single-
constituent state by performing measurements
on an exchangeable sequence




he minimal structure satisfies basic consistency
equirements (1/5)

ogical relations

Logical implication ( £) and fine-graining (<) constitute
partial orders:

. Reflexive

Ii. Antisymmetric

. Transitive




he minimal structure satisfies basic consistency
equirements (2/5)

ranularity

= d(x)=0 <= x=0

= xSy = d(X)=d(y)

= Sum of granularities is invaniant under fine-graining,
xF<{nf = Zdx)=Zd(yy)




he minimal structure satisfies basic consistency
equirements (3/5)

Probability

" p(D)=0

= XSy = p(X)= p(y)

= Sum rule:
¥ <{vid = Zp(x)=Zp(Yi)




he minimal structure satisfies basic consistency
equirements (4/5)

est

Operational
meaning

Properties




he minimal structure satisfies basic consistency
equirements (4/5)

est

= Experiment: Testforb, bCa.
— Ifb is found true: no further action
— Ifb is found false: apparatus subsequently sets also a to false”

Example: Hypotheses a:  .Photon exists™”, b: ,Photon has positive helicity™.

OPEfﬂ_tiﬂ"al Polarization filter lets photon pass only if helicity is positive.
meaning

= Prior knowledge pertainingto xCa: p

= This knowledge changesin two steps:
(1) upon learning that test was performed, with outcome still unknown: p—6.¢
(2) upon learning the outcome: 6,p—86,p/prob(b|p)if b true, else 6,p—0.

Properties




he minimal structure satisfies basic consistency
equirements (4/5)

a7

= Experiment: Testforb, bCa.
— Ifbis found true: no further action
— If b is found false: apparatus subsequently sets also a to  false”

_ Example: Hypotheses a: , Photon exists”, b: ,Photon has positive helicity™.
Operational  pg|arization filter lets photon pass only if helicity is positive.

e = Prior knowledge pertainingto xCa: p
= This knowledge changesin two steps:
(1) upon learning that test was performed, with outcome still unknown: p—6.¢
(2) upon learning the outcome: 6,086, p/prob(b|p)ifb true, else 6,p—0.
= x Ch = 8,p(X)=p(Xx)
. 0)VCh wi ity i ‘i Ch
N supp(8,p)<b, with equality if and only if p(e)>0 for all e &b

= Tests may narrow, but never broaden a distribution: d{ supp(6,p))=d(supp(p))
[not: supp(6,p)=supp(p)]




he minimal structure satisfies basic consistency
equirements (5/5)

Reversible operation

= Reversible operations constitute a group

= They act on states (,Schrodinger picture®) or hypotheses
(,Heisenberg picture®), respectively; pictures are related by

prob(x|g(p))=prob(g~'(x)|p)

In Heisenberg picture reversible operations preserve
— logical relations € |, L <
— granularity

supp(g(p))=g(supp(p))

= goB,=041)°0




undamental equivalence classes have
as their sole parameter the model size

Single parameter

= Define
— L,={X|x &=}
— M, ({k})={{x}<a| d(x )=k} , dla)=2k

— S,={p|,.L,—[0.1] | there exists a state p: pl.(x)=p(x)for all x &a}
.consfrained states”, not necessarily normalisedto pl.(a)=1

— G, ={reversible operations g | g(a)=a, g(x)=xfor all x_La}
constitutes a group; acting on arbitrary hypotheses, notjuston L,

= Corresponding structures for b#a are isomorphic to the above iff d(b )=d(a)=d

= = Define equivalenceclasses L(d), S(d). G(d), M({k}) with Zk=d




undamental equivalence classes have
as their sole parameter the model size

Single parameter

= Define
— L,={X|x &3}
— M, ({k})={{x}<a| d(x )=k} , d(a)=2k

— S, ={pl..L.—[0.1] | there exists a state p: pl.(x)=p(x)for all x Ca}
.consfrained states”, not necessarily normalisedto pl.(a)=1

— G, ={reversible operations g | g(a)=a, g(x)=xfor all x_La}
constitutes a group; acting on arbitrary hypotheses, notjuston L,

= Corresponding structures for b#a are isomorphic to the aboveiff d(b )=d(a)=d

= = Define equivalence classes L(d), S(d), G(d), M({k}) with Zk=d

_—T—_

Equivalence classes depend on granularity only,
not on any specifics of the system under consideration




ine-grainings with identical granularities are
onnected by reversible operations

onnectedness

G(d) acts transitively on M({k;}), hence isomorphism
M({k;}) ~ Gld) ® Glk;) , d= T ks

|

This implies
= Classical: cardinality

= t::c‘l \ d } t.';.'

J
.‘:_\/[,-ll { N : ) — —

[T #Ga(k:) 1L K

= Quantum: manifold dimension, with G(d)=U(d)

dim Mg, ({ ki) = (T' ) -y

v/l—i ——




Parts can be freely combined into a whole (1/2)

omposite hypothesis space

= The whole encompasses the parts; it can never be less (but might
be more) than the sum of its parts

= |n particular, most accurate hypotheses pertaining to different
constituents can be freely combined into most accurate hypotheses
aboutthe composite system:

M({1.dxds-1}= M({1.dx-1})*M({1.ds-1})




Parts can be freely combined into a whole (1/2)

omposite hypothesis space

= The whole encompasses the parts; it can never be less (but might
be more) than the sum of its parts

= |n particular, most accurate hypotheses pertaining to different
constituents can be freely combined into most accurate hypotheses
aboutthe composite system:
M({1.dadg-1})=2 M({1,d,-1})*M({1.ds-1})

_,—'—'—'_'_'_F

-

Classical

#M({1,.d.de-1}) =EM({1.d.-1}) - EM({1.d—1})
with #M({1,d-1})=d




Parts can be freely combined into a whole (1/2)

omposite hypothesis space

= The whole encompasses the parts; it can never be less (but might
be more) than the sum of its parts

= |n particular, most accurate hypotheses pertaining to different
constituents can be freely combined into most accurate hypotheses
aboutthe composite system:

M({1.dads-1})=2 M({1.dx-1})*M({1.ds-1})
Classical Quantum
#M({1.d.d—-1}) =&#M({1.d.-1}) - #M({1.dz-1}) m{{1.d.dz-1})>m({1.d,-1})+m({1.d=-1})

with #M({1,d-1})=d with m=dim M({1,d-1})=2(d-1)

Not =", reflecting possibility of entanglemer




Parts can be freely combined into a whole (2/2)

omposite reversible operations

= Arbitrary concerted action of reversible operations on different
constituents renders an allowed reversible operation on the
composite system

= The Cartesian product of independent subsets of G(d,) and G(dg)
must be isomorphic to an independent subset of G(d.dg)




Parts can be freely combined into a whole (2/2)

omposite reversible operations

= Arbitrary concerted action of reversible operations on different
constituents renders an allowed reversible operation on the
composite system

= The Cartesian product of independent subsets of G(d,) and G(dg)
must be isomorphic to an independent subset of G(d.dg)

R ————

Classical

“.{Sd&cg ) = Mo ‘S:j,e,_]I - M S.jB}

with G(d )=S,; symmetric group.
U size of largestindependent subset,
M(S4)=d-1

Whisfon 2000 Cameron and Cara A




Parts can be freely combined into a whole (2/2)

omposite reversible operations

= Arbitrary concerted action of reversible operations on different
constituents renders an allowed reversible operation on the
composite system

= The Cartesian product of independent subsets of G(d,) and G(dg)
must be isomorphic to an independent subset of G(d.dg)

////\—————__

Classical Quantum
M (Sgpag) ZH(Sg,) - H(Sgg) dim U(d,dg) = dim U(d, ) - dim U(dg)
with G{(d =S, symmetric group. [in fact: =7]
W' size of largestindependent subset, with G(d)=U(d) unitary group, dim U(d)=d-

L'(S,)=d-1

Whiston 2000 Cameron and Cara A




urther commonalities can be found by considering
axchangeable sequences rather than individual systems

xchangeable sequences

Ildea

= Classical: Probability distribution of,
say, a single die can be learnt by
throwing the same die many times

= Quantum: Observer-dependency
precludes determining the state of
an individual system via repeated
measurements on the same system

= [dea: Circumventthe latter limitation
by performing instead measure-
ments on many differentmembers
of an exchangeable sequence




urther commonalities can be found by considering
axchangeable sequences rather than individual systems

xchangeable sequences

Ildea

= Classical: Probability distribution of,
say, a single die can be learnt by
throwing the same die many times

= Quantum: Observer-dependency
precludes determining the state of
an individual system via repeated
measurements on the same system

= |[dea: Circumventthe latter limitation
by performing instead measure-
ments on many differentmembers
of an exchangeable sequence

Exchangeable sequence

= [nformally: finite subsequence of an infinite
sequence of systems whose orderis irrelevant

= Mathematically: symmetric and exchangeable,

1) w(2) TN N} 1

= All constituents have the same reduced single-
constituent state pt"

= Canlearnpt




hen applied to exchangeable sequences, both classical
and quantum probability permit learning

earning

Rules for exchangeable sequences
are always classical

= Product rule: prob(™ g")=prob(f™|g") prob(g")
— ™. measuring on M constituents the values {f}
for observables {F}

— gM- same for g, but on N different constituents
— Boolean ,and" allowed because M,N pertain
to differentmembers of the sequence
= Bayes rule:
prob(f™|g") = prob(g"|f™ ) prob(f*)/ prob(g")

= Marginalisation: prob(g")= Z, prob(g".h")
K pertains to yet another set of constituents




hen applied to exchangeable sequences, both classical
and quantum probability permit learning

earning

Rules for exchangeable sequences
are always classical

= Product rule: prob(™ g")=prob(f™|g") prob(g")

— ™. measuring on M constituents the values {f}
for observables {F}

— g"- same for g, but on N different constituenis

— Boolean ,and” allowed because M, N pertain
to differentmembers of the sequence

= Bayes rule:
prob(f™|g") = prob(g"|f™ ) prob(f™)/ prob(g")

= Marginalisation: prob(g")= Z, prob(g" h")
K pertains to yet another set of constituents

Can learn single-constituent state

= {F}.{G}.{H}: each an info'ly complete
set of single-constituent ocbservables

= M K—=:fM_p h*—o with <F>_=f,
<H>_=h: p is short for proposition:
~Single-constituent state is p~

= Bayesrule:
prob(p|g" )=prob(g"|p) prob(p)/
lsqdo prob(gh|o) prob(o)
As N—= posterior convergestoa
sharply peaked distribution regard-
less of prior prob(p)




he possibility of learning presupposes the existence
of a de Finetti representation

de Finetti representation

Marginalisation and product rule imply

prob(gN) = Is,dp prob(gh| p) prob(p)

= The single-constituent state p appears as a nuisance
parameter

= True for arbitrary N-constituent observables gV, hence

p™ =I5 dp prob(p) p™™
(de Finetti representation)

de Fnetti 1931. Caves. Fuchs and Schack 2
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Introduction

How quantum probability differs from classical
probability

What quantum and classical probability have in
common

Tertium non datur



Are there any other probability theories
hat share the same commonalities?

ey question

classical quantum
d1i2 [ 1] Minimal structure
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focus on the nontrivial situation where — as in the
gquantum case — hypotheses form a continuum

Dverview of cases

Hypothesis space
M({1.d-1})
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Dverview of cases
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focus on the nontrivial situation where — as in the
gquantum case — hypotheses form a continuum

Dverview of cases

Gid) finite - classical
discrete set <
== G(d) ~ finite - _semi-classical(?)

| S

, g--'l"--1~3,-,<f:-;-':'l:ji’lﬁ. Gid)=d-dim G(1) | groupxU(1y
Hypothesmspace | ».Can combine reversible
M({1.d-1}) | operations freely” = G{1)=1

G(d)~U(d) - quantum
continuum <

other Lie group




n the continuum case states shall change under reversible
operations in a continuous fashion, as in quantum theory

ontinuity

5| Probabilities that are initially greater than zero shall not
suddenly jump to zero upon an infinitesimal transformation:

','rr_J,l'l -I.‘H.i .-'.Ij .r‘,*lr;;ll,r‘l » ) Y -: r«lll!lﬂl.'.'l, _.i‘:l-i'_

llir‘" ;_. Eiﬂ-l I_.I!l




n the continuum case states shall change under reversible
operations in a continuous fashion, as in quantum theory

ontinuity

5| Probabilities that are initially greater than zero shall not
suddenly jump to zero upon an infinitesimal transformation:

_.'fr:J,-l'l -|.‘31‘; > ) - L.-;If;ll,."l » U v .: hl]‘l’l”-'."l‘ _;‘:L'l_
"l;_. E;JII;I ;

__v—__
SUupp [";ﬂlppnpuj’f',ﬂ*] — Suppip) v g — ‘E;.r-“-i \

“*Quantum Zeno’

Misrzand Sudarshan 1




he continuity requirement imposes tight constraints
on the group dimension

Dimensional analysis (1/2)

supp(p) W & a(supp(p))

z:=supp(8.g(p))

= Tests never broaden a state
= Continuity

= d(z)=d(supp(p))




he continuity requirement imposes tight constraints
on the group dimension

Dimensional analysis (1/2)

= Given a, b, supp(p)there are two equivalent
b b,” ways to specify g(supp(p)):
—directly as a refinementof a

. 3 —firstz as a refinement of _base"b, then
supp(p) a(supp(p)) g(supp(p)) as a refinement of .fiber*b_*,

z:=supp(8,a(p)) yielding the sum rule
dim M({k.d-k}) = dim M({k.l-k}) + dim M({k.d-1})

= Tests never broaden a state
= Continuity

= d(z)=d(supp(p))




he continuity requirement imposes tight constraints
on the group dimension

Dimensional analysis (1/2)

= Givena, b, supp(p)there are two equivalent
b b,” ways to specify g{supp(p)).
—directly as a refinementof a

Y —firstz as a refinementof _.base"b. then
supp(p) a(supp(p)) g(supp(p)) as a refinement of .fiber*b_*,

z:=supp(8,a(p)) yielding the sum rule
dim M({k.d-k}) = dim M({k I-k}) + dim M({k.d-1})

= Together with transitivity
dim M({k;}) = dim G(Zk;) — Z,dim G(k;)

= Tests neverbroaden a state this constrains the group dimension to be of
= Continuity quadratic form

= d(z)=d(supp(p)) dim G(d) = dim M({1.1})/2-d(d-1) + dim G{1)-d




ombining constituent operations freely into composite
operations is only possible with a Hilbert space structure

Dimensional analysis (2/2)

Constraints

= Quadratic form

» Continuum case:dim M({1.1})=1

= Free combination of reversible
operations:

dim G(d .dg)=dim G(d,»)-dim G(dg)




ombining constituent operations freely into composite
operations is only possible with a Hilbert space structure

Dimensional analysis (2/2)

Constraints Allowed dimensions and associated groups
dim G(1)

= Quadratic form 5 ;

= Continuum case:dim M({1.1})=1 |

= Free combination of reversible d(d-1)/2 d(d+1)/2

operations: dim M({1,1})|

d)xSO(d u(d
dim G(d .dg)=dim G(d,,)-dim G(dy) E sqd()djq ) éz)




ombining constituent operations freely into composite
operations is only possible with a Hilbert space structure

Dimensional analysis (2/2)

Constraints Allowed dimensions and associated groups

dim G(1)
= Quadratic form 0 1
» Continuum case: dim M({1,1})=>1 |
- ({ - ) | SO(d) Sp(d)
= Free combination of reversible _ d(d-1)2 d(d+1)/2
TYRTT L _ so(d d) U
dim G(d,dg)=dim G(d,)-dim G(dg) 2 d(cd1) dz

= 3 of the 4 allowed groups correspond to Hilbert space structure over some skew
field (complex, real or quaternionic) = analogous to ,,quantum logic”

= The additional group SO(d)*xSO(d)is somewhat elusive and may warrant further
investigation. It yields the same manifold dimensions for M({k;}) as (and hence
might be locally equivalentto) quantum theory; yet global topology is different




n order to enable learning, Hilbert space must be
over the complex numbers

xclusion of other skew fields

In real and quaternionic Hilbert space there exist states of
exchangeable sequences that do not have the de Finetti form

= Some or all of the rules required for learning (product rule,
Bayes rule, marginalisation) do not hold

= The state of a system can never be learnt, not even by
performing measurements on an exchangeable sequence
of identical copies

Caves. Fuchs and Schack 2
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Summary
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n sum, the only reasonable alternative to classical
probability is quantum probability in complex Hilbert space

Summary
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]

classical =-esssssss———) quantum
Smoothness even

with finite resources

142 " [ 1] Minimal structure
3 2| Universality
'3 | Combinability
[4] Learning




n sum, the only reasonable alternative to classical
probability is quantum probability in complex Hilbert space

= uUmma
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classical essssss—————) quantum
Smoothness even
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