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Abstract: We study various aspects of power suppressed as well as exponentially suppressed corrections in the asymptotic expansion of the
degeneracy of quarter BPS dyons in N=4 supersymmetric string theories. In particular we explicitly calculate the power suppressed corrections up to
second order and the first exponentially suppressed corrections. We also propose a macroscopic origin of the exponentially suppressed corrections
using the quantum entropy function formalism. This suggests a universal pattern of exponentially suppressed corrections to all four dimensional
extremal black hole entropiesin string theory.
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Iniroduciion

8000
alale

Motivation

@ Black Holes are solutions of Einstein-Maxwell theory (low
energy limit of string theory). They carry certain charges
and quantum mechanically behave as thermodynamic
objects.

@ They can also be described in terms of specific
configuration of states in the full string theory, carrying
similar set of charges.

@ We want to understand the statistical origin of Black Hole
entropy , as the logarithm of the degeneracy of these
states.
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Introduciion

] . Y
- St el

@ Major success: for extremal Black Holes,

Sgy = Sstat = Ind(Q). in large charge(@) limit.

Q9 Can we go beyond large charge limit?

? 4
i.e. SBH . In d(Q)

for large but finite charges.

To do this, we need to take two way approach to the problem.
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Iniroduciion
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Macroscopic Side |

@ On gravity side, we need to consider all o’ corrections and
stringloop corrections.

@ o' corrections: Entropy function technology can be used.
@ stringloop corrections: Quantum entropy function can be
used.
@ Enfropy corrections come as an expansion in inverse
power of charges.

Microscopic Side

@ One needs to compute the degeneracy of states more
accurately.
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Inireduciion
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GOAL

To understand these corrections to the entropy in the statistical
side by doing systematic asymptotic expansion of the
degeneracy function.
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Setup

@ We consider ' = 4 superstring theory with rank r gauge
group.

@ At a generic point in the moduli space,the unbroken gauge
group is U(1)".

@ The low energy SUGRA theory has a continuous
SO(6.r —6) x SL(2,R) symmetry.

@ We denote the SO(6.r — 6) invariant metric by L. All inner
products are defined with respect to L.
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Two Descriptions

First Description |

@ Type IIB string theory on K3 x S' x S/ Zy,.

@ A dyonic state in this theory is a particular brane
configuration.

Second Description _

@ Equivalently heterotic string theory on T4 x S' < S/ Zy

@ A dyonic state in this theory is described by a state
—muss CAITYING some electric and magnetic charges. N -




@ The two descriptions of the theory are related by a chain of |
duality transformations as follows:

1B S 1= T IHA st—st [/ Heterotic
S1x8§1) = |\ Stx81 ) — | S1x8&! - TS

Charge Vectors |

@ In general, any given state is characterized by r
dimensional electric and magnetic charge vectors, Q and

s
@ The T-duality invariants are,

Q?=Q'IQ P =PTIP QP=QTLP.

oz The discreate T-duality invariant (ged of (Q /A P)) is set ta=4vs
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Macroscopic Side |

@ We will consider quarter BPS dyonic Black Holes in the
Heterotic theory.

@ Restricting to Supergravity approximation, we can find the
leading entropy carried by these Black Holes .

Microscopic Side |

@ By duality, we can also regard the states associated with
this Black Holes as states of some particular quarter BPS
D-brane configuration in the type |IB theory.

@ Considering the dynamics of various fields in the D-brane
configuration, the complete degeneracy function has been

oz @Valuated (' David. A_ Sen: NB, D. Jatkar, A_ Sen ). Page 14/75
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Degeneracy Formula |

@ The microscopic degeneracy is,

—7wi(pQ2+oP2+2vQ-P)
d(p, o, V)

e

d(Q.P) (—1)Q‘P+1A/dpdr_:rdv
v

@ Contour C is a three real dimensional subspace of the
complex dimensional space labeled by (p, o, v).

@ For N = 1 theory, the function ®(p. s.v) is a modular form
of weight 10.

@ The analogous modular forms are also known for many
other models .
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Degeneracy Formula _

@ The microscopic degeneracy is,

—7wi(pQ2+oP2+2vQ-P)
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e

d(Q,P) = (—1)%FH1 A / dpdodv
A
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of weight 10.
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other models .
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Setup

Degeneracy Formula |

@ The microscopic degeneracy is,

e—Ti(pQ*+oP?+2vQ-P)

—_— —p
d(Q.P)
P(p, o, V)
Lindaiang: your compuier is smosthmmplei=: Y our mmpuier nesss o e resiaried
for the updai=s to =he effect. Windows will resi=rt vour compuier sutomaticsly in

482 rinutes

LLS ==l

@ ContourC i e ] =iy | hace of the
complex dimensional space labeled by (p, 7. v).

@ For N = 1 theory, the function ®(p. 7, v) is a modular form
of weight 10.

@ The analogous modular forms are also known for many
other models .
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Degeneracy Formula _

@ The microscopic degeneracy is,

—7wi(pQ2+oP2+2vQ-P)
d (p. ag, V)

e

d(Q,P) = (—1)3F+1 A / dpdodv
’

@ Contour C is a three real dimensional gﬁbspace of the
complex dimensional space labeled by (p., 7. v).

@ For N = 1 theory, the function ®(p. s.v) is a modular form
of weight 10.

@ The analogous modular forms are also known for many
other models .
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Asymptotic Expansion

@ For a given set of charges, there are single centered and
multi centered Black Hole solutions.

@ We are interested in single centered Black Hole entropy.

@ We organize the integral such that the result can pick up
the contribution from single centered Black holes. This is

done by choosing the integration contour C in a specific
way.

@ In particular, we need to set the asymptotic values of the
moduli fields equal to their attractor values.

s
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Setup

@ We have to do three integrals, over (p. o. v). For this,we
need the pole of the integrand.

@ The function ®(p.s.v) has a second order zero at,

na(op — Vz) +jVv+no—mp+m =20

for 2
mq.nNy. Mo, Ny < Z_;E2Z+1 m1n1+m2n2+%:%

@ We consider cases with n, > 1.
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Setup
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Pole structure
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Setup

L

@ We have to do three integrals, over (p. o. v). For this,we
need the pole of the integrand.

@ The function ®(p.s.Vv) has a second order zero at,

na(op — Vz) +jv+no—mp+m =20

for 2
mq.N4.Mo. Ny < Z_/E2Z+1 m1n1+m2n2+%:%

@ We consider cases with n, > 1.
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Pole structure
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Setup

@ We have to do three integrals, over (p. o. v). For this,we
need the pole of the integrand.

@ The function ®(p.s.Vv) has a second order zero at,
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Pole structure
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Setup
elalalelolal T

@ We have to do three integrals, over (p. o. v). For this,we
need the pole of the integrand.

@ The function ®(p.s.v) has a second order zero at,

7]

na(cp —Vve)+jv+nmo—mp+my =20

for
my.m.my.nc Zjc2Z+1, mny+myn,+45 =

TN

@ We consider cases with n, > 1.
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@ In saddle point approximation of the integral, the

degeneracy is,

d(Q,P) = ™V ¥F—(QFPy/m

@ For n, = 1, we get the maximum contribution to the
degeneracy.

@ For ny, > 2, the degeneracy is exponentially suppressed
compared to the leading one. Hence, to compute
exponentially suppressed contribution, we need to look at
these sub-leading poles.
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@ For the leading pole, one integral can be done by residue
method. The other two integral are done by saddle point

analysis.

@ The v integral is done by residue method. Near the pole,
the function ¢ behaves as.

®(p, 0. v) — v2g(p)g(o) + O(v?)
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Setup

@ The (p. o) integral takes the form,

ey = |
gSstat(Q.F) _ d(Q.P) ~ d= ef ()

2

where,p =71 +imand o = —71 +im

@ The function F(7) can be easily computed after doing the v
integral.
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@ This can be regarded as a zero dimensional field theory
with fields (74, ) with action F(7) — 2In 7.

@ The result for statistical entropy Sst5; can be obtained by

computing the possible diagrams of this field theory up to
any desired order in charges.

@ This will produce all sub-leading correction which are
power suppressed in charges.
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@ The (p. o) integral takes the form,

- » 2
eS=a(AP) — ¢(Q, B) ~ ar 2‘ ef (7)

L5

where,p =71 +imand o = —71 +im

@ The function F(7) can be easily computed after doing the v
integral.
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@ For the leading pole, one integral can be done by residue
method. The other two integral are done by saddle point
analysis.

@ The v integral is done by residue method. Near the pole,
the function ¢ behaves as.

d(p, 0. v) — v2g(p)g(o) + O(v?)

irsa: 08120053 Page 34/75



Setup

@ The (p. o) integral takes the form,

" By gy |
eSsat(QFP) — ¢(Q, P) ~ d 2‘ ef (7)

2

where,p =1 +imandoc = —71 +im

@ The function F(7) can be easily computed after doing the v
integral.
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@ For the leading pole, one integral can be done by residue
method. The other two integral are done by saddle point

analysis.

@ The v integral is done by residue method. Near the pole,
the function ¢ behaves as.

®(p, 0. v) — v2g(p)g(a) + O(v?)
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Setup

@ The (p. o) integral takes the form,

(Q.F) S B d’7 _F
e Sstat (Q P) A e
=
2
where,p =71 +imand o = —71 +im

@ The function F(7) can be easily computed after doing the v
integral.
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@ This can be regarded as a zero dimensional field theory
with fields (74, ) with action F(7) — 2In 7.

@ The result for statistical entropy Sst5; can be obtained by

computing the possible diagrams of this field theory up to
any desired order in charges.

@ This will produce all sub-leading correction which are
power suppressed in charges.
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Setup
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Up to 1/charge? corrections

Statistical Entropy Function

@ Leading result:

@ The charge® correction:

1(78) =Ing(m8) +Ing(—78) + (k + 2)In(27s,)

The 1/charge? correction :

[2(78) = IndZ(é-ﬁ) = _I\Q zziap‘z(k +2)
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Up to 1/charge? corrections

Statistical Entropy Function

@ Leading result:
“ Automatic Updates X

pdatng your compuier is @most compietes Your compuisr nesds o be restarted
for the updai=s o =ke offect. Windows will resi=rt your computer sutomatcsily in

10 i pemprw 1
455 uie=

@ Thechargd @ = = == = [l

1(78) =Ing(m8) +Ing(—78) + (k + 2)In(27s,)

The 1/charge? correction :

M2(78) =INd2(Q.P) = — 5 ?ispp(k +2)
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Up to 1/charge? corrections

Statistical Entropy Function _

@ Leading result:

w

lo(78) = —5,—1Q — 7aPl’
‘B2

@ The charge® correction: @

1(78) =Ing(mg) + Ing(—78) + (k + 2)In(27s,)

The 1/charge? correction :

M2(7a) = Indx(Q.P) = g ?EisP\z(k +2)
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Up to 1/charge? corrections

Statistical Entropy

@ Leading entropy: SO = /Q2PZ — (Q.P)?
@ The charge® correction:

SV = —Ing(rg)) — INg(—7q)) — (k +2)In(27(g),)

@ The 1/charge? correction :

s(2) — _sz ==
27/ Q%PZ — (Q - P)? T Q — D)P!2

KQ"('(D))jL k+2 )(Q’(ﬁm)jL k +2 )}
d(70)) T(0) — 7o) g(—7w) 7o) — 7o)
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Up to 1/charge? corrections

Statistical Entropy Function _

@ Leading result:

il

lo(7a) = —5—1Q — 7P
152

@ The charge® correction:

[1(78) =Ing(78) +Ing(—78) + (k +2)In(275,)

The 1/charge? correction :

M(75) = Indx(Q. P) = T fiBP\Z(k +2)
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Up to 1/charge? corrections

Statistical Entropy

@ Leading entropy: SO = =/Q2PZ — (Q.P)?
@ The charge® correction:

S = —Ing(rg)) — INg(—70)) — (k +2)In(27(q),)

@ The 1/charge? correction :

sS(2) — _2.+k = - (92
2,:\/@2;32 —(Q F‘)2 T|Q — T(D)Pf2

KQ"('(U))jL k+2 )(g’(F(g))+ k +2 ﬂ
g(70)) 7o) — T(0) g(—7w) 7o) — 7o)
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BMPV Black Holes

Microscopic Configuration

@ It involves a D1-DS system carrying crtain momenta and
angular momenta in flat space-time.

@ We derive the higher derivative corrections to classical
entropy.

@ the results are valid even out of Farey tail limit.

@ The leading walls of marginal stability is absent in this
case.
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Up to 1/charge? corrections

Statistical Entropy _

@ Leading entropy: SO = = /Q2PZ — (Q.P)?
@ The charge® correction:

SV = —Ing(rq)) — Ing(~7(0)) — (k +2)In(27(a),)

@ The 1/charge? correction :

s@ _ S Eh I ()2
27/ QZPZ —(Q - P)2 |Q — )P

[(Q’('(O))jL k+2 )(Q’(ﬁm)jL k42 )}
d(70)) 7o) — T(0) g(—7w) 7 — T(0)
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Setup

s
et

Exponential Suppressed Correction

@ The zeros of the function .

na(op — v2) +jv + o —myp+my =0

@ We get such corrections from the sub-leading poles,
n > 2.

@ For this we define
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@ We look for a symplectic transformation of the form:

[L :} =0=(AQ+B)CQ+D) T

such that

na(op — v2) +jv + nyo — myp + ms

ik det(CQ + D)

@ The behavior of &, near the zero is,

Oy (p.o.v) = —{det(C Q + D)} ¥ 4x% V2 g(p) g(5) + O(v?)
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Degeneracy Formula _

@ The degeneracy formula for any sub-leading pole is,

exp( 7/ Q2P2—(Q-P)2/n
- — ) [det(CQ + DY<+2 g(p)~" g(o)~" ]

(—1)9F exp [in(nP? — mQ? +jQ - P)/n3]

saddle

@ To evaluate det(CQ + D) 2g(p)~" g(o)~"

)~ ', we actually
need the transformation matrix A.B.C.D.

@ We will now compare the entropy with the leading pole
results.
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Comparison

FClaP|diar) | Se |S) |+S5k]+85. | Ad
2 0 |5x10* | 1082|628 |1062 | 11.58 | 346
4 0 |3x107 |17.31 | 1257 | 16.90 | 17.38 | 480.6
6 0 |1x10%|2351|18.85|23.19 | 23.51 | 18573
6 3 | 9x10% | 2064 |16.32 (2041 |20.77 |0
6 3 | 2x10° |21.78 | 16.32 | 20.41 | 20.77 | -
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Setup
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Comparison

Q. P~

Q.P

T — 1

Genenc Host Process for Wind2 Services has

encountered a problem and needs to close. 'We are somp

for the IncConyenience.

might be lost,

Please tell Microsoft abowt this problem.

zenernic Host Process for'wingd Seraces. "wWe will treat this repart a2
confidental and anonemos.

To zee what data thiz esror report contains, chck here

"w'e hawe created an smor report that pou can send fo help us improve

N

Send Ermor Report Don't Send :

stat

1S5

stat

Ad

[F pou wese i the middle of something. the informabion pow were wioking on |6 2

11.58

34.6

17.38

480.6

___________________________ 19

235

18573

9 x 108 | 20.64 | 16.32

20.41

20.77

6

2 x10° | 21.78 | 16.32

20.41

20.77
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Setup
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Comparison

Q2 P2 | o p ([EEr— ) | . @ | Ag

stat stat

Genenc Hozt Process for Wind2 Services has
encountered a problem and needs to close. 'We are somp
for the mconyenience.

2 0 |F pou were i the middle of zomething, the information pou weere working on |6 2 1 1 ) 5 8 34 " 6

might be fost,

Please tell Microzoft abowt this problem.
‘e hawe created an emor report that wou can send fo help us improve

4 0 SEme e | | T || ABNE

To zee what data thiz emmor report containe, chck here.

Send Ermor Report

23.51 | 18573

6 = 9 x10% | 2064 | 16.32 | 2041 [ 2077 | O

6 -3 2 x10° | 21.78 | 16.32 | 20.41 | 20.77 | -

’

= wireless Network Connection is now connected
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Comparison

QP2 | QP |d(Q,P) | Ssme | S | +SU) | +s2) | Ad
2 0 |[5x10* | 1082|628 |1062 | 1158 | 346
4 0 [3x107 |17.31 | 1257 | 16.90 | 17.38 | 480.6
6 0 |1x10"|2351|18.85|23.19 | 2351 | 18573
6 3 |9x10% | 2064|1632 (2041 | 2077 |0
6 3 [ 2x10° | 2178 | 16.32 [ 20.41 | 20.77 | -
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Comparison

@.P2| QP | d(Q.P) | Suse | SO | +5D | +52, | ad

2 0 11.58 | 34.6
4 0 T e | 1738 | 2806
6 0 1 x10'% | 2351 | 18.85 {m23.19 23.91 | 18573
6 3 9«10% | 2064 | 16.32 | 2041 | 2077 |0

6 -3 2 x10° | 21.78 | 16.32 | 20.41 | 20.77 | -
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Comparison

Q- P?

Q.P

Ad

34.6

Lp YOI COMERIEET is Smostoom Yo compuREr nesd i=ried
3 = ™
for th dates o = ei=t rest=riy COMpUiEr ma b=y i 3 2
419 minuies.
Mt o rest=r COMmouIiEr
Restart Now | | Restart | ster |

B0

480.6

18.85

5319

23.51

18573

6

16.32

20.41

20.77

6

| 40 an

AN A4

AN 77
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Comparison

QR2P2|QP|dQ,P) | Sux | S | +SUL|+s8. | Ad
2 0 |5x10* | 1082|628 |1062 | 11.58 | 346
4 0 |3x107 |17.31 | 1257 | 16.90 | 17.38 | 480.6
6 0 |1x10%|2351|18.85|23.19 | 23.51 | 18573
6 3 | 9x10% | 2064 |16.32 (2041 |20.77 |0
6 3 | 2x10° |21.78 | 16.32 | 20.41 | 20.77 |-
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Comparison

Q2P| QP |dQP) | Sux | S |+SUL |+ | Ad
2 0 |5x10* | 1082|628 |1062 | 11.58 | 346
4 0 |3x107 |17.31 | 1257 | 16.90 | 17.38 | 480.6
6 0 |1x10%|2351|18.85|23.19 | 23.51 | 18573
6 3 | 9x10% | 2064 |16.32 (2041 |20.77 |0
6 3 | 2x10° |21.78 | 16.32 | 20.41 | 20.77 | -
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Macroscopic Understanding
000000

Macroscopic Understanding

Power suppressed correction

@ Power suppressed corrections are identified to the
o' /gstring correction to Black Hole macroscopic entropy.

@ This Entropy function is just the value of the corresponding
six derivative term in the Black Hole action computed on
the AdS, x S? background.

@ We do not know a candidate for this term in the action. Our
Analysis tells us that the term has to be duality invariant
and puts a strong constraint to the possible terms.

@ We have also been able to eliminate terms like R° as they
rsa: 08120053 gives Zero result. Page 58/75




Macroscopic Understanding

ol _elalelels

Exponentially Suppressed Correction

@ These corrections naturally come from Quantum Entropy
Function.

Quantum Entropy Function

@ This is a proposal for computing the exact degeneracy of
states of an extremal Black Holes (a sen.

@ These Black Holes have the following near horizon
geometry,

d2 :
ds? = v ((r2 —1)d#* + 2 r1) : F,f;) = —le;.

v, €; are constants, .... denotes near horizon values for
other fields.
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Macroscopic Understanding

aTal T ialals
e '. BLOLE LS

@ The degeneracy is given as,

d(g) = <exp[—fq,- j{df)Ag)]>

finite

AdS,

@ where ( )s4s, denotes the unnormalized path integral over
various fields of string theory on euclidean global AdS..

@ The superscript ‘finite’ refers to the finite part of the
amplitude. To get this, we need to put a cut of to regularize
the AdS volume.
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Macroscopic Understanding

ololal Tololo

@ Explicit computation shows that this proposal reproduces
the right classical degeneracy of states for quarter BPS
Black Holes in ' = 4 theories as,

d(q) ~ exp (r\/Qsz —(Q- P)z) .

Possible Quantum Corrections

@ There are two sources of quantum corrections.
@ From fluctuations of the string fields around AdS>
background.

@ There can be different classical solutions with similar
asymptotic configuration.
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Macroscopic Understanding

Fluctuation of the Background

@ The degeneracy is actually given as the finite part of the
amplitude in the AdS, background, and hence can only get
power law corrections from fluctuation modes.

Different Solutions

@ The different solution can come with a different action, and
hence we can get a different exponential factor.

@ Q. Can we identify such a different solution?
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@ The degeneracy is given as,

d(g) = <exp[—."q; jé.df)Ag)]>

finite

AdS,

@ where ( )a4s, denotes the unnormalized path integral over
various fields of string theory on euclidean global AdS.

@ The superscript ‘finite’ refers to the finite part of the
amplitude. To get this, we need to put a cut of to regularize
the AdS volume.
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Exponentially Suppressed Correction

@ These corrections naturally come from Quantum Entropy
Function.

Quantum Entropy Function _

@ This is a proposal for computing the exact degeneracy of
states of an extremal Black Holes (2 sen.

@ These Black Holes have the following near horizon
geometry,

d2 :
ds? = v ((r2 —1)d#* + 2 r1) . Fﬁ;) = —le;.

v, €; are constants, .... denotes near horizon values for
other fields.
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Macroscopic Understanding
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Macroscopic Understanding

Power suppressed correction

@ Power suppressed corrections are identified to the
o' /gstring correction to Black Hole macroscopic entropy.

@ This Entropy function is just the value of the corresponding
six derivative term in the Black Hole action computed on
the AdS, x S? background.

@ We do not know a candidate for this term in the action. Our
Analysis tells us that the term has to be duality invariant
and puts a strong constraint to the possible terms.

@ We have also been able to eliminate terms like R as they
rsa: 08120053 gi\,res Zzero result. Page 65/75




Macroscopic Understanding
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@ Explicit computation shows that this proposal reproduces
the right classical degeneracy of states for quarter BPS
Black Holes in ' = 4 theories as,

d(q) ~ exp (r\/Q2P2 —(Q- P)2> |

Possible Quantum Corrections

@ There are two sources of quantum corrections.
@ From fluctuations of the string fields around AdS>
background.

@ There can be different classical solutions with similar
asymptotic configuration.
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Macroscopic Understanding

O0QQQeQQ

Fluctuation of the Background

@ The degeneracy is actually given as the finite part of the
amplitude in the AdS, background, and hence can only get
power law corrections from fluctuation modes.

Different Solutions

@ The different solution can come with a different action, and
hence we can get a different exponential factor.

@ Q. Can we identify such a different solution?
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Macroscopic Understanding
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@ Explicit computation shows that this proposal reproduces
the right classical degeneracy of states for quarter BPS
Black Holes in ' = 4 theories as,

d(q) ~ exp (r\/QzPZ —(Q- P)2) .

Possible Quantum Corrections

@ There are two sources of quantum corrections.

@ From fluctuations of the string fields around AdS>
background.

@ There can be different classical solutions with similar
asymptotic configuration.

irsa: 08120053 Page 68/75



Macroscopic Understanding
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Fluctuation of the Background

@ The degeneracy is actually given as the finite part of the
amplitude in the AdS, background, and hence can only get
power law corrections from fluctuation modes.

Different Solutions

@ The different solution can come with a different action, and
hence we can get a different exponential factor.

@ Q. Can we identify such a different solution?
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@ We consider a Zy quotient of the previous background by,

- o+ 2 27
F —r —— I —- gy — —
R
@ The new solution looks like. @
d - ~2 1 déz sz F(J’) N ===
s =v|(r-—1)d¢ +ﬁ y o ——1y
— e W
=606+ —
N
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@ In a new coordinate r =F/N. 6 = N8, the solution looks
as,

dr? .
ds® =v ((rz _N2)de? + —— ) . FY =_ie;.

r2 _ N2
0 =04+2x r}#r:;—%
@ This has the same asymptotic behavior as the original

solution.

@ The finite contribution to the quantum entropy function is,

d(Q.P) = exp (r \/HCJZF’2 —(Q- F’)z'N)

~os00:4® VW€ recover the correct exponentially sub-leading page 71173
~rarreactinn idantifuina N — -



Macroscopic Understanding
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@ In a new coordinate r =F/N. # = N8, the solution looks
as,

ds” —v ((r2 — N%)d#* + — ) Fr,; ——§ e

UDOSEng Yo COmRSTEr 1S SmOsST COmMpIETE.. TOUr COMPUTEr NES0s 0 DETESETEg
for the updai=s to =ke effect. Windows will rest=rt vour compuier sutomatic=ly in
33 mnUiEs

@ Thishasth| . (=== =h==) [he original
solution.

@ The finite contribution to the quantum entropy function is,

d(Q.P) = exp (’.-T\/QZPZ —(Q - P)Z,fN)

oo VW€ recover the correct exponentially sub-leading page 72173
SRS _



Macroscopic Understanding
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@ In a new coordinate r =F/N. # = N8, the solution looks
as,

dr? :
ds® =v ((rz _N2)de? + —— ) . FY =—_ie;.

r2 _ N2
6 =04+ 2x. (:J'—'“{f}—%
@ This has the same asymptotic behavic” as the original

solution.

@ The finite contribution to the quantum entropy function is,

d(Q.P) = exp (r\/Q2P2 —(Q- p)sz)

~os00:4@ VW€ recover the correct exponentially sub-leading page 73173
rarreactinn idantiftuina N — -
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Results

@ We have shown that the degeneracy formula is valid for a
generic quarter BPS dyonic Black Hole state in V' — 4
theory.

@ We have explored possible power suppressed and

exponentially suppressed corrections to the microscopic
degeneracy formula.

@ We have also identified the roots of these corrections in the
Black Hole macroscopic entropy.

@ The exponentially suppressed corrections to the black hole
entropy is universal, does not depend on the particular
kind of extremal Black Holes.
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