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Abstract: The handling of the constraints on initial data is a mgor issue in most canonical formulations of genera relativity. Since the 1960s
unconstrained initial datafor GR that living on null hypersurfaces has been known, but no canoncial formulation based on these data was developed
due to conceptual and technical difficulties. | will explain how these dificulties have been overcome and outline the resulting canonical framework. |
will also explain how this might be the ideal setting to attempt a proof of the Bousso entropy bound, or to incorporate the associated holographic

principlein aquantization of gravity.
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WHAT IS CANONICAL GR USING
CHARACTERISTIC DATA?

e It is canonical GR using mitial data on a piecewise null hypersurface

i "

e could be a future light cone \/

e we will use a pair of mtersecting null hypersuriaces (or “lightfronts™) -
like an open book m spacetime.

e Nz. Ni are 3-surfaces swept out by null ._eﬂde:w..s emerging normally
from the two sides of 2-disk Se.
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e mitial data on \" = \; U _\; specifies solution in domam of
dependence D[\

D{A_ ] —a4 dumensional spacetime region _,
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WHY STUDY THIS?

e No constramts -can idenufy free. complete data (~ 1962 Sachs. Bondi.
van der Burg. Metzner. Penrose. Dautcourt)

e [ orentzian

e Observables - main free initial data has direct interpretation in terms of
test lightrays — allow formulation of observables

e Time evolution conceptually straightforward
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e Holography Beckenstem - 't Hooit Susskind - Bousso bound: It
generators of a branch ((\; say) are non-expanding at S, then they
argue

ArealS|

'I‘-'\P.-".::mcn'*

Entropy on \; <

with saturation possible.

e Nommally the highest entropy thermodynamic macrostate of a system has

essentially a// microstates. This suggests

.i.:nj

dimHyy, = €**Planc

or -
Alap |

- —

dimHy = e —Planc

with A, the Hilbert space of vacuum GR mn D|N].
e Canonical GR on \ seems ideal framework to check this.
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e Holography Beckenstemn - 't Hooit Susskind - Bousso bound: I
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WHY IT WAS NOT DONE SOONER

e Focusing of generators: Once generators cross they enter D|.\'] so data
on them not independent of other data. Was not clear how to control
crossmgs by conditions on data. And such conditions would also spoil
simplicity of free data. _ . imtersections of generators

N\
D4
X

Sa '\
A" \

e Solution: Caustics easily excluded from data. Once caustics gone can
“umdentfy” other crossings - Pull back metric to normal bundle of Sp.
Locally 1sometric spacetime with no generator crossings. Then
eliminating crossings requires no restrictions on data - All data
correspond to a soln of Emstem’s eqns.

e Finding Poisson brackets of data hard work.
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e Solutnion: Work hard!



1 HE FREE INITIAL DATA

e Coordmates adapted to .\

e 9! 6° coordinates on S,. Held constant on generators.

e v parameter along each generator.
Definition: Cross sectional area of mfinitesimal bundle of
neighboring generators
A(v) = 4gv

A, 1s the cross sectional area at S,.
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e “Bulk™ data lives on the 3-manifolds \; and \';. Additional data lives
on .S;.

e Bulk data = conformal 2-metric e, (0, 8-, v)

e Metric on Nz (N7) degenerate because Nz (N7) is mull. so

= = h.adl d6
- O ernms
e Defimition:
ab — Magb /¥ di"f.r_'
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e Data on S;:
® po = y/derhi;; = area density on Sp.

e A=—In(—m -mz) n = — =tangent to generators.
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Brackets of ;-

THE POISSON BRACKETS

Parametrize e,; by a complex scalar

with
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o ¢
Ldd

hasd6°d6P
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\4= 1T 44, )

az + pdzc)
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THE FREE INITIAL DATA

e Coordmates adapted to .\

e 9! 6° coordinates on S,. Held constant on generators.

e v parameter along each generator.
Defimition: Cross sectional area of mfinitesimal bundle of
neighboring generators
Alv) = --Lj‘l':
A, 1s the cross sectional area at S,.
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e Holography Beckenstem - 't Hooit Susskind - Bousso bound: I
generators of a branch ((\; say) are non-expanding at S, then they
argue

Area Sy

‘I‘-'\P.-"an::i*

Entropy on \z <

with saturation possible.

e Nommally the hughest entropy thermodynamic macrostate of a svstem has
essentially a// microstates. This suggests

Alan

aimHy, = @ **Plan
4

Dlarek

or

=)

—_—

dimHy = e —Planck

with A, the Hilbert space of vacuum GR in D|V].
e Canonical GR on N seems i1deal framework to check this.
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WHY IT WAS NOT DONE SOONER

e Focusing of generators: Once generators cross they enter D|.\'] so data
on them not independent of other data. Was not clear how to control
crossmgs by conditions on data. And such conditions would also spoil
simplicity of free darta.
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e Solution: Caustics easily excluded from data. Once caustics gone can
“umdennfy” other crossings - Pull back metric to normal bundle of S;.
Locally 1sometric spacetime with no generator crossings. Then
eliminating crossings requires no restrictions on data - All data
correspond to a soln of Emstemn’s eqns.

e Finding Poisson brackets of data hard work
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e Holography Beckenstemn - 't Hooit Susskind - Bousso bound: I
generators of a branch (\; say) are non-expanding at S, then they
argue

ArealSy)

4-{)75::?1::%

Entropy on \z <

with saturation possible.

e Nommally the highest entropy thermodynamic macrostate of a system has
essentially a// microstates. This suggests

415y
dimHy, = €**Planc

or o
.-i_lﬂ_
dimHy = e —Planck

with Ay, the Hilbert space of vacuum GR in D|V].
e Canonical GR on N seems ideal framework to check this.
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1 HE FREE INITIAL DATA

e Coordmates adapted to \/

e 9! 6° coordinates on S,. Held constant on generators.

e v parameter along each generator.
Defimition: Cross sectional area of mfinitesimal bundle of
neighboring generators
A(v) = Ay
A, 1s the cross sectional area at S,.
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e “Bulk™ data lives on the 3-manifolds \; and .\';. Additnonal data hives
on S;.

e Bulk data = conformal 2-metric e,;(#*. 8- .v)

e Metric on Nz (N7) degenerate because Nz (N7) is null. so

S i ,_._.‘_3-_1': fi
- N0 dv terms
e Definition:
ab — 5/ V deth
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e Data on Sp:
e po = +/der h;; = area density on Sp.

e A=—In(—m -mz) n = - =tangent to generators.

P BR-V oAy —By -V ghg
ng-or
e 0 :S; — Sp= diffeo defined by following generators Sy — So — Sz.
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THE POISSON BRACKETS

Brackets of ;-

Parametrize e,; by a complex scalar 4

"y - s s = sl

as- = HNgpdt do’
= —\az + paz)laz + pac)

]. —= i:'I.H

with
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e Data on Sp:
® po = +/deri;; = area density on Sp.

e A=—In(—m; -mz) n = - =tangent to generators.

_ BR-V gly —HBy -V gBZ
™ y — —= 2 = = = 7
ng-my

e 0 :S; — Sp= diffeo defined by following generators Sy — So — Sz.
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THE POISSON BRACKETS

Brackets of ;-

Parametrize e,; by a complex scalar 4

—

ds- = hgpdf°d6°
= ——(d>-+ udz)(d= + pd-)
l — py
with
- = g + 16~ P = 1\ E'r’_tq:. *-."_;}
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e “Bulk™ data lives on the 3-manifolds \'; and .\';. Additional data lives
on S,.

e Bulk data = conformal 2-metric e, (6*. 6. v)

e Metric on Nz (N7) degenerate because Nz (N7) is null. so

— _:.__.'-Q-:_ a
- O dv terms
e Defimition:
abh — Bl v d‘i‘f
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e Data on Sq:
e pop = +/der 1,5 = area density on Sp.

e A=—In(—m -mz) n = - =tangent to generators.

_ ngp-V  Ar —ny -V A2
» — ~ = A =
ng-ms

e 0O :S; — Sp= diffeo defined by following generators S

Pirsa: 08120051 Page 27/35



THE POISSON BRACKETS

Brackets of ;-

Parametrize e,; by a complex scalar z

¥ - - T

as — .0 ag”

L

— —(d= + pdz)(d=z + ad-)
]. — [
with
- = g + it~ P = \ {'r'_tﬂ:. *-."_;f-
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e Data on Sp:
e po = +/der hi;; = area density on Sp.

e A\=—In(—n1 -nz) n = — = tangent to generators.

S T == BR-V oAy —By -V zBg
: ng -ms
e o :S; — Sp= diffeo defined by following generators Sy — So — Sz.
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1HE POISSON BRACKETS

Brackets of ;-

Parametrize e,; by a complex scalar x

—

ds- = |hgpdf°d6’
= ——(dz+ pd2)(d=z + fd=)
]. == _.f:'lili
with
-=0'+i0® p=/dethy
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Then

| 1
(u(1).@(2))e = 47G——3

PoV1iV2

2(6, — 6,) H(1.2)

| (Gdp—pdp) /(1—po

<[1 —palh[1 — ppls el

H(1.2) 1s a step function = 1 1f 2 follows 1 along the generator. and 0
otherwise.

- . -}:r
B o » B
g x\k“ P = 23
- ""'\-\,_\__L..-.‘- -;_\_HH. r -~
. L . o 1
L = .
-\ Yy \ F ’ .k - |
- . 5 ‘.-5;' r
% -,i/__.

e Only data on same generator have non-zero bracket. From causality
simce pomts on distinct generators are spacelike separated.

o Eirst line 1s bracket for Klem-Gordon scalar m Mmkowski space.

rrsx 020 Bracket covarant under change of # chart. page 3135



A LITTLE QUANTIZATION

e A polanzaton

o {p(1).u(2)}e = 0. Indeed u. po. © form a maximal commuting set of

— Can be used as configuration vanables.
e can try to quantize using wavefunctions Wu. po. ¢/ analytic mn u.
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e Quantizing a simple part of Poisson brackets:
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Let 4 = ArealSo| = |. |po|d 6

In order that

e —Pmc = dim Hxr

it must be an integer

‘:;;jﬂjigl .,\If‘}: }. — 87 GoH|

e

In “loop quantization™ of scalar A and density pg = ¢ "~*?) unitary which
adds SmrArimad (P, -) TO po.
Spectrum of A4 is therefore 8t Apimai. 7 > 0. mteger.

i

Set kK = 7= then . e—*Pi=ni has eigenvalues 2". - mtegers!
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A LITTLE QUANTIZATION

e A polanzation

o {u(1).pu(2)}e = 0. Indeed p. po. © form a maximal commuting set of

— Can be used as configuration vanables.
e can try to quantize using wavefunctions Wu. go. ¢/ analytic m pu.
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e Quantizing a simple part of Poisson brackets:
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-

Let 4 = ArealSo| = |. |pold 6

In order that

it must be an integer

{;lﬂjifﬁ .,\IQ: }. — 87GO|

e

In “loop quantization™ of scalar A and density py = ¢ ") unitary which
adds SmKA pimcd (p. -) O po.

Spectrum of A4 is therefore 8T Apima72. 7 > 0. mteger.

Set kK = 7= then . e ~*Fi=it has eigenvalues 2". - mtegers!
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