Title: Introduction to Cosmology

Date: Dec 09, 2008 02:00 PM

URL: http://pirsa.org/08120041

Abstract:

Pirsa: 08120041 Page 1/98

A Rear Window on the Universe

Early Cosmology

Itzam Nà, God of the Sky

VEHUS HEROLURY HOOK CANTH

Nut, Sky Goddess

Shu, Holder of the Sky

Pirsa: 0812004

Page 11/98

Large Scale Structure

★ Measures:

- the abundance of galaxy clusters
- their size, etc ...

★ <u>Tests</u>:

- the history of the Cosmic expansion
- the growth of matter, structure formation, clustering

Pirea: 08120041

Large Scale Structure

★ Probes:

- 2dFGRS

- Sloan Digital Sky

Survey

Type Ia Supernovae

Kepler

★ Measures:

 the redshift of the supernovae

★ Tests:

 the expansion of the Universe

★ Probes:

CTIO, CFHT, ESO, HST, VLT, Keck, UKIRT, WIYN, APO, ...

Type Ia Supernovae

★ Measures:

 the redshift of the supernovae

★ <u>Tests</u>:

 the expansion of the Universe

★ Probes:

CTIO, CFHT, ESO, HST, VLT, Keck, UKIRT, WIYN, APO, ...

Gravitational Lensing

★ Measures:

 matter density through its gravitational pull

★ Tests:

 the composition of the Universe

★ Probes:

- CFHT
- William Herschel telescope

Cosmic Microwave Background

★ Measures:

 the radiation emitted at the period of last scattering

★ Tests:

- the cosmic expansion history
- the composition of the Universe

★ Probes:

COBE, WMAP, Planck
balloons (BOOMERanG, MAXIMA, ...)
ground (Tenerife, South Pole, Saskatoon, ...

Pirsa: 08120041

The standard model of Cosmology

WMAP 2006 press release

Pires: 08120041

- ★ Observations show that the Universe is expanding,
- * and must have started with a Hot Big Bang

Pirsa: 08120041 Page 24/98

- ★ Observations show that the Universe is expanding,
- * and must have started with a Hot Big Bang.
- ★ Today, the Universe appears extremely homogeneous and isotropic on large scales.

Pirsa: 08120041 Page 25/98

- ★ The evolution of the early Universe is dominated by one or more fields,
- **★** whose quantum fluctuations seed the large scale structure of the current Universe

$$\zeta \sim \frac{\delta T}{T} \sim \frac{\delta \rho}{\rho}$$

spatial curvature perturbations

- ★ The evolution of the early Universe is dominated by one or more fields,
- ★ whose quantum fluctuations seed the large scale structure of the current Universe
- ★ Matter is then created at reheating when the energy of the driving field is transferred to the matter.

The standard model of Cosmology

- ★ As the Universe expands, the photons decouple from the plasma of hydrogen and helium: period of last scattering.
- Large scale structure starts forming and give birth to first galaxies
- ★ The current Universe accelerating and is composed of
 - 5% Matter
 - 25% Dark Matter
 - 70% Dark Energy

Pires - 081200/1

The standard model of Cosmology

WMAP 2006 press release

rsa: 08120041

- ★ The evolution of the early Universe is dominated by one or more fields,
- ★ whose quantum fluctuations seed the large scale structure of the current Universe

$$\zeta \sim \frac{\delta T}{T} \sim \frac{\delta \rho}{\rho}$$

spatial curvature perturbations

The standard model of Cosmology

- As the Universe expands, the photons decouple from the plasma of hydrogen and helium: period of last scattering.
- Large scale structure starts forming and give birth to first galaxies
- ★ The current Universe accelerating and is composed of
 - 5% Matter
 - 25% Dark Matter
 - 70% Dark Energy

Direa: 08120011

Pirsa: 08120041 Page 32/98

The standard model of Cosmology

- As the Universe expands, the photons decouple from the plasma of hydrogen and helium: period of last scattering.
- Large scale structure starts forming and give birth to first galaxies
- ★ The current Universe accelerating and is composed of
 - 5% Matter
 - 25% Dark Matter
 - 70% Dark Energy

Direa - 08120011

Pirsa: 08120041 Page 34/98

Cosmological Puzzles

Pirsa: 08120041 Page 35/98

1. What happened at the Big Bang?

- ★ What is the BB?
- ★ What created it?
- What are the implications for Planck scale physics?
- ★ Did time begin?
- ★ Is there anything before the BB?

quantum gravity, string theory

- Strong evidence that the primordial power spectrum is very close to
 - gaussian
 - scale invariant $n_S = 0.95 \pm 0.015$

Pirsa: 08120041 Page 37/98

- Strong evidence that the primordial power spectrum is very close to
 - gaussian
 - scale invariant $n_S = 0.95 \pm 0.015$
- ★ The most commonly "accepted" hypothesis is that the Universe underwent a period of "inflation" dominated by the potential energy of one or several scalar field(s) in an expanding Universe.

$$m_S - 1 \simeq rac{V'(\phi)}{V(\phi)}$$

- Strong evidence that the primordial power spectrum is very close to
 - gaussian
 - scale invariant $n_S = 0.95 \pm 0.015$
- ★ The most commonly "accepted" hypothesis is that the Universe underwent a period of "inflation" dominated by the potential energy of one or several scalar field(s) in an expanding Universe.
- ★ What is the inflaton scalar field?

Reheating

Inflation

Inflation from String Theory

String theory can provide Cosmology with explicit realizations of inflationary scenario:

Pirsa: 08120041 Page 40/98

Inflation from String Theory

- String theory can provide Cosmology with explicit realizations of inflationary scenario:
 - ST comes with many moduli fields that can play the role of the inflaton, eg. inflation from closed string moduli in a Calabi-Yau compatification

Pirsa: 08120041 Page 41/98

Inflation from String Theory

- String theory can provide Cosmology with explicit realizations of inflationary scenario:
 - ST comes with many moduli fields that can play the role of the inflaton, eg. inflation from closed string moduli in a Calabi-Yau compatification
 - ST implies the presence of branes, on which matter fields can be localized
 - **→**

D-brane inflation

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.
 - ★ D-branes are charged objects
 D-branes and anti D-branes attract each other
 - ★ When the branes are far away, the interaction is weak giving rise to a naturally slow-rolling potential
 - ★ When the branes are close, the system becomes unstable gives rise to a graceful exit of inflation and leading to the brane anti-brane annihilation.

- Strong evidence that the primordial power spectrum is very close to
 - gaussian
 - scale invariant $n_S = 0.95 \pm 0.015$
- ★ The most commonly "accepted" hypothesis is that the Universe underwent a period of "inflation" dominated by the potential energy of one or several scalar field(s) in an expanding Universe.

$$m_S - 1 \simeq rac{V'(\phi)}{V(\phi)}$$

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.
 - ★ D-branes are charged objects
 D-branes and anti D-branes attract each other
 - ★ When the branes are far away, the interaction is weak giving rise to a naturally slow-rolling potential
 - ★ When the branes are close, the system becomes unstable gives rise to a graceful exit of inflation and leading to the brane anti-brane annihilation.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

Pirsa: 08120041

DBI Inflation

- ★ An alternative is to consider a probe D3-brane evolving down the throat of a Calabi-Yau (warped throat)
- ★ The brane position plays the role of the inflaton and is driven by the DBI action

$$\mathcal{L}_{\text{DBI}} = f(\phi)^{-1} \left[\det \left\{ -\eta_{ab} - f(\phi) \partial_a \phi \partial_b \phi \right\}^{1/2} - 1 \right]$$

***** The brane can be evolving very fast down the throat, $\phi \lesssim 1$ and still produce a nearly scale invariant power spectrum

$$\dot{H} \sim \frac{\phi}{\sqrt{1 - f(\phi)\dot{\phi}^2}}$$

★ Also provides a graceful exit of inflation.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

DBI Inflation

- ★ An alternative is to consider a probe D3-brane evolving down the throat of a Calabi-Yau (warped throat)
- ★ The brane position plays the role of the inflaton and is driven by the DBI action

$$\mathcal{L}_{\text{DBI}} = f(\phi)^{-1} \left[\det \left\{ -\eta_{ab} - f(\phi) \partial_a \phi \partial_b \phi \right\}^{1/2} - 1 \right]$$

* The brane can be evolving very fast down the throat, $\phi \lesssim 1$ and still produce a nearly scale invariant power spectrum

$$\dot{H} \sim \frac{\phi}{\sqrt{1 - f(\phi)\dot{\phi}^2}}$$

* Also provides a graceful exit of inflation.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

- ★ At low energies, the dynamics of branes can be described by scalar fields representing the positions of the branes
- ★ Typically these scalars are very light (moduli)
 - can be used as inflaton candidates.

Pirsa: 08120041

DBI Inflation

- ★ An alternative is to consider a probe D3-brane evolving down the throat of a Calabi-Yau (warped throat)
- ★ The brane position plays the role of the inflaton and is driven by the DBI action

$$\mathcal{L}_{\text{DBI}} = f(\phi)^{-1} \left[\det \left\{ -\eta_{ab} - f(\phi) \partial_a \phi \partial_b \phi \right\}^{1/2} - 1 \right]$$

* The brane can be evolving very fast down the throat, $\phi \lesssim 1$ and still produce a nearly scale invariant power spectrum

$$\dot{H} \sim \frac{\phi}{\sqrt{1 - f(\phi)\dot{\phi}^2}}$$

★ Also provides a graceful exit of inflation.

Andrew Tolley
Mark Wyman
Sarah Shandera

Alternatives to inflation

★ Pre-Big-Bang scenario M. Gasperini G. Veneziano

production of a scale invariant power spectrum during a contracting phase before the Big-Bang, with fast-roll,

singularity at strong coupling (large g_S=e^φ)

 $\omega \gg 1$

★ Ekpyrotic scenario

singularity at weak
 coupling (α' important)

J. Khoury, B. Ovrut, P. Steinhardt, N. Turok

Evgeny Buchbinder
Justin Khoury
Federico Piazza
Andrew Tolley
Neil Turok

★ Hagedorn phase

 expanding phase in Einstein frame, evolution driven by string gas.

Signatures of Inflation and alternative scenarios

Departure from scale invariance

$$\left\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2) \right\rangle \sim k_1^{n_S-4} \, \delta^{(3)} \left(\vec{k}_1 + \vec{k}_2 \right)$$

power spectrum

$$P(k) \sim k^{n_S - 1}$$

amount of power on each scale

observed value: $n_S = 0.95 \pm 0.015$

for inflation
$$n_S - 1 \simeq \frac{V'(\phi)}{V(\phi)^{63/98}}$$

Alternatives to inflation

★ Pre-Big-Bang scenario M. Gasperini G. Veneziano

production of a scale invariant power spectrum during a contracting phase before the Big-Bang, with fast-roll,

singularity at strong coupling (large g_S=e^φ)

 $\omega \gg 1$

★ Ekpyrotic scenario

- singularity at weak coupling (α' important)

J. Khoury, B. Ovrut, P. Steinhardt, N. Turok

Evgeny Buchbinder
Justin Khoury
Federico Piazza
Andrew Tolley
Neil Turok

★ Hagedorn phase

 expanding phase in Einstein frame, evolution driven by string gas.

Signatures of Inflation and alternative scenarios

1. Departure from scale invariance

$$\left\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2) \right\rangle \sim k_1^{n_S-4} \, \delta^{(3)} \left(\vec{k}_1 + \vec{k}_2 \right)$$

power spectrum

$$P(k) \sim k^{n_S - 1}$$

amount of power on each scale

observed value: $n_S = 0.95 \pm 0.015$

for inflation
$$n_S - 1 \simeq \frac{V'(\phi)}{V(\phi)^{65/98}}$$

Signatures

- 1. Departure from scale invariance
- 2. Tensor to scalar ratio r (Gravity waves)
 - Inflation typically produces small r, but potentially observable (typically red)
 - Ekpyrotic produces no tensor
 - Hagedorn phase produces small r (typically blue)

Pirsa: 08120041 Page 66/98

Signatures of Inflation and alternative scenarios

1. Departure from scale invariance

$$\left\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2) \right\rangle \sim k_1^{n_S-4} \, \delta^{(3)} \left(\vec{k}_1 + \vec{k}_2 \right)$$

power spectrum

$$P(k) \sim k^{n_S - 1}$$

amount of power on each scale

observed value: $n_S = 0.95 \pm 0.015$

for inflation
$$n_S - 1 \simeq \frac{V'(\phi)}{V(\phi)^{67/98}}$$

Signatures

- 1. Departure from scale invariance
- 2. Tensor to scalar ratio r (Gravity waves)
 - Inflation typically produces small r, but potentially observable (typically red)
 - Ekpyrotic produces no tensor
 - Hagedorn phase produces small r (typically blue)

Pirsa: 08120041 Page 68/98

Signatures

- 1. Departure from scale invariance
- 2. Tensor to scalar ratio (Gravity waves)
- 3. Departure from Gaussianity

Pirsa: 08120041 Page 69/98

Non-Gaussianity

★ Measuring the 3-pt function gives some insight on the departure from gaussianity.

$$f_{NL} \sim \frac{\langle \zeta^3 \rangle}{\langle \zeta^2 \rangle^2}$$

★ In momentum space, the 3-pt function depends on 3 vectors that add up to zero → triangles. $\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3) \rangle$

local
(squeezed)

Non-Gaussianity

Niayesh Afshord Justin Khoury Federico Piazza Andrew Tolley Neil Turok

★ If nG generated at horizon crossing

$$k_1 \sim k_2 \sim k_3 \sim aH$$

- → dominant contribution in equilateral triangle Case for single field DBI inflation
- ★ If nG generated at superhorizon scale spatial gradients are negligible
 - → local shape in real space large contribution in the local (squeezed) triangle
 Case for multifield scenarios (eg. curvaton, ekpyrosis)
- ★ However, initial conditions can give large contributions in other shapes as well (eg. flat triangles for excited states)!
- ★ Scale dependence of $f_{NL}(k_1,k_2,k_3)$ is also important observationaly and in distinguishing models!

Non-Gaussianity

★ Measuring the 3-pt function gives some insight on the departure from gaussianity.

$$f_{NL} \sim \frac{\langle \zeta^3 \rangle}{\langle \zeta^2 \rangle^2}$$

★ In momentum space, the 3-pt function depends on 3 vectors that add up to zero → triangles. $\left\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3) \right\rangle$

Niayesh Afshord Justin Khoury Federico Piazza Andrew Tolley Neil Turok

★ If nG generated at horizon crossing

$$k_1 \sim k_2 \sim k_3 \sim aH$$

- → dominant contribution in equilateral triangle Case for single field DBI inflation
- ★ If nG generated at superhorizon scale spatial gradients are negligible
 - → local shape in real space large contribution in the local (squeezed) triangle
 Case for multifield scenarios (eg. curvaton, ekpyrosis)
- ★ However, initial conditions can give large contributions in other shapes as well (eg. flat triangles for excited states)!
- ★ Scale dependence of $f_{NL}(k_1,k_2,k_3)$ is also important observationaly and in distinguishing models!

★ Measuring the 3-pt function gives some insight on the departure from gaussianity.

$$f_{NL} \sim \frac{\langle \zeta^3 \rangle}{\langle \zeta^2 \rangle^2}$$

★ In momentum space, the 3-pt function depends on 3 vectors that add up to zero → triangles. $\left\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3) \right\rangle$

Niayesh Afshord Justin Khoury Federico Piazza Andrew Tolley Neil Turok

★ If nG generated at horizon crossing

$$k_1 \sim k_2 \sim k_3 \sim aH$$

- → dominant contribution in equilateral triangle Case for single field DBI inflation
- ★ If nG generated at superhorizon scale spatial gradients are negligible
 - → local shape in real space large contribution in the local (squeezed) triangle Case for multifield scenarios (eg. curvaton, ekpyrosis)
- ★ However, initial conditions can give large contributions in other shapes as well (eg. flat triangles for excited states)!
- ★ Scale dependence of $f_{NL}(k_1,k_2,k_3)$ is also important observationaly and in distinguishing models!

★ Measuring the 3-pt function gives some insight on the departure from gaussianity.

$$f_{NL} \sim \frac{\langle \zeta^3 \rangle}{\langle \zeta^2 \rangle^2}$$

★ In momentum space, the 3-pt function depends on 3 vectors that add up to zero → triangles. $\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3) \rangle$

local

Niayesh Afshord Justin Khoury Federico Piazza Andrew Tolley Neil Turok

★ If nG generated at horizon crossing

$$k_1 \sim k_2 \sim k_3 \sim aH$$

- → dominant contribution in equilateral triangle Case for single field DBI inflation
- ★ If nG generated at superhorizon scale spatial gradients are negligible
 - → local shape in real space large contribution in the local (squeezed) triangle
 Case for multifield scenarios (eg. curvaton, ekpyrosis)
- ★ However, initial conditions can give large contributions in other shapes as well (eg. flat triangles for excited states)!
- ★ Scale dependence of $f_{NL}(k_1,k_2,k_3)$ is also important observationaly and in distinguishing models!

Signatures

- 1. Departure from scale invariance
- Tensor to scalar ratio (Gravity waves)
- Departure from Gaussianity
- 4. Cosmic Strings

Pirsa: 08120041 Page 78/98

Brane inflation: New source for cosmic strings

- Annihilation of inflating branes can produce strings (actual 1-D objects or "wrapped" higher-D objects)
- Predicts $10^{-11} < G\mu < \text{few} \times 10^{-7}$
- caveat: possible stability problems
- Not ruled out; potentially detectable

A possible observable: source of CMB B-modes!

Mark Wyman

Other Cosmological Puzzles

- ★ What happened at the Big Bang?
- What generated the large scale structure?
- * What is 95% of the current Universe made off?

Pirsa: 08120041 Page 81/98

Pirsa: 08120041

also supported by:

- CMB data
- Distance-luminosity for supernovae type 1A
- LSS
- Abundance of light elements (BBN)

Pirsa: 08120041 Page 83/98

also supported by:

- CMB data
- Distance-luminosity for supernovae type 1A
- LSS
- Abundance of light elements (BBN)

- ★ Is it physics beyond the Standard Model of Particle Physics?
- **★** Or physics beyond General Relativity?

Pirsa: 08120041 Page 84/98

also supported by:

- CMB data
- Distance-luminosity for supernovae type 1A
- LSS
- Abundance of light elements (BBN)

★ Is it physics beyond the Standard Model of Particle Physics?

- Neutrinos, but would not contribute enough
- LSP
- Axions
- Wimpzillas
- Solitons
- Self-interacting dark matter
- Kaluza-Klein dark matter, etc.

also supported by:

- CMB data
- Distance-luminosity for supernovae type 1A
- LSS
- Abundance of light elements (BBN)

- ★ Is it physics beyond the Standard Model of Particle Physics?
- ★ Or physics beyond General Relativity? M. Milgrom, J. Bekenstein
 - MOdified Newtonian Dynamics (MOND)
 - Tensor Vector Scalar theory (TeVeS)
 - Bigravity (Eddington-Born-Infeld gravity)

John Moffat
Fabian Schmidt
Constantinos Skordis

Pirsa: 08120041

- "Dynamical solutions",
 The acceleration is driven by another degree of freedom (eg. scalar field), eg.
 - quintessence tackles the coincidence problem
 (why is dark energy starting to dominate now)
 - f(R) gravity
- often requires a hidden fine-tuning
- strong constraints from fifth force experiments

S. Rasanen, E. Barausse, S. Matarrese, A. Riotto E. Kolb, S. Matarrese, A. Notari, A. Riot

- "Dynamical solutions"
- 2. Backreaction
 The acceleration is driven by the inhomogeneities of the Universe
 - natural explanation to the coincidence problem

- "Dynamical solutions",
 The acceleration is driven by another degree of freedom (eg. scalar field), eg.
 - quintessence tackles the coincidence problem
 (why is dark energy starting to dominate now)
 - f(R) gravity
- often requires a hidden fine-tuning
- strong constraints from fifth force experiments

S. Rasanen, E. Barausse, S. Matarrese, A. Riotto E. Kolb, S. Matarrese, A. Notari, A. Riot

- "Dynamical solutions"
- 2. Backreaction
 The acceleration is driven by the inhomogeneities of the Universe
 - natural explanation to the coincidence problem

- "Dynamical solutions"
- 2. Backreaction
- Vacuum Energy
- → face with the Cosmological Constant Problem (why is the vacuum energy 10¹²⁰ times smaller than expected from particle physics)
 - Landscape: The fundamental theory as a very large number of possible vacua (~ 10⁵⁰⁰) with with different vacuum energy.
 - We live in a vacuum with tiny vacuum energy
 - relies on the anthropic principle

Dark Energy

- "Dynamical solutions"
- Backreaction
- Vacuum Energy

Niayesh Afshordi Ghazal Geshnizjani Justin Khoury Andrew Tolley Mark Wyman Tom Giblin CdR

- → face with the Cosmological Constant Problem (why is the vacuum energy 10¹²⁰ times smaller than expected from particle physics)
 - Landscape
 - Degravitation: The vacuum energy really is that big, but gravitate very weakly on the geometry

gravity should be modified in the Infrared, theory of massive gravity

Pirsa: 08120041 Page 93/98

No Signal VGA-1

Pirsa: 08120041 Page 95/98

No Signal VGA-1

Pirsa: 08120041 Page 96/98

No Signal VGA-1

Pirsa: 08120041 Page 97/98

No Signal

VGA-1

Pirsa: 08120041 Page 98/98