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Abstract: Quantum operations are known to be the most general state transformations that can be applied to parts of compound systems compatibly
with the probabilistic structure of quantum mechanics. What about the most general transformations of quantum operations? It turns out that any
such general transformation can be realized by a quantum network with an open slot in which the input operation can be inserted, thus programming
the resulting circuit. Moreover, one can recursively iterate this construction, generating an infinite hierarchy of admissible transformations and
proving their realization within the circuit model of quantum mechanics. These results provide the basis of a new method to optimize quantum
networks for information processing tasks, including e.g. gate estimation, discrimination, programming, and cloning. As examples of application, |
will present here the optimal quantum networks for estimation of group transformations, for the alignment of reference frames with multiple
communication rounds, and for universal cloning of unitary transformations.
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QUANTUM OPERATIONS (QO’S)

Most general transformations a quantum state can undergo:
linear, completely positive, trace non-increasing maps

p < S(j{én) — g(p) € S(j{ﬂuﬁ)

Linear: mixture of input states is mapped into mixture of output states

E (Zplpt) = Zpig(Pi)

Completely positive: probabilities must be positive
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Most general transformations a quantum state can undergo:
linear, completely positive, trace non-increasing maps

p € S(Hin) — E(p) € S(Hout)
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QUANTUM OPERATIONS (QO’S)

Most general transformations a quantum state can undergo:
linear, completely positive, trace non-increasing maps

p € S(Hin) — E(p) € S(Hout)

Linear: mixture of input states is mapped into mixture of output states
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QUANTUM OPERATIONS (QO’S)

Most general transformations a quantum state can undergo:
linear, completely positive, trace non-increasing maps

p € S(Hin) — E(p) € S(Hout)

Linear: mixture of input states is mapped into mixture of output states

& (ZP:‘P:‘) = Zpig(ﬂi)

Completely positive: probabilities must be positive

p(i|lp.€) >0

Trace non-increasing: probabilities must be upper bounded by 1
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preserving maps = deterministic QOs = quantum channels



REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

E(P) = Trenv[U(p ® Oenv)UT (Iout @ Pony)]

—1 H T

s _0<P_ <I (Stinespring, Krauss, Ozawa)
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REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

g(P) i Trenv [U(P X Je-rz't-*)L'rT(Iofut & Pent*)]

—1 H T

s _0<P_ <1 (Stinespring, Krauss, Ozawa)
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REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

g(p) = Trenv [U(P X Je-rz't-*){/ﬂ([ﬂﬂf & PE”'“)]

—i1H T

s _0<P_ <1 (Stinespring, Krauss, Ozawa)
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REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

g(p) = T¥env [U(P & Jen'v)[/ﬁ(lﬂﬂt b2 PE"“‘)]

—itH T

s _0<P_ <I (Stinespring, Krauss, Ozawa)
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REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

g(p) =— Trenv [U(p w&: Jen.-u)[/r-i.(fuut X Pe'rl-'l‘)]

— 5

s  0< P . <1 (Stinespring, Krauss, Ozawa)
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Tenv
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REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

g(ﬂ) == Trenv [U(P & Jerur)[/ﬁ(fﬂut X E'ﬂ-'l_‘)]

—s B r

e _ 0<P._ . <I (Stinespring, Krauss, Ozawa)

i -

P

Tenv
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REALIZATION: OPEN SYSTEM EVOLUTIONS

QO’s can be interpreted as evolutions of open systems:

g(ﬂ) o Trenv [U(P X Jerur)cﬁ(fnut & Pf:n.'v)]

—a By

e 0< P <1 (Stinespring, Krauss, Ozawa)

i -

P

T env Peny
Trace decreasing;: corresponds to a particular outcome of the
measurement on the environment
Trace preserving;: sum over all outcomes

the environment is discarded
irsa: 08120039 — Page 16/126
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

8 € Qo(g{iﬂ? j{ﬂ‘ut) i S(g) € QO(}C;nTG{Lut)
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

* QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

A= QO(:}Cim :}Ca*ut) e S(S) = QO({}CEH,J{’GM)
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

£ e QO o FE j{uut = S E QO rn.‘r 'u;t)
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

* QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

€ € Qo(g{iﬂr ‘r}cﬂ‘ut) e S(g) € Qo(g{;n*g{:}ut)
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap
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TRANSFORMATIONS OF QO’S
Two questions:

® QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

8 = QO :}{zn-; :H:ﬂut i S E QO m." ut)
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
it must map QOs into QOs even when acting on parts of larger
quantum devices
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Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
it must map QOs into QOs even when acting on parts of larger
quantum devices
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P;

p(ilp,€,5) <1

An admissible transformation must be normalization non-increasing:
it must map channels into QOs.

Deterministic transformation:  all channels are mapped into channels

Probabilistic transformation: some channel is mapped into a
trace-decreasing QO
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REALIZATION: QUANTUM NETWORKS

Theorem:

any admissible transformation can be realized by a quantum circuit
consisting in

* a pre-processing channel [from the new input

to the old input + ancilla]
* a post-processing channel [from the old output + ancilla

to the new output + ancilla]
* a measurement on the ancilla

Deterministic transformations: the ancilla is discarded

=g B

Page 34/126

"E& & M D’ Ariano, and P Perinotii, Europhys. Lett. 83, 30004 (2008)



HIERARCHY OF ADMISSIBLE TRANSFORMATIONS

Recursive definition of admissible transformations:

an admissible N-map transforms (N-1)-maps into QOs, and must be
* linear

ecompletely positive-preserving

* normalization non-increasing

A deterministic N-map maps all deterministic (N-1)-maps
Pirm{ihﬂm:ls. Page 35/126



REALIZATION: QUANTUM NETWORKS

Theorem:
any admissible transformation can be realized by a quantum circuit
consisting in
* a pre-processing channel [from the new input
to the old input + ancilla]
* a post-processing channel [from the old output + ancilla

to the new output + ancilla]
* a measurement on the ancilla

Deterministic transformations: the ancilla is discarded

=g B
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"GEG M D’ Ariano, and P Perinotti, Europhys. Lett. 83, 30004 (2008)



P;

p(ilp,€,5) <1

An admissible transformation must be normalization non-increasing:
it must map channels into QOs.

Deterministic transformation:  all channels are mapped into channels

Probabilistic transformation: some channel is mapped into a
trace-decreasing QO
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:
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TRANSFORMATIONS OF QO’S
Two questions:

® QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

€ € QO :}{zn? g{out e S E QO tn" 'u,t)
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

* QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

€ € QO(Hin, Hout) — S(E) € QO(H;n*j{:}ut)
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TRANSFORMATIONS OF QO’S
Two questions:

* QOs are the most general state transformations,
which are the most general transformations of QOs?

* QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap
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TRANSFORMATIONS OF QO’S
Two questions:

® QOs are the most general state transformations,
which are the most general transformations of QOs?

® QOs can be realized as open system evolutions,
what about their transformations?

A transformation of QOs must be a linear supermap

8 € QO :H-m :H:uut P S E QO *r;n." ut)
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:
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Diagrammatic representation of a supermap:
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
it must map QOs into QOs even when acting on parts of larger
quantum devices
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
it must map QOs into QOs even when acting on parts of larger
quantum devices
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ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
it must map QOs into QOs even when acting on parts of larger
quantum devices

s

o

Pirsa: 08120039 Page 47/126




ADMISSIBLE TRANSFORMATIONS

Diagrammatic representation of a supermap:

An admissible transformation must be completely positive-preserving:
it must map QOs into QOs even when acting on parts of larger
quantum devices

| 8
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R

p(ilp,€,5) <1

An admissible transformation must be normalization non-increasing:
it must map channels into QOs.

Deterministic transformation:  all channels are mapped into channels

Probabilistic transformation: some channel is mapped into a
trace-decreasing QO
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REALIZATION: QUANTUM NETWORKS

Theorem:
any admissible transformation can be realized by a quantum circuit
consisting in
* a pre-processing channel [from the new input
to the old input + ancilla]
* a post-processing channel [from the old output + ancilla

to the new output + ancilla]
* a measurement on the ancilla

Deterministic transformations: the ancilla is discarded

Ty
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HIERARCHY OF ADMISSIBLE TRANSFORMATIONS

Recursive definition of admissible transformations:

an admissible N-map transforms (N-1)-maps into QOs, and must be
¢ linear

ecompletely positive-preserving

* normalization non-increasing

A deterministic N-map maps all deterministic (N-1)-maps
Pirm{ihanm}S. Page 51/126



CIRCUITAL REALIZATION OF ADMISSIBLE N-MAPS

Theorem:

any admissible N-map can be realized by a sequential network of
quantum channels with memory, followed by a measurement on an
ancilla.

The outcome of the application of an N-map to an (N-1)-map is the
QO resulting from the interlinking of the corresponding networks.

Deterministic N-maps: at the end of the sequence,
the ancilla is discarded
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CIRCUITAL REALIZATION OF ADMISSIBLE N-MAPS

Theorem:

any admissible N-map can be realized by a sequential network of
quantum channels with memory, followed by a measurement on an
ancilla.

The outcome of the application of an N-map to an (N-1)-map is the
QO resulting from the interlinking of the corresponding networks.

Deterministic N-maps: at the end of the sequence,
the ancilla is discarded




' QUANTUM TESTERS

Interesting case: collections of N-maps that transform (N-1)-maps into
probabilities:

f"'u A
pt-: ; )(8{\' 1)) Zp‘!:l

A collection of this kind must satisfy
Z ‘1;(N) =7 TW) deterministic N — map

Realization theorem for testers:

. Pirsa: 08120039 Page 55/126



SUMMARY OF PART I

¢ In Quantum Mechanics the only admissible N-maps are the obvious
ones: sequential networks of QOs

[open question: is this property generic for any probabilistic
theory?]

® For quantum N-maps the transformation and the transformed
object are of the same kind.

e All that matters is the interlinking of quantum (sequential) networks

Aim of the next part: providing an efficient method for treating
quantum networks and their interlinking

irsa: 08120039 Page 56/126



CHOI REPRESENTATION

Convenient representation of linear maps: Choi-Jamiolokwski operator
(in infinite dimensions Belavkin-Staszewski)

d
Q) =Y |n)|n)

n—1_1

E = (2 I)(Q)

€ € Lin(Lin(¥;,), Lin(Hout)) < E € Lin(Hour @ Hin)

Completely positive map <=  positive Choi operator
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' CHOI REPRESENTATION

Convenient representation of linear maps: Choi-Jamiolokwski operator
(in infinite dimensions Belavkin-Staszewski)

d

E=(ERDNQ) Q)= |n)n)

n—1_1

£ € Lin(Lin(Hin), Lin(How)) < E € Lin(Hou @ Hin)
|

Completely positive map <=  positive Choi operator

Pirsa: 08120039 Page 58/126




CHOI REPRESENTATION

Convenient representation of linear maps: Choi-Jamiolokwski operator
(in infinite dimensions Belavkin-Staszewski)

d
E=E2D®Q) Q)= |n)n)

€ € Lin(Lin(H;,), Lin(Hout)) <= FE € Lin(Houwt @ Hin)

Completely positive map <= positive Choi operator
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 CHOI REPRESENTATION

Convenient representation of linear maps: Choi-Jamiolokwski operator
" (in infinite dimensions Belavkin-Staszewski)

d
=€) [|Q)= In)lm

«-q

8 € Lin(Lin(H;,), Lin(H,ut)) <= FE € Lin(How @ Hin)

Completely positive map <=  positive Choi operator
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LINK PRODUCT

Convenient representation of composition of linear maps: link product
Fo& < Fep * Epa := Trp[(Fop @ L) (I @ Eyy)]
= Trps[(Ferr ® Epa)(le ® Qo ® 1))

e By — . > F, up to permutation of Hilbert spaces
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LINK PRODUCT

Convenient representation of composition of linear maps: link product
Fofé e P — Tl'b[(Fcb & Ia)(lc X Et:; ]
= Trop[(Fety @ Epa)(Ie @ Qorp @ I)]

s o = F; > F; up to permutation of Hilbert spaces
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LINK PRODUCT

Convenient representation of composition of linear maps: link product
Fo& & Fep * Epg := Trp[(Fop ®@ L) (I @ Ep)]
= Trb’b[(F:::b’ & Ebu)(fr': ® Qprp @ Iﬂ)]

._C
F
b
FE 2
e By — B F, up to permutation of Hilbert spaces
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LINK PRODUCT

: Convenient representation of composition of linear maps: link product
Fof < Fo* Epy :=Top[(Fop @ L) (1. @ E)]

= Tryp[(Ferr @ Epa)(Ie @ Qs @ I,)]
C

bf

b

a

s >l — Bjg > P up to permutation of Hilbert spaces
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KNOWN FORMULAS IN TERMS OF LINK PRODUCT

® Tensor product of states:

Pa @ Oph = Pa * Op

e Born statistical formula:
TelpP| —po > P,

® Transformation of states:

g(p) = i B
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KNOWN FORMULAS IN TERMS OF LINK PRODUCT

* Tensor product of states:

Pa X Op = Pa * Op

e Born statistical formula:
TelpP| = po = F,

® Transformation of states:

g(p) = Ecmt*in * Pin

‘States and transformations are treated on an equal footing.
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KNOWN FORMULAS IN TERMS OF LINK PRODUCT

® Tensor product of states:

Pa & Ob = Pa * Op

e Born statistical formula:

Tr[pP] = pa * Py

Is this a state
or a transformation?

e Transformation of states:

g(p) = Eﬂut.in * Pin

States and transformations are treated on an equal footing.
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CHOI OPERATOR OF A QUANTUM NETWORK

|
|
I We are interested in sequential networks of quantum operations:

SWN) —Ey*xE;%---*xExn_o*x Ex_q

L Pirsa; 08120039 Page 68/126
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CHOI OPERATOR OF A QUANTUM NETWORK

We are interested in sequential networks of quantum operations:
SN) — EyxEy*---*Enx_o*x Ex_1

. Pirsa: 08120039 Page 69/126



CHOI OPERATOR OF A QUANTUM NETWORK

We are interested in sequential networks of quantum operations:
SN) — EygxEy*---*xEnx_o*x Ex_1

T(N+1) =po*xCp *---xCn_1 * Py

Born rule for probabilities: == S(N) x T(N+1)

' In any possible experiment, the probabilities depend only on the Choi
dpéf%n and not on the internal structure of the network. ey



QUANTUM COMBS

For many purposes, the complete specification of all QOs in a network
is a superfluous information: it is sufficient to give the Choi operator.

Quantum N-comb = equivalence class of networks of N QOs that have
the same external systems and the same Choi
operator

Diagrammatic representation of N-combs:

Choi operator: IN—1
SW) € Lin H; SM >0

Pirsa: 08120039 J= 0 Page 71/126



DETERMINISTIC AND PROBABILISTIC COMBS

e Deterministic N-combs = networks of N channels with memory
= deterministic N-maps

Recursive normalization of deterministic combs:

Tr?f\*’—l[sw)] =Dy 2® SN-1)

or else, Ion_—1 * SV — Ion_o * g,

* Probabilistic N-combs = networks of N QOs with memory
= probabilistic N-maps

An operator S Y] ca probabilistic N-comb is there exists a
deterministic N-comb 7V) such that S'V) < T®)

G Gutoski and ] Watrous, STOC 2007, 565
GC, G M D’ Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)
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QUANTUM TESTERS

Quantum tester = quantum network beginning with a state preparation
and ending with a measurement = collection of positive operators with
suitable normalization.

B >0 Yz

Page 73/126

' Borp,rule for quantum networks:  p; = Tr[S (N)Ti(N)]
!



DECOMPOSITION OF QUANTUM TESTERS

Theorem

Any tester can be split into two parts
® a deterministic map transforming quantum networks into states
® a quantum measurement

in the following way:

w = "TES| ="K {I(S) F
2N —1

T(S)=(T):S(TzesS| QR H;
j=0

{P,;} = quantum measurement (for states)

Operational distance between two quantum networks:

dop (S0, S1) = sup [/ (T)(So — 51)v/(T)|

(T)

Pirsa: 08120039 Page 74/126
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APPLICATION I: OPTIMAL GATE ESTIMATION

Problem: a black box performs a transformation belonging to a

given symmetry group.
Suppose we have N uses of it at disposal:
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Problem: a black box performs a transformation belonging to a

given symmetry group.
Suppose we have N uses of it at disposal:
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! APPLICATION I: OPTIMAL GATE ESTIMATION

Problem: a black box performs a transformation belonging to a

given symmetry group.
Suppose we have N uses of it at disposal:

s o oib o ole 3

Which is the best way to estimate g?
that is, Which is the best way to connect the boxes?
and Which is the ultimate precision we can reach?

Examples: quantum interferometry [U(1)],
estimation of rotations [SO(3)]
full gate estimation [SU(d)]

. Pirsa: 08120039 Page 77/126



Parallel architectures:

In this case the optimal strategy (optimal input state + optimal
measurement) is known:

Phase estimation: Buzek, Derka, Massar, Phys. Rev. Lett. 82, 2207 (1999)

Estimation of rotations: GC, G M D’Ariano, P Perinotti, and M F Sacchi,
Phys. Rev. Lett 93, 180503 (2004)

Gereral case: GC, G M D’ Ariano, and M F Sacchi, Phys. Rev. A 72, 043448
(P27°005)



l Parallel architectures:

. 3
-
-

In this case the optimal strategy (optimal input state + optimal
measurement) is known:
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Phase estimation: Buzek, Derka, Massar, Phys. Rev. Lett. 82, 2207 (1999)
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' Sequential architectures:

No known solution in this case.

- Hybrid architectures:
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|

|
' Sequential architectures:

No known solution in this case.

Hybrid architectures:

i Example of optimization over all architectures:
qﬁglal network for phase estimation [van Dam, D’Ariano, Ekert,
Macchiavello, Mosca, Phys. Rev. Lett. 98, ogoso1 (2007)]
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OPTIMAL TESTERS

Choi operator of the measured network: S, = U 3 W(U . | QN

Tester of the measuring network: 7, = (Ug & I)gNTO(Ug ® I)T®N

Normalization: (1) = /dﬁ T  Kn.en*— 8
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OPTIMALITY PROOF FOR PARALLEL STRATEGIES

Decomposition of the tester: measurement on the quantum state

I =

T(S,)

g
Since [(T), (U, ® [)'fE:NI
the state is of the form pg = (Ugy @ I)@N po (U, ® I)T®N

= (T)=S, {T)
==

But this is the form the output states in a parallel architecture.

Conclusion: for any group G, the parallel architectures achieve the
optimum among all possible architectures
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QUANTUM GYROSCOPES

Spin  particle, rotation ¢ € SO(3) g =(n.¢)
State change: U, = e"¥™7 = cos(yp/2) +isin(p/2)n - o

encodes a spatial direction: ,

A e HEY  |A) =USY|A)

N qubits:

encode a Cartesian frame:
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Spin % particle, rotation g € SO(3) g=(m, )

State change: U, = %™ = cos(p/2) +isin(p/2)n-o

A

encodes a spatial direction:

A) e H®Y  |Ag) =UPN|A)

N qubits:
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QUANTUM GYROSCOPES

Spin  particle, rotation ¢ €S0(3) g =(n.¢)
State change: U, = e'¥™7 = cos(¢/2) +isin(p/2)n-o

encodes a spatial direction:

—

N qubits: |4) e H®Y  |4,) = USN|A)

encode a Cartesian frame:
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QUANTUM GYROSCOPES

Spin % particle, rotation g € SO(3) g = (m,¢)
State change: U, = "™ = cos(p/2) +isin(¢/2)n - o

encodes a spatial direction:

—

N qubits: |4) e H®Y  |4,) =U2Y|A)

encode a Cartesian frame:
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ALIGNING AXES WITH QUANTUM GYROSCOPES

Suppose Alice and Bob have different Cartesian frames (different axes):
a state thatis |A) for AliceisU/,|A) for Bob.

However, using quantum communication they can try to establish a
shared reference frame:

Problem: find the optimal quantum state and the optimal estimation
strategy for aligning Cartesian frames

Pirsa: 08120039
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ULTIMATE PRECISION LIMITS FOR N PARTICLES

e For a quantum gyroscope made of N identical spin 1/2 particles:

272
N2

()~ Y A6? =3762 =

=92
GC, G M D’ Ariano, P Perinotti, and M F Sacchi, Phys. Rev. Lett 93, 180503 (2004)

However, this result is the optimal one
if we assume that Alice sends all particles in a single shot.

In other words, this result is about protocols with a single-round of
forward quantum communication.

What about multi-round protocols?
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MULTI-ROUND ALIGNMENT PROTOCOLS

* For a quantum gyroscope made of N identical spin 1/2 particles:

\dice

Allow

e unlimited amount of classical communication

* k rounds of quantum communication, in which batches of spin 1/2
particles are sent.

Then find the best way of estimating the mismatch of alignment.
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MULTI-ROUND ALIGNMENT PROTOCOLS

® For a quantum gyroscope made of N identical spin 1/2 particles:

\dice

Allow

¢ unlimited amount of classical communication

* k rounds of quantum communication, in which batches of spin 1/2
particles are sent.
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QUANTUM COMBS FORMULATION

Alice’s moves, in her description, are given by comb S
In Bob’s description:

— (I7®NA—B 5 [[*@NB—a g ITANaA—-B o [7T*@NB—A
Sq = (U, 2 U, 2 Ic)S(UJ R U R Ic)

Bob’s estimation strategy: tester
Tﬁrsmzo(a{f?”*‘—*ﬂ R U“;.@NB—A ® IC) To (UQ@‘N;.—B R U;‘@NB@E’&S’@ Ic



OPTIMALITY PROOF FOR ONE-WAY STRATEGIES

Decomposition of the tester: measurement on the quantum state

b =

1
T(Sg) =(T)2S,4 (T)
Since [(T). U_{;ENA_'B X U;:E'NB_“* ®Ic] =0
the state is of the form
pg = (U2 QU;®V2~2 @ Ic) po (UPV*~2 @ UV ~* @ Ig)!
Conclusions:
e asingle round with Niot = Na_.p + Np_.a
transmitted particles is enough.

e classical communication is useless

~sgvious generalization to arbitrary groups R



CLONING OF QUANTUM TRANSFORMATIONS

What does it mean to clone a transformation?

Use the corresponding black box only once,
to simulate two independent uses of it on a bipartite system.

Perfect cloning:
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CLONING OF QUANTUM TRANSFORMATIONS

What does it mean to clone a transformation?

Use the corresponding black box only once,
to simulate two independent uses of it on a bipartite system.

Perfect cloning:

—
—a—

- Two independent,
uses




OPTIMAL UNIVERSAL GATE CLONING

Input Output

systems systems 4m7
~

Ancillary _m7

qubit

Pre-processing  Post-processing
interaction: interaction: extension
controlled swap of pure state cloning

EE 6
d+Vd2 -1 Pl el

i d4
rikokzopeds M D’ Ariano, and P Perinotti, Phys. Rev. Lett. 101, 180504 (2008

Fciﬂn(l — 2) =4



OPTIMAL UNIVERSAL GATE CLONING

Natural question: is it possible to achieve the optimal
cloning of a unitary via the optimal cloning of a maximally
entangled state? i.e. by cloning the Choi state?

Unknown

unitary
N
NG/

Maximally Optimal cloner Retrieving channel Ideal clones
entangled for maximally  e.g. quantum teleportation

state entangled states
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OPTIMAL UNIVERSAL GATE CLONING

Natural question: is it possible to achieve the optimal
cloning of a unitary via the optimal cloning of a maximally
entangled state? i.e. by cloning the Choi state?
Unknown
unitary

e
—-

Maximally Optimal cloner Retrieving channel Ideal clones
entangled for maximally  e.g. quantum teleportation
state entangled states

oust EAHW C T - No, this is a strictly suboptimal strategy. e



OTHER APPLICATIONS IN QIP

* Optimal storing/ retrieving of quantum gates
® Optimal programming of quantum games
e Analysis of multi-round quantum games/ cryptographic protocols

ct G Gutoski and ] Watrous, STOC 2007, 565

¢ Information-disturbance trade-off for quantum transformations
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Thank you for your attention.
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