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Abstract: More than 40 years ago, Bell ruled out completely local hidden variable models as an explanation for quantum correlations. However, a
new type of hidden variable model has recently been brought to light by the work of Leggett. Such a model has both local and non-local parts.
Roughly speaking, having alocal part means that the measurement outcomes can be guessed with better than 50% success. In thistalk, | will explain
that there exist quantum correlations for which any hidden variable model must have atrivial local part. | will then discuss how an extension of the
original theorem implies that these correlations can be used to enhance the quality of a private random string.
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Hidden Variable Models

» General Setup:

» Scenario described by distribution P(X,Y|A,B).

» In quantum theory, X and Y are not
determined until measured.

» Can the correlations be explained with a
hidden variable model?

.




Hidden Variable Models

» We introduce U, V and W as hidden variables:

» These variables (if known) would determine
the outcomes completely:

i.e., X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).




Hidden Variable Models

» In the Bell model (completely local), X=f(A,U),
Y=g(B,V). This is incompatible with QM.

» Conversely, a completely non-local theory is
compatible with all quantum correlations.

» What about in-between models with a local
and non-local part?




B

- O =

X " Y
» We have X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).
» To give the model a local part, we restrict
PX|ABUV)=P(X|AU) (and similarly for Y).
» A local part essentially means that given
knowledge of local parameters only, we have
some knowledge about X.

MixedAmodeIs




No local part

» For a particular set of quantum correlations,
it can be shown that P(X|AU) is uniform (and
therefore independent of A and U).

» Hence, hidden variable models for quantum
mechanics have no local part.

» In other words, even given access to all the
local parameters, the outcomes of the
measurement devices are completely
unpredictable.




MixedAmodeIs

» We have X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).
» To give the model a local part, we restrict
P(X|ABUV)=P(X|AU) (and similarly for Y).

» A local part essentially means that given
knowledge of local parameters only, we have
some knowledge about X.




No local part

» For a particular set of quantum correlations,
it can be shown that P(X|AU) is uniform (and
therefore independent of A and U).

» Hence, hidden variable models for quantum
mechanics have no local part.

» In other words, even given access to all the
local parameters, the outcomes of the
measurement devices are completely
unpredictable.

N

9/44



MixedAmodeIs

» We have X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).
» To give the model a local part, we restrict
P(X|ABUV)=P(X|AU) (and similarly for Y).

» A local part essentially means that given
knowledge of local parameters only, we have
some knowledge about X.




No local part

» For a particular set of quantum correlations,
it can be shown that P(X|AU) is uniform (and
therefore independent of A and U).

» Hence, hidden variable models for quantum
mechanics have no local part.

» In other words, even given access to all the
local parameters, the outcomes of the
measurement devices are completely
unpredictable.




Chained Bell Inequalities

» In order to show our result, we use chained
Bell inequalities:

L. =P¢X =Y |0,2N -1+ ZP(X =Y | 4,B)>1

| A—B|=1
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Main Theorem

» In the original version of the theorem, we
show that, for any non-signalling distribution
and for A and B independent of the hidden
variables, that, for all a.b

I
D(Pyygs Py < By) =2

by

D(PFVW‘P}_’ PV)_%.

P> denotes the uniform distribution on X and
D is the variational distance.




Significance of D

» D is a measure of the distance between two
distributions; the smaller D is, the closer the
two distributions.

» D directly determines the maximum
probability of correctly distinguishing the two
distributions. PEMS:%(HD).

» If two distributions have distance D, they
behave identically in all situations, except
with probability at most D.




No local part

» Quantum mechanics allows us to obtain
I, ~7" /8N —2 30. Hence, D(Pyy,.P¢xF;) can
be bounded by an arbitrarily small number.

» In the limit, we have 7. =77 £, i.e. X is
uniformly distributed, and independent of U.

» In other words, there is no local part.




Cryptographic Setting

» Now consider the use of these correlations
for cryptography, i.e. Alice and Bob use them
to establish a shared private key.




Cryptographic Setting

» We replace the source with a system held by
an Eavesdropper, Eve.

A c B




Cryptographic Setting

A C B
X 7 : 4

» We assume that the entire setup is created by
Eve, and demand security even if so.

» If Alice and Bob can verify that /,, is small,
then they are assured of the key’s security.
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Stronger Theorem

» In the original theorem, we bounded

D(Py,.-P+>xP;) assuming that the choice of
measurement, A, is independent of the local
hidden variables.

» If the hidden variables could be chosen
knowing A and B, then a completely local
hidden variable model is possible.

» Amazingly, we can show that even if U and V
are almost completely dependent on A and B,
then the output is close to uniform.
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Significance of D

» D is a measure of the distance between two
distributions; the smaller D is, the closer the
two distributions.
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Main Theorem

» In the original version of the theorem, we
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» For any distribution P(XYZ|ABC) that is non-
signalling between Alice and Bob, we have
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» In other words, even if C and Z can depend
on A and B, if /,, is small, then X is close to
uniform.

» This shows that if Alice and Bob have strings
of low privacy, they can enhance this privacy.
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Summary

» To explain quantum correlations with a
hidden variable model, such a hidden variable
model cannot have a local part.

» The local part is related to the knowledge an

eavesdropper could have on the privacy of a
string. Correlations with no local part are

completely private.
» A stronger version of the theorem shows that
these correlations can be used to enhance

privacy.
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