Title: The impossibility of partially local hidden variable models for quantum theory and the relation to cryptography

Date: Dec 12, 2008 11:50 AM

URL: http://pirsa.org/08120037

Abstract: More than 40 years ago, Bell ruled out completely local hidden variable models as an explanation for quantum correlations. However, a new type of hidden variable model has recently been brought to light by the work of Leggett. Such a model has both local and non-local parts. Roughly speaking, having a local part means that the measurement outcomes can be guessed with better than 50% success. In this talk, I will explain that there exist quantum correlations for which any hidden variable model must have a trivial local part. I will then discuss how an extension of the original theorem implies that these correlations can be used to enhance the quality of a private random string.

Pirsa: 08120037 Page 1/44

The impossibility of partially local hidden variable models for quantum theory and the relation to cryptography

Roger Colbeck (ETH Zurich) (based on work with Renato Renner PRL 101 050403)

Pirsa: 08120037 Page 2/44

Hidden Variable Models

General Setup:

- Scenario described by distribution P(X,Y|A,B).
- In quantum theory, X and Y are not determined until measured.
- Can the correlations be explained with a hidden variable model?

Pirsa: 08120037 Page 3/44

Hidden Variable Models

We introduce U, V and W as hidden variables:

These variables (if known) would determine the outcomes completely:

i.e., X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).

Pirea: 08120037

Hidden Variable Models

- In the Bell model (completely local), X=f(A,U), Y=g(B,V). This is incompatible with QM.
- Conversely, a completely non-local theory is compatible with all quantum correlations.
- What about in-between models with a local and non-local part?

Pirsa: 08120037 Page 5/44

Mixed models

- We have X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).
- To give the model a local part, we restrict P(X|ABUV)=P(X|AU) (and similarly for Y).
- A local part essentially means that given knowledge of local parameters only, we have some knowledge about X.

No local part

- For a particular set of quantum correlations, it can be shown that P(X|AU) is uniform (and therefore independent of A and U).
- Hence, hidden variable models for quantum mechanics have no local part.
- In other words, even given access to all the local parameters, the outcomes of the measurement devices are completely unpredictable.

Mixed models

- We have X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).
- To give the model a local part, we restrict P(X|ABUV)=P(X|AU) (and similarly for Y).
- A local part essentially means that given knowledge of local parameters only, we have some knowledge about X.

Pirsa: 08120037 Page 8/44

No local part

- For a particular set of quantum correlations, it can be shown that P(X|AU) is uniform (and therefore independent of A and U).
- Hence, hidden variable models for quantum mechanics have no local part.
- In other words, even given access to all the local parameters, the outcomes of the measurement devices are completely unpredictable.

Mixed models

- We have X=f(A,B,U,V,W) and Y=g(A,B,U,V,W).
- To give the model a local part, we restrict P(X|ABUV)=P(X|AU) (and similarly for Y).
- A local part essentially means that given knowledge of local parameters only, we have some knowledge about X.

No local part

- For a particular set of quantum correlations, it can be shown that P(X|AU) is uniform (and therefore independent of A and U).
- Hence, hidden variable models for quantum mechanics have no local part.
- In other words, even given access to all the local parameters, the outcomes of the measurement devices are completely unpredictable.

Chained Bell Inequalities

In order to show our result, we use chained Bell inequalities:

$$I_N := P(X = Y \mid 0, 2N - 1) + \sum_{|A - B| = 1} P(X \neq Y \mid A, B) \ge 1$$

Pirsa: 08120037 Page 12/44

Main Theorem

In the original version of the theorem, we show that, for any non-signalling distribution and for A and B independent of the hidden variables, that, for all *a*,*b*

$$D(P_{XU|a}, P_{\overline{X}} \times P_U) \leq \frac{I_N}{2},$$

 $D(P_{YV|v}, P_{\overline{Y}} \times P_V) \leq \frac{I_N}{2}.$

 $P_{\overline{X}}$ denotes the uniform distribution on X and D is the variational distance.

Pirsa: 08120037 Page 13/44

Significance of D

- D is a measure of the distance between two distributions; the smaller D is, the closer the two distributions.
- D directly determines the maximum probability of correctly distinguishing the two distributions. $P_{guess} = \frac{1}{2}(1+D)$.
- If two distributions have distance D, they behave identically in all situations, except with probability at most D.

No local part

- Quantum mechanics allows us to obtain $I_N \approx \pi^2/8N \xrightarrow{N \to \infty} 0$. Hence, $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ can be bounded by an arbitrarily small number.
- In the limit, we have $P_{XU|a} = P_{\overline{X}} \times P_{U}$, i.e. X is uniformly distributed, and independent of U.
- In other words, there is no local part.

Pirsa: 08120037 Page 15/44

Now consider the use of these correlations for cryptography, i.e. Alice and Bob use them to establish a shared private key.

Pirsa: 08120037 Page 16/44

We replace the source with a system held by an Eavesdropper, Eve.

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

Pirsa: 08120037 Page 18/44

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

Pirsa: 08120037 Page 19/44

- In the original theorem, we bounded $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ assuming that the choice of measurement, A, is independent of the local hidden variables.
- If the hidden variables could be chosen knowing A and B, then a completely local hidden variable model is possible.
- Amazingly, we can show that even if U and V are almost completely dependent on A and B, then the output is close to uniform.

Pirsa: 08120037 Page 20/44

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

Pirsa: 08120037 Page 21/44

No local part

- Quantum mechanics allows us to obtain $I_N \approx \pi^2/8N \xrightarrow{N \to \infty} 0$. Hence, $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ can be bounded by an arbitrarily small number.
- In the limit, we have $P_{XU|a} = P_{\overline{X}} \times P_{U}$, i.e. X is uniformly distributed, and independent of U.
- In other words, there is no local part.

Pirsa: 08120037 Page 22/44

Significance of D

- D is a measure of the distance between two distributions; the smaller D is, the closer the two distributions.
- D directly determines the maximum probability of correctly distinguishing the two distributions. $P_{guess} = \frac{1}{2}(1+D)$.
- If two distributions have distance D, they behave identically in all situations, except with probability at most D.

Main Theorem

In the original version of the theorem, we show that, for any non-signalling distribution and for A and B independent of the hidden variables, that, for all *a*,*b*

$$D(P_{XU|a}, P_{\overline{X}} \times P_U) \leq \frac{I_N}{2},$$

 $D(P_{YV|v}, P_{\overline{Y}} \times P_V) \leq \frac{I_N}{2}.$

 $P_{\overline{X}}$ denotes the uniform distribution on X and D is the variational distance.

Pirsa: 08120037 Page 24/44

We replace the source with a system held by an Eavesdropper, Eve.

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

Pirsa: 08120037 Page 26/44

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

- In the original theorem, we bounded $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ assuming that the choice of measurement, A, is independent of the local hidden variables.
- If the hidden variables could be chosen knowing A and B, then a completely local hidden variable model is possible.
- Amazingly, we can show that even if U and V are almost completely dependent on A and B, then the output is close to uniform.

For any distribution P(XYZ|ABC) that is nonsignalling between Alice and Bob, we have

$$D(P_{XZC|ab}, P_{\overline{X}} \times P_{ZC|ab}) \leq \frac{I_N}{2}.$$

- In other words, even if C and Z can depend on A and B, if I_N is small, then X is close to uniform.
- This shows that if Alice and Bob have strings of low privacy, they can enhance this privacy.

Pirsa: 08120037 Page 29/44

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

For any distribution P(XYZ|ABC) that is nonsignalling between Alice and Bob, we have

$$D(P_{XZC|ab}, P_{\overline{X}} \times P_{ZC|ab}) \leq \frac{I_N}{2}.$$

- In other words, even if C and Z can depend on A and B, if I_N is small, then X is close to uniform.
- This shows that if Alice and Bob have strings of low privacy, they can enhance this privacy.

Pirsa: 08120037 Page 31/44

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

For any distribution P(XYZ|ABC) that is nonsignalling between Alice and Bob, we have

$$D(P_{XZC|ab}, P_{\overline{X}} \times P_{ZC|ab}) \le \frac{I_N}{2}.$$

- In other words, even if C and Z can depend on A and B, if I_N is small, then X is close to uniform.
- This shows that if Alice and Bob have strings of low privacy, they can enhance this privacy.

Pirsa: 08120037 Page 33/44

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

Pirsa: 08120037 Page 34/44

- In the original theorem, we bounded $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ assuming that the choice of measurement, A, is independent of the local hidden variables.
- If the hidden variables could be chosen knowing A and B, then a completely local hidden variable model is possible.
- Amazingly, we can show that even if U and V are almost completely dependent on A and B, then the output is close to uniform.

For any distribution P(XYZ|ABC) that is nonsignalling between Alice and Bob, we have

$$D(P_{XZC|ab}, P_{\overline{X}} \times P_{ZC|ab}) \leq \frac{I_N}{2}.$$

- In other words, even if C and Z can depend on A and B, if I_N is small, then X is close to uniform.
- This shows that if Alice and Bob have strings of low privacy, they can enhance this privacy.

Pirsa: 08120037 Page 36/44

Summary

- To explain quantum correlations with a hidden variable model, such a hidden variable model cannot have a local part.
- The local part is related to the knowledge an eavesdropper could have on the privacy of a string. Correlations with no local part are completely private.
- A stronger version of the theorem shows that these correlations can be used to enhance privacy.

Pirsa: 08120037 Page 37/44

For any distribution P(XYZ|ABC) that is nonsignalling between Alice and Bob, we have

$$D(P_{XZC|ab}, P_{\overline{X}} \times P_{ZC|ab}) \leq \frac{I_N}{2}.$$

- In other words, even if C and Z can depend on A and B, if I_N is small, then X is close to uniform.
- This shows that if Alice and Bob have strings of low privacy, they can enhance this privacy.

Summary

- To explain quantum correlations with a hidden variable model, such a hidden variable model cannot have a local part.
- The local part is related to the knowledge an eavesdropper could have on the privacy of a string. Correlations with no local part are completely private.
- A stronger version of the theorem shows that these correlations can be used to enhance privacy.

Pirsa: 08120037 Page 39/44

For any distribution P(XYZ|ABC) that is nonsignalling between Alice and Bob, we have

$$D(P_{XZC|ab}, P_{\overline{X}} \times P_{ZC|ab}) \leq \frac{I_N}{2}.$$

- In other words, even if C and Z can depend on A and B, if I_N is small, then X is close to uniform.
- This shows that if Alice and Bob have strings of low privacy, they can enhance this privacy.

Pirsa: 08120037 Page 40/44

- In the original theorem, we bounded $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ assuming that the choice of measurement, A, is independent of the local hidden variables.
- If the hidden variables could be chosen knowing A and B, then a completely local hidden variable model is possible.
- Amazingly, we can show that even if U and V are almost completely dependent on A and B, then the output is close to uniform.

- We assume that the entire setup is created by Eve, and demand security even if so.
- If Alice and Bob can verify that I_N is small, then they are assured of the key's security.

- In the original theorem, we bounded $D(P_{XU|a}, P_{\overline{X}} \times P_U)$ assuming that the choice of measurement, A, is independent of the local hidden variables.
- If the hidden variables could be chosen knowing A and B, then a completely local hidden variable model is possible.
- Amazingly, we can show that even if U and V are almost completely dependent on A and B, then the output is close to uniform.

We replace the source with a system held by an Eavesdropper, Eve.

