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Abstract: There is an ongoing debate in the literature concerning the effects of averaging out inhomogeneities (" backreaction\'\') in cosmology. In
particular, it has been suggested that the backreaction can play a significant role at late times, and that the standard perturbed FLRW framework is
no longer a good approximation during structure formation, when the density contrast becomes nonlinear. After a brief introduction to the problem, |
will show using Zalaletdinov\'s covariantaveraging scheme that as long as the metric of the universe can be described by the perturbed FLRW form,
the corrections due to averaging remain negligibly small. Further, using a fully relativistic and reasonably generic model of pressureless spherical
collapse, | will show that as long as matter velocities remain small (which is true in this model even at late times), the perturbed FLRW form of the
metric can be explicitly recovered. Together with the observation that real peculiar velocities are in fact nonrelativistic, these results imply that the
backreaction remains small even during nonlinear structure formation.
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Introduction

We aobserve that the matter distribution in the Universe is approximately
homogeneous on large scales.
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Introduction

@ Also, the CMBR is highly isotropic.

@ The standard approach then follows :

@ Assume the Universe is almost homogeneous and isotropic.

@ Hence its metric must be FLRW, with sthall perturbations.

@ Solve Einstein’s equations for the FLRW background sourced by a
homogeneous and isotropic perfect fluid
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Introduction

However, homogeneity is not strictly valid on small scales.
Two issues are important :

I

@ Nonlinearity of GR — Recall T ~ dg, E[g] ~ & + %, and E[g] = ]

@ Inidentifying FLRW as the background geometry, an implicit spatial
averaging is (vaguely) implied in the standard approach.
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Introduction

Two main approaches in understanding the effects of inhomogeneities on the
caosmological expansion :

@ Effect on average expansion via correlations in fluctuations or
backreaction, arising from the fact that in general E[(g)| = (E[g]) = (T).
(G. F. R. Ellis, Gen. Rel. and Grav,, 1984.) @«

@ Effect on light propagation ("special observer” assumption).

Focus here is on the former.

Argument: Although technically possible, in the real world it is unlikely that
backreaction significantly influences the average cosmological expansion.
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Structure of Backreaction

Symbalically, the backreaction terms have the form

C~{I)—(I)*

.Ef:?

[Can be understood using E[g] ~ o + 2]

Tilde represents any processing of the Christoffels required by the averaging
operation.
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Plan

o Building the Argument
@ The Linear Regime
@ Lessons from linear theory
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@ The Linear Regime
@ Lessons from linear theory
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e The Nonlinear Regime
@ Dimensional arguments, and their limitations
@ Calculations in an exact solution
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Buiiding the Argument The Linear Regime
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Buiiding the Argument The Linear Regime

Early times
_ 1. First estimate

Assumption: Linear perturbation theory (in the metric and matter
fluctuations) is a good approximation at early times (e.g. around
recombination).

ds? = —(1+ 2p)dr? + a(7)*(1 — 20)dx? .

Justified by amplitude of CMB anisotropies, coup"i:?ed with Copernican belief.
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Building the Argument The Linear Regime

Early times
1 ,_Eirst estimate

Assumption: Linear perturbation theory (in the metric and matter
fluctuations) is a good approximation at early times (e.g. around
recombination).

ds? = 1+ 20)dr? + a(7)*(1 — 20)dx? .

Justified by amplitude of CMB anisotropies, coup"f:éd with Copernican belief.

The dominant contribution to the backreaction C (e.g. in a perturbed
Einstein-deSitter universe) is
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Broadly speaking, contribution of the backreaction at early times is
_expected to be small.
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Building the Argument The Linear Regime

Early times
2. Self consistency

What we are after is a self consistent solution of the loop

A
P-\-J

a

Smallness of C at early times gives the hope that an iterative approach might

work
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Building the Argument The Linear Regime

Early times
3. "Zeroth” iteration equations. (AP arxiv:0806.2755. 2008

In the Zalaletdinov averaging framework [zaiaietdinov, GRG 24,1015,1992: GRG 25,673,193]
, assuming that perturbation theory holds for the metric.

ds’ = —(1+ 2¢)dr? + a(t)*(1 — 2v)d¥?.

one finds o
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Buiiding the Argument The Linear Reqgime

Early times
3. "Zeroth” iteration equations. [P arxiv:0806.2755, 2008}

where (with’ =0, = ad. and H = & /a), in Fourier space, assuming

= v = ¢.x%«(n) and replacing spatial averaging by ensemble averaging,
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Building the Argument The Linear Regime

Early times
4. "/eroth” iteration results. e arxiv0806.2755, 2008]
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Early times

Building the Argument The Linear Regime

3. "Zeroth” iteration equations. (A arxiv:0806.2755, 2008

where (with’ =0, = ad.- and H = &' /a), in Fourier space, assuming

-—

K
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Uz = 2xPx(n) and replacing spatial averaging by ensemble averaging,
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Building the Argument The Linear Regime

Early times
4. "/eroth” iteration results. e arxiv0808.2755, 2008
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Buiiding the Argument Lessons from linear theory
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Buiiding the Argument Lessons from linear theory

Dynamical suppression of backreaction

Since C is small to begin with, the self consistency loop

.f.:;:

suppresses growth of C provided perturbation theory in the metric holds.
[Large C needs nonstandard growth of ,», which needs nonstandard evolution
of a, which needs large C. But C is small to begin with.]

This argument is likely to carry forward to the nonlinear regime as well.
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Buiiding the Argument Lessons from linear theory

Small contribution from nonlinear scales

A drA
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Buiiding the Argument Lessons from linear theory

Dynamical suppression of backreaction

Since C Is small to begin with, the self consistency loop

suppresses growth of C provided perturbation theory in the metric holds.
[Large C needs nonstandard growth of ,», which needs nonstandard evolution
of a, which needs large C. But C is small to begin with.]

This argument is likely to carry forward to the nonlinear regime as well.
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Building the Argument Lessons from linear theory

Small contribution from nonlinear scales
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The Nonlinear Regime Dimensional arguments, and their limitations

Plan

e The Nonlinear Regime
@ Dimensional arguments, and their limitations
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

Suppose perturbation theory is valid for the metric, Then the relevant
equation Is
| e m T
ET‘_J :476;1@ S0 EE;’{IK]H(“) —1.
As before, ﬁ o
C~a{Vg-Vo).

For an over/under-density of physical size R, treating a~'V ~ R~ and
Gp ~ H*, we have q
ol ~ (HR)= |3] .

For voids,  ~ —1, and then C ~ H*(HR)?* < H*
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

For overdensity, more care is needed.
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

Suppose perturbation theory is valid for the metric, Then the relevant
equation Is
1
2
As before, o
C ~ &_E_: Vo-Vg).

For an over/under-density of physical size R, treating a~'V ~ R~ and
Gp ~ H*, we have

Vo =4xGps : 6= (p(t.X)/p(t)) —1.

o| ~ (HR)? 9] .
For voids, § ~ —1, and then C ~ H*(HR)?* < H*
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

For overdensity, more care is needed.
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

For overdensity, more care is needed.
In a typical spherical collapse situation,

R~ (1—-cosu)r;: H'~ (Gp) V2~ t~ Hy '(u—sinu)

(Hor)? H: . 3 (u-—sinu)

Gl:f ~ - ~ - = 0~ (p/p) ~ - q.
R‘R (1 —cosu)’ * (1 —cosu)?
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

For overdensity, more care is needed.
In a typical spherical collapse situation,

R~(1—cosu)r; H' ~(Gp) ¢~ t~Hy '(u—sinu)
G, . (Hor)? . 2, (u—sin u)?
() ~ - "~ — (s QUM )] = —
' RZR' (1 —cosu)’ ity (1 —cosu)?
(Hgr)? _— L (u—sinu)?
ol ot €~ HE|(Hor); 4
(1 —cosu) " (1 —cosu)

At late times we apparently have ( ~ H? implying large corrections, and later
still, also - ~ 1 implying a breakdown of perturbation theory.
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The Nonlinear Regime Dimensional arguments, and their limitations

Order of magnitude estimates

Crucial question is :
Is this situation actually realised, or are we taking these simple models
too far?

Claim : Perturbation theory in the metric does not break down at late times,
since observed peculiar velocities remain small. The spherical collapse
model is not a good approximation when mode! peculiar velocities grow large.
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The Nonlinear Regime Calcuiations in an exact solution

Plan

e The Nonlinear Regime

@ Calculations in an exact solution
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The Nonlinear Regime Calcuiations in an exact solution

Spherical collapse
The LTB solution [ap and singh, arxiv:0801.1546. 2008]
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The Nonlinear Regime Calcuiations in an exact solution

Spherical collapse

Behaviour of the model (ap and singh. arxiv:0801.1546, 2008]
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The Nonlinear Regime Calculations in an exact solution

Spherical collapse
Recovering perturbed FLRW (ap and singh, arxiv-0801.1546. 2008]

Recall o
R'cdr- i
ds® = —dt* + —_ + R%2dQ?.
1— k{r)r? M
We want
ds’ = —(14 2p)dr” + &(7)(1 + 2v) (dF* + FPdQ) .
with at least |p| . || < 1. Using :
. R(t.r ST :
= | _ ]{1 LELD) ; T=t+E(LT) ; |E|,|EH) < 1,
a(l) |

and given perturbed FLRW initial conditions, sole condition for a valid
transformation is B ,
ar _ [ R
avl<1 ;, v=—=0o ( —) :

at L&
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The Nonlinear Regime Calcuiations in an exact solution

Spherical collapse
Results in r. < r < r, [aP and Singh. arXi-0801.1546, 2008]

Page 37/40




[AP and Singh, arXiv:0806.3497, 2008]

The Nonlinear Regime Calcuilations in an exact solution

Backreaction in the spherical collapse model

g

The most dominant correction is S'') which appears on the right hand side of
the Friedmann equation.

Rackreaction
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Summary
Summary

@ Caorrections to the cosmological equations due to averaging of
Inhomogeneities, are real and nontrivial, but appear to be negligible
given realistic initial conditions and evolution models.

@ Corrections are small at early times.

@ They remain dynamically suppressed at later times provided
perturbation theory in the metric is valid.

@ This appears to be the case provided pzculiar velocities remain
small.

@ Observed peculiar velocities are, in fact, nonrelativistic.

@ Conclusions here were based on calculations in linear theory, and
exactly solved toy models of structure formation.

@ More accurate calculations may be possible using N-body simulations.
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Summary
Summary

@ Corrections to the cosmological equations due to averaging of
Inhomogeneities, are real and nontrivial, but appear to be negligible
given realistic initial conditions and evolution models.

@ Corrections are small at early times.

@ They remain dynamically suppressed at later times provided
perturbation theory in the metric is valid.

@ This appears to be the case provided pzculiar velocities remain
small.

@ Observed peculiar velocities are, in fact, nonrelativistic.

@ Conclusions here were based on calculations in linear theory, and
exactly solved toy models of structure formation.

@ More accurate calculations may be possible using N-body simulations.

Thank you.
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