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Abstract: WMAP measurements of CMB temperature anisotropies reveal a power asymmetry: the average amplitude of temperature fluctuations in
one hemisphere is larger than the average amplitude in the opposite hemisphere at the 99% confidence level. This power asymmetry may be
generated during inflation by a large-amplitude superhorizon perturbation that causes the mean energy density to vary across the observable
Universe. Such a superhorizon perturbation would also induce large-scale temperature anisotropies in the CMB; measurements of the CMB
guadrupole and octupole (but not the dipole!) therefore constrain the perturbation\'s amplitude and wavelength. 1 will show how a superhorizon
perturbation in a multi-field inflationary theory, the curvaton model, can produce the observed power asymmetry without generating unacceptable
temperature fluctuations in the CMB. | will aso discuss how this mechanism for generating the power asymmetry will be tested by forthcoming
CMB experiments.
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. Power Asymmetry from Superhorizon Structure
® What power asymmety?

® How can we make one?

I. Superhorizon Perturbations and the CMB

® If there were superhorizon structures, how would we know?
® Bad news...

Ili. A Power Asymmetry from the Curvaton

® What went wrong and how do we fix it?

® What is a curvaton anyway?

® Can a curvaton superhorizon fluctuation explain the asymmetry?
® How do we test this model?
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A Hemispherical Power Asymmety

Simulated maps courtesy of H. K. Eriksen
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An Asymmetric Universe!

here is a power asymmetry on large angular Eriksen Hansen, Banda,

cales in the WMAP Ist year data. T — Gk L S
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An Asymmetric Universe!

here is a power asymmetry on large angular Erksen Hansen, Banda)

Gorski, Lilje 2004

cales in the WMAP |st year data.

® Power asymmetry is maximized when the “equatorial” plane is tilted with
respect to the Galactic plane:“north” pole at (£,b) = (237°, —10°) .
® Only 0.7% of simulated symmetric maps contain this much asymmetry.
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CMB image from Eriksen, et al. astro-ph/0307507
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An Asymmetric Universe!

he asymmetry persists in the WMAP3 data.
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pole:
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| The probability of measuring

this amplitude or larger given
an isotropic field is 0.01.



An Asymmetric Universe!

he asymmetry persists in the WMAP3 data.
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Asymmetry from a “Supermode”

The amplitude of quantu
fluctuations depends on
the background value of
0P the inflaton field.
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Asymmetry from a “Supermode”

The amplitude of quantu
fluctuations depends on
the background value of
0P the inflaton field.
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a
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(1 + 20)dt? + a()6;;(1 — 2W)dzida

Create asymmetry by
adding a large-amplitude
superhorizon fluctuation:
a “supermode.”
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Asymmetry from a “Supermode”

APy (k
A modulation amplitude A ~ 0.12 — ¥ (k) e )
Py (k)360°

henerating this much asymmetry requires a BIG supermode

® Perturbations with different wavelengths are very weakly coupled.
® The fluctuation power is not very sensitive to ¢ <= n, >~ 1.
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Asymmetry from a “Supermode”

APy (k
A modulation amplitude A >~ 0.12 — ¥ (k) N
Py (k)360°

henerating this much asymmetry requires a BIG supermode

® Perturbations with different wavelengths are very weakly coupled.
® The fluctuation power is not very sensitive to ¢ <= n, >~ 1.

75 % JAN
Y =2, /2(1—ny) == e
e € mpi

Ap—> AW —> AT

Surely the resulting
temperature dipole would
be far too large?
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Part Il

Superhorizon Perturbations
and the
Cosmic Microwave Background




The Dipole Sometimes Cancels...

The SW Effect In an Einstein - de Sitter Universe,
a superhorizon perturbation

induces no CMB dipole. G'F'S'Hc'hfé?'de"lmr:h

® The SW dipole is cancelled by the
Doppler dipole.

+ AV o—— 1— AW

® If there is radiation or a cosmological

The Doppler Effect constant, then the Doppler dipole is
reduced.

® The ISW dipole will partially cancel the
SW dipole.

Will a superhorizon perturbation
+ AV e—— — AV jnduce a CMB dipole in our Universe?




The Dipole Cancels!

diabatic superhorizon

erturbation:
(%) = Wsu | - 7]
-T-'f;]rl_._ < 1

emperature
nisotropy:

' Sl
- (n) :@‘I’SM {k ' -rdecJ




The Dipole Cancels!
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Beyond the Dipole

A single superhorizon mode: ¥(Z, t) = Yswm(¥) sin[E - Z + o]
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kH ' < 1



Beyond the Dipole

A single superhorizon mode: ¥(Z,t) = Wsm(?) sin[E - T+ f;zr}
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Beyond the Dipole

A single superhorizon mode: ¥(Z, ¢) = Yswm(¥) sin[E - & + |

kH ' < 1 distance tc
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The Quadrupole Constraint

upermode: \Ij(f t) — lIJSl\I(t) Siﬂ[E .+ LT.I} » _
Recall the motivation: A® — power asymmetry
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The Quadrupole Constralnt

supermode: V(x,t) = Wan(t )Sm[k‘ T 1 ;7

Recall the motivation: A® —> power asymmetry
Ap=—> AV = AT

he supermode induces a CMB quadrupole: / B
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Quadrupole Constraint:
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The Quadrupole Constralnt

bupermode: V(Z,t) = @S\I(t)sm[k T ;7

Recall the motivation: A¢ — power asymmetry

ANp—> AW —> AT
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The Octupole Constralnt

supermode: V(x,t) = Ygn(t) sm[k‘ T 1 ;7

he supermode induces a CMB octupole 03 = 0.3

azg = — (kfd)% 03
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The Octupole Constralnt

bupermode: V(. t) = lllgu(t)sm[k T + 1 47

he supermode induces a CMB octupole: 03 = 0.35

i -.p
asg = — (Ai’d)% 3 sm(ta)

| 7 15
é Octupole Constraint:

AV (kzq)* < 320 «—laso
= 2 O <$3VC; ~2.7x107°




The Octupole Constralnt

supermode: Y (x,t) = Wan(t )Sm[k T+ 1 ;7

he supermode induces a CMB octupole: ¥3 = 0.35
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The Octupole Constralnt

Supermode: WU(Z,t) = Wgni(t) sinfk - F + - ;7

he supermode induces a CMB octupole: / = 0.35
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vade constraint by decreasing kx4
ot if we want linearity beyond horizon!



The Octupole Constralnt

supermode: V(x,t) = Ygnm(t) Sm[k‘ T+ ;7

he supermode induces a CMB octupole: 43 = 0.35
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The Octupole Constramt

supermode: Y (x,t) = WUan(t )Sln[k T+ 47
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Part Ili

A Power Asymmetry
from the Curvaton




The Curvaton to the Rescue!

The problem with the inflaton model is two-fold:

® The fluctuation power is only weakly dependent on the background value.
» AP x (1 —ng)Ag¢

» A small power asymmetry requires a large fluctuation in @ .

® The inflaton dominates the energy density of the universe, so a
“supermode” in the inflaton field generates a huge potential perturbation.

» CMB octupole places upper bound on AW.
» AP o< Ap o< AW¥ with no wiggle room.



The Curvaton to the Rescue!

The problem with the inflaton model is two-fold:

® The fluctuation power is only weakly dependent on the background value.
» AP x (1 —ng)Ag¢

» A small power asymmetry requires a large fluctuation in @ .

® The inflaton dominates the energy density of the universe, so a
“supermode” in the inflaton field generates a huge potential perturbation.

» CMB octupole places upper bound on AW.
» AP o< Ag o< AW with no wiggle room.

he solution: the primordial fluctuations could be
senerated by a subdominant scalar field, the curvaton.

® The fluctuation power depends strongly on the background curvaton value.

® The CMB constraints on AWV do not directly constrain AP. There is a
new free parameter: the fraction of energy in the curvaton.




The Curvaton Model

Mollerach | 990; Linde, Mukhanov | 997; Lyth, Wands 2002; Moroi, Takahashi 2001; and others...
The inflaton still dominates the energy density and drives inflation.
The curvaton (o) is a subdominant light scalar field during inflation

_ 15
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There are quantum fluctuatlons in both the mﬂaton and curvaton.
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The Curvaton Model

Mollerach |290; Linde, Mukhanov | 997; Lyth, Wands 2002; Moroi, Takahashi 200 1; and others...
The inflaton still dominates the energy density and drives inflation.
The curvaton (o) is a subdominant light scalar field during inflation

, | P .
1-"’(0‘) = ;?'TE')J‘ with Mo << Hmi( )) and P <-< Po

e = atsTal i

There are quantum ﬂuctuatlons in both the mﬂaton and curvaton.

= Hmf o Nnomogeneous

While m, < H the curvaton is frozen at its initial value: 7 = 7.

After inflation, when m_, ~ H, the curvaton oscillates in its
: : . =
potential well. It is a pressureless fluid: p> <X a ~.
Still in the early Universe, the curvaton decays into radiation.

After the end of inflation and prior to curvaton decay,
the fractional energy in the curvaton grows.
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Power Spectrum from the Curvaton

luctuations in the curvaton field become curvature perturbations.

(=R(, = —— where R~ - —

and RK1



Power Spectrum from the Curvaton

perturbations.

and R K1

luctuations in the curvaton field become curvature
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Power Spectrum from the Curvaton

perturbations.

luctuations in the curvaton field become curvature
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Power Asymmetry from the Curvaton

luctuations in the curvaton field become curvature perturbations.
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Power Asymmetry from the Curvaton

luctuations in the curvaton field become curvature perturbations.

i 3 o
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Curvaton Supermodes in the CMB

urvaton supermode: phase of our
e — B - po 5 / e
Vo (Z,t) = asm(t) Sln[k CF 4 w]
EHS < 1

00

he curvaton supermode
senerates a superhorizon potential . =
luctuation, but it is suppressed. H,
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he potential perturbation is not sinusoidal!




Curvaton Supermodes in the CMB

ST N
4 W B

urvaton supermode: Fa(w) =sinw — | — ) cos 2w
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emperature anisotropy: | \ o
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The CMB quadrupole and _.t:;c;:ﬁ_p;::le have comﬁligﬁféc_l w dependencies.
There is no phase that eliminates the quadrupole for all values of gg).




Curvaton Supermodes in the CMB

urvaton supermode: Fy(w) =sinw — | “f_[ ) cos 2w
5‘(.‘f,f) —= 5‘5&[@) Siﬂ[k‘- . f‘f— ’I] =
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emperature anisotropy: | \ 2
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The CMB quadrupole al;_&_.c;c}:;.l_p;::le have compfli_c;:éd w dependencies.
There is no phase that eliminates the quadrupole for all values of o).
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Curvaton Supermodes in the CMB

The CMB quadrupole implies an upper bound:
AG\° 5
R (—J) - %(5.8.@) for @ =

( APy oive similar bounds
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Perturbation Mixture

oth the curvaton and the inflaton may contribute to Py.
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Perturbation Mixture

Soth the curvaton and the inflaton may contribute to Py.
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Perturbation Mixture

Soth the curvaton and the inflaton may contribute to Py.
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Constraining the Curvaton Model

he curvaton and inflaton =~ =10~ : | | |
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both contribute to Py (k):
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Constraining the Curvaton Model

he curvaton and inflaton




Constraining the Curvaton Model

on-Gaussianity Constraints . 10~ T T, T, TR
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Constraining the Curvaton Model

The Allowed Region
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Constraining the Curvaton Model
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Origins of the Supermode

ould the supermode be a

quantum fluctuation? % o




Origins of the Supermode
ould the supermode be a
quantum fluctuation? B 4 5o
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Origins of the Supermode

ould the supermode be a
quantum fluctuation?
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Origins of the Supermode
ould the supermode be a |
quantum fluctuation? 3 4 5o
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The supermode would be at least a 5-sigma
fluctuation: that’s highly improbable!




Origins of the Supermode

ould the supermode be a

quantum fluctuation? ' o
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Signature of
“curvaton web?”

l inde and Mukhanov, 2006

osM > Ao >

The supermode would be at least a 5-sigma
fluctuation: that’s highly improbable!




Origins of the Supermode

ould the supermode be a

uantum fluctuation? So
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The supermode would be at least a 5-sigma
fluctuation: that's highly improbable!




A Scale-Dependent Asymmetry?

here are indications that only large scales are asymmetric.
Asymmetry detected for / = 5 — 40. Donoghue and
Some analyses see reduced asymmetry for 7 = 100. Eji:iﬂzéjgc"
ow could the asymmetry disappear at small scales?

Dnly the perturbations from the curvaton are asymmetric;

he inflaton perturbations are still statistically isotropic.
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A Scale-Dependent Asymmetry?

here are indications that only large scales are asymmetric.

Asymmetry detected for / = 5 — 40. Donoghue and
Some analyses see reduced asymmetry for ¢/ = 100. Dwfiﬁiﬁgg .
ow could the asymmetry disappear at small scales? |
Dnly the perturbations from the curvaton are asymmetric;
he inflaton perturbations are still statistically isotropic.
ntroduce scale dependence through § = Po Pic})@
A feature in V(@)  Gordon 2007 V(¢)1 . i
Isocurvature modes from curvaton? \
» curvaton can produce isocurvature
perturbations
) isocurvature perturbations
contribute more on large scales .
Work in progress.... O




ummary: How to Generate the Power Asymmetr

here is a power asymmetry in the CMB. = 0.20

® present at the 99% confidence level

® detected on large scales
lansen, Banday, Gorski, 2004
Friksen, Hansen, Banday, Gorski, Lilie 2004

Friksen, Banday, Gorski, Hansen, Lilie 2007

175 uK 175 uK

A superhorizon perturbation during inflation
penerates a power asymmetry.

® also generates large-scale CMB temperature perturbations

® no dipole; quadrupole and octupole set limits. H !
Erickcek, Carroll, Kamionkowski arXiv:0808.1570 - = -

® an inflaton perturbation is ruled out

® a curvaton perturbation is a viable source of the S
observed asymmetry - —

A : " e e 0T
Erickcek. Kamionkowski Carroll arXiv:0806.0377



ummary: How to Generate the Power Asymmetr

here is a power asymmetry in the CMB.

® present at the 99% confidence level

® detected on large scales

lansen, Banday, Gorski, 2004
Eriksen, Hansen, Banday, Gorski, Lilie 2004
Friksen, Banday, Gorski, Hansen, Lilie 2007

175 uK

eatures of the Curvaton-Generated Power Asymmetry

® the superhorizon curvaton perturbation is
not a quantum fluctuation

® the produced asymmetry is scale-invariant, < -' >
but it is possible to modify that

® suppressed tensor-scalar ratio: 7 o< (1 — &) *
® high non-Gaussianity: fnL < 50 5 - oo
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A superhorizon perturbation during inflation
penerates a power asymmetry.

® also generates large-scale CMB temperature perturbations

® no dipole; quadrupole and octupole set limits. H; :
Erickcek, Carroll, Kamionkowski arXiv:0808.1570 -« -

® an inflaton perturbation is ruled out

® a curvaton perturbation is a viable source of the S
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observed asymmetry - —
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Origins of the Supermode

ould the supermode be a

quantum fluctuation? % o
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An Asymmetric Universe!

here is a power asymmetry on large angular Eriksen Hansen Banda

cales in the WMAP |st year data. | Gt L
¢ =5 — 40

(MB image from Eriksen, et al. astro-ph/0307507



