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Abstract: A quantum channel models a physical process which adds noise to a quantum system by interacting with the environment. Protecting
guantum systems from such noise can be viewed as an extension of the classical communication problem introduced by Shannon sixty years ago. A
fundamental quantity of interest is the quantum capacity of a given channel. It measures the amount of quantum information that can be transmitted
with vanishing error, in the limit of many independent transmissions over that channel. In this talk, | will show that certain pairs of channels, each
with a capacity of zero, can have a dtrictly positive capacity when used together. This unveils a rich structure in the theory of quantum
communication that is absent from Shannon\'s classical theory. This isjoint work with Graeme Smith (IBM) which was published in the Sept. 26
issue of Science.
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Shannon's capacity

» Conditional probabilities p(y|x)
o Capacity C = # reliable bits / transmission
* Require error — 0 as # transmissions — ~c
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Shannon’s capacity formula

mutual information

H(X) H(Y)

I(p)=NKX;Y)=H(X)+H(Y)— H(XY)

e Measures correlations (/I =0= X L Y)
 Entropy H(X) = —>_, p(x)log, p(x)

C = max /(p)
p(x)

o Proof gives matching lower & upper bounds
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(random coding + converse)



C Is additive

C(N1@N2) = C(N1) + C(N2)

s cifzoe— Value of channel, independent of other available channele



Zero capacity channels

all are easy to make
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Quantum channels

e Physical process adding noise to quantum states
» linear CPTP map on density matrices (general operation)

o Reversible interaction with inaccessible environment
e Trivial classification of C = 0channels.,0 +0=0
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Quantum capacity Q

e Q = # qubits that can be reliably sent / transmission

e Q = # ebits that can be reliably generated / transmission
» Questions characterize ‘information conveying properties’
e Bounds on quantum error correction (independent noise)
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e Not understood as well as Shannon’s capacity



Examples

* Qubit flip
p— (1 —p)p+pLpLl
Q=1—H(p)
e Depolarizing

Q-

p— (1 —p)p+pl/2
Q > 0 for p < p* with .2552 < p* < .3333
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General formula for Q7

B
E

BE

pt A p

e Random codes [L,S,D,HHWY]
QW) > oM(W) = mex Ic(*)

« Coherent information Ic(p?) = H(B) — H(E)
e Lower bound tight for ‘degradable channels’ [DS]
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General formula for Q7

B
E

BE

pt A P

e Random codes [L,S,D,HHWY]
QW) > oM(W) = max Ic(*)

« Coherent information Ic(p?) = H(B) — H(E)
e Lower bound tight for ‘degradable channels’ [DS]
e Best we can currently prove:

| .1
A= B S

e Q is ‘reqularization’ of Q(")



Q is not additive (0 -0 > 0)

(B) :

There exist channels Ny and Vs such that
Q(-’V]) = Q(N2) =0, Q(N; ,5;./\/"2) >0
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Should | pay for O-capacity channels?



General formula for Q7

B
E

BE

pt A p

e Random codes [L,S,D,HHWY]
Q) > 9M(N) = max Ic(*)

« Coherent information Ic(p?) = H(B) — H(E)
e Lower bound tight for ‘degradable channels’ [DS]
» Best we can currently prove:

T -
RINY= B SV
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Q is not additive (0 +~ 0 > 0)

(B) «
.

LU

LE B
6o e

There exist channels Ny and N> such that
Q(N1) = Q(N2) =0, QWN1@N2) >0
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Should | pay for O-capacity channels?



Q = 0 channels

e Q — 0 does not imply uncorrelated

« No complete classification known

e Not convex!

e Two important convex subsets (m/f?):

e Q = O for different reasons (they cancel each other)
e Can have Q > 0 in between...
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Anti-degradable channels

=
v

2

B

e Environment can simulate output
e Q = 0 by no cloning
e Stable under ) (so 0 + 0 = 0)

o Example: U maps into (anti)-symmetric subspace of BE
e.g. 50%-erasure channel A(p) = 5p + 5|erase) (erase|

* Such ‘symmetric channels’ are also degradable
=g Q completely understood for degradable



Horodecki channels

» Entanglement-binding channels
» Only creates states with Positive Partial Transpose:

. CL 07 A
(pAB)r_ I 55, ol o
()C))
* . \. -
e Cannot go from p' >0 — p' 2 0 by LOCC

» Q = 0 because (any entangled pure state)’ # 0
e Stable under X)) (so 0 + 0 = 0)

e Some allow private classical communication
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Private channels

B

py A = Pr

» Private capacity P(N') = # bits can reliably send

requiring that o ~ independent of message
« 3 private Horodecki channels with Q@ = 0. P > 0 [H3O,H3P]
e P(N) is regularized maximum of private information

PY) = max I(X;B) — I(X; E)
p(x).0%
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Private channels

B

py A = Pr

e Private capacity P(N') = # bits can reliably send

requiring that p£" ~ independent of message
« 3 private Horodecki channels with Q@ = 0. P > 0 [HO,H3P]
e P(N) is regularized maximum of private information

P = max I(X;B) — I(X; E)
p(x).o%

e Coherent information is private information restricted to
pure states:

le(pa) = H(B) — H(E) = I(X; B) — I(X; E)
for any ensemble with 5 " p(X)|-L*x)('e_-'x|A — pA
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Counterexample to additivity of O

B gk
EP:c

Theorem. Let p(x), {p2} and N be given. Let £ be a
50%-erasure channel with input dimension Y_, rank(p%). Then

py A

QNWzE) = JI(X;B)— (X E)

4 private Horodecki channel with 4D input such that on uniform
ensemble |x)(x|2k /2, we have I(X; B) — I(X; E) > .02. So
together with a 4D erasure channel, it has Q > .01.
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Counterexample to additivity of O

B
E

Theorem. Let p(x), {p4} and A be given. Let £ be a
50%-erasure channel with input dimension Y_, rank(p%). Then

ps A p

QWee) > 3I(X:B)— 3I(X; E)

4 private Horodecki channel with 4D input such that on uniform
ensemble |x)(x|2k /2, we have I(X; B) — I(X; E) > .02. So
together with a 4D erasure channel, it has Q > .01.
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Proof

X_"'X
Define |p)™* L VvV P(X)| %)% | px )¢ A__"_' o

so g4 = (X)|x) (x]|* @0 .-
s o g

QY > H(BD) - H(EF)
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Proof

X—X

Define |p)*4 Z vV P(x)| %)% | px )€
A—.: E

s0 /% =3 px)lx) (x| @

QY > H(BD) - H(EF)
write as entropies on state |p)*BEC before erasure &£
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Proof

X—X

Define |p)*4 Z v P(X)|x)% | px) €
A-fMITE E

s0 4 = 3 Pl (x 21

C—F

QY > H(BD) - H(EF)
write as entropies on state |p)*BEC before erasure &£
5(H(B) — H(EC))
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Proof

X—X

Define |4 = 3= V/p(x) ¥ )% A—.'_' :
s0 4 = 3 p(x)|x) (x| 2pf i

; C- =

QY > H(BD) - H(EF)
write as entropies on state |p)*BEC before erasure &£
= 2(H(B) — H(EC)) + 3(H(BC) — H(E))
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Proof

X—-X

Define |p)*4 Z vV P(x) | x)% | px) €
A“.: E

so g4 = Zp(x)|x (x| X

Q) > H(BD)— H(EF)
write as entropies on state |p)*PE€ before erasure &£
= 3(H(B) — H(EC)) + (H(BC) — H(E))
= %(H(B) — H(XB)) + 5(H(XE) — H(E)) (on MXBEG)
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Proof

X-—-X

Define |p)*4 Z vV P(x)|x)% | px )€
A—.: E

s0 7 =3 plx)bx) (x|

QY > H(BD) - H(EF)
write as entropies on state |p)*BEC before erasure &£
= 3(H(B) — H(EC)) + 3(H(BC) — H(E))

(H(B) — H(XB)) + % (H(XE) — H(E)) (on MXBEG)
I(X; B) — 3/(X; E)

8
:
MBI VENEN
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Wrapping up

Other implications:
e Q is not convex! (Even though C and /- are)

(1 — p)N®2|0){(0| + pE2|1)(1], p < .0041

o Still hope for some channels with © =0
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Wrapping up

Other implications:
e Q is not convex! (Even though C and /. are)

(1 — pP)N®2|0)(0| + pE|1)(1]|, p < .0041

o Still hope for some channels with © =0
Some questions:
 How do | price quantum bandwidth?

What characterizes info. conveying properties of \/?

e Characterize Q = 0 channels
e Are there more classes of them?
» Boundary of anti-degradable channels?
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