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Abstract: Many statistics problems involve predicting the joint strategy that will be chosen by the players in a noncooperative game. Conventional
game theory predicts that the joint strategy will satisfy an "~ “equilibrium concept\'\'. The relative probabilities of the joint strategies satisfying the
equilibrium concept are not given, and al joint strategies that do not satisfy it are given probability zero. As an aternative, | view the prediction
problem as one of statistical inference, where the “datal'\' includes the details of the noncooperative game. This replaces conventional game
theory\'s focus on how to specify a set of equilibrium joint strategies with afocus on how to specify a density function over joint strategies. | explore
a Bayesian version of such a Predictive Game Theory (PGT) that provides a posterior density over joint strategies. It is based on the the entropic
prior and on a likelihood that quantifies the rationalities of the players. The Quantal Response Equilibrium (QRE) is a popular game theory
equilibrium concept parameterized by player rationalities. | show that for some games the local peaks of the posterior density over joint strategies
approximate the associated QRE\'s, and derive the associated correction terms. | also discuss how to estimate parameters of the likelihood from
observational data, and how to sample from the posterior. | end by showing how PGT can be used to specify a {it{unique}} equilibrium for any
noncooperative game, thereby providing a solution to along-standing problem of conventional game theory.
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ROADMAP

1) Review statistics and game theory ‘
2) Apply statistics to games (as opposed to within games) ‘
3) Likelihood based on Quantal Response Eq.

| 4) Ex.: Predicting airline behavior in bad weather

' 5) New mathematical tools: rationality functions, cost
~o@f computation, varying numbers of players, etc. -




Human beings are physical objects™

* - Physical object that are “goal-directed” though,
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REVIEW OF GAME THEORY

* N independent players, each with possible moves, x, € X,
 Each i has a distribution q,(x,); q(x) =]].q,(x,)
* N utility functions w'(x); player i wants maximal E_(u')

* E_ (u) depends on q — but i only sets g,

Equilibrium concept: mapping from {u'} — q

Strawman: Only equilibrium q can arise with humans.

“All we must do is find the right equilibrium concept.”
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REVIEW OF GAME THEORY -2

Ex. 1: Nash Equilibrium (NE) q:

For all players i, E (u') cannot rise by changing g;

Ex. 2: Quantal Response Equilibrium (QRE) q:
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Simultaneously for all i, q(x;) < exp|p,E(u, | x;)]
Crude model of bounded rationality.
In fair agreement with experiment.

“Phase transitions” for finite systems.
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Simultaneously for all i, q,(x;) = exp[B.E(u, | x,)]
Crude model of bounded rationality.
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REVIEW OF STATISTICS

1) Probability theory is the only consistent “calculus of

uncertainty” for making predictions about physical world

2) In particular consistency forces Bayes Theorem:
P(truth z | knowledge \) o P(v| z) P(2)

3) Given a P(z | ) and a /oss function L(truth z, prediction v),
the Bayes-optimal prediction is argmin, E,[L(., y)] (Savage).

4) argmax, P(z | ) is an approximation; the M AP prediction

Probability theory to reason about physical objects.
ooy VIINIMize expected loss to distill P(z) to a single z.
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EXAMPLE OF STATISTICS

1) Let the random variable we wish to predict itself be a
probability distribution, z = q(x).

2) Information theory tells us to use the Enfropic prior

P(q) x expla S(q)]

where S(q) is the Shannon entropy of q, and a € R*

3) Let the knowledge « about gq be Eq(H) = h for some H(x):

P(q| v x expla S(q)] S|E,(H) - h]
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EXAMPLE OF STATISTICS
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EXAMPLE OF STATISTICS -2

4) So MAP q maximizes S(q') over the q' obeying E .(H) = h.

5) Let x be phase space position of a physical system with H(x)
the Hamiltonian. The MAP q gives the Canonical Ensemble:

q(x) < exp[-pH(x)]

where B is a Lagrange parameter (it equals 1 / temperature)

6) If the numbers of particles of various types also varies

«=mSt0Chastically, the MAP q is the Grand Canonical Ensembile.
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ROADMAP

1) Review statistics and game theory ‘
2) Apply statistics to games (as opposed to within games) ‘
| 3) Likelihood based on Quantal Response Eq.

4) Ex.: Predicting airline behavior in bad weather

S) New mathematical tools: rationality functions, cost
~o@f computation, varying numbers of players, etc. ~=




ONLY IDEA N 1

Human beings are physical objects

L.e., you are a Scientist playing against Nature.

Whether Nature is
i) humans in a game, or
ii) interacting physical objects:

You should infer Nature’s mixed strategy the
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| GAME EQUILIBRIA |

1) Humans are physical objects: to reason about the mixed
strategy q of a game we must use a distribution P(q | v):

Game theory equilibrium strawman is deficient

* N.b., bounded rationality automatic with distributions over q.

2) To distill P(q | v) to a single q, can use a loss function L:

Predictive “Equilibrium™ of a game meaningless

without a loss function.

* L associated with the external scientist, nof with the players.

* No need for refinements; equilibrium q is unique.
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| GAME EQUILIBRIA -2

3) Alternative way to distill P(q | ) to a single “mixed strategy”:

P(x|v) = fdq P(q | YP(x|q,1) = Jdq P(q| v)q(x)

(L.e., average the q’s)

4) Even if support of P(q | v) restricted to NE q’s, if 3 multiple NE:
e P(x| ) is not a product distribution.
Players are independent under each NE q, but 70 us they
appear coupled.
* P(x; | v) is not best-response to P(x; | v).
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THE POSTERIOR IN GAMES \

1) So the “positive” problem is to infer the posterior

P(joint mixed strategy q | {u':i=1,N})

2) Assume an entropic prior over q, P(q) < exp|a S(q)]

3) How set the likelihood function P(v | q) when *“data” v is the
utility functions of the players?
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| EXAMPLE: LIKELIHOOD SAYS qIS A NE |

L R Row player move
T Column
2 0 player Plaver payvoffs (identical)
move
D
0 1

3 NE, two shown in red

1) Entropic prior, P(q) x expla S(q)]

2) P(v| q) =0 for non-NE q’s, uniform over the three NE q’s
3) Se: P(I[L] x[T]|vy = P(D]x[R][y) = 1/[2+ w(a)]
P(I(L, 2R)/3] x (T, 2D)/3] |v) = w(a)/ [2 + w(a)]
where w(a) = exp| a {2In|3] - (4/3)In|2]} |
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LIKELIHOOD SAYS q IS A NE \

L R
4) Recall P(x | 1) = fdq P(q | Vq(x): T g
i) P(T,L) = [9+w(a)] /|18 +9w(a)] D - l
i) P(D,R) = [9+4w(a)] / [18 + IW()]

i) P(D,L) = P(T,R) = 2w(a) / [18 + Yw(a)]
N.b., P(D, R) > P(T, L), even though it’s Pareto-inferior

S) Under this P(x | v) plaver moves are coupled, and neither
player’s distribution is best-response to the other’s.

6) Similarly, the likelihood
P(v| q) = 0 for non-QRE q’s, uniform over the QRE q’s
(for some particular values {f,, B,})

gives a P(q | v), which gives a (coupled) P(x | v)
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ROADMAP

1) Review statistics and game theory ‘
2) Apply statistics to games (as opposed to within games) ‘
' 3) Likelihood based on Quantal Response Eq. ‘

4) Ex.: Predicting airline behavior in bad weather

S) New mathematical tools: rationality functions, cost

~o@f computation, varying numbers of players, etc.




A MORE REALISTIC LIKELIHOOD \

1) In real world, no q has exactly zero probability.

* How construct a likelihood allowing that?
2) Start with a QRE for a set of rationalities 3, P
3) Utility theory says player i only cares about E (u’)

4) So given gf_, player i has no preference among q,’s obeying

E;q8,0) = Eg 5 (u) = Egp(u))

=iy allow all those q.’s in our new likelihood. Page 3751
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. A MORE REALISTIC LIKELIHOOD -2 \

5) Do this even if q_, = qP.

6) Seo: Given any q_, the likelihood allows all q,’s such that

Egq (W) = Egpq (0)

7) Le., all q;,’s are allowed which result in the same Eqi? q_i(ui) as
qPi(x;) = exp[ﬁiEq‘i(“i | )|
q,(x) ’ 0 = qP(xy), . =q’{(x,)
9
) ¢ ¢
0 z q% and q; givesame E_ _ (u))
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' A MORE REALISTIC LIKELIHOOD - 3 \

8) P, measures how high Eqi!q_i(ui) is for allowed q,’s,

compared to how high it would be for unallowed q,’s

9) So B, measures how “rational™ i is.

10) Connection with Canonical Ensemble (CE) of physics:
A smart player - high B, so low temperature - is cold.
A dumb player is hot.

11)Of q allowed by P(v | q), those locally maximizing S(q)
sometimes approximate the solution to the coupled equations

qi(x) x exp[B, Uy, (x)] Vi

* Le., Quantal Response Eq. is sometimes a local approximation
to maxent. (Can calculate correction terms to QRE.)
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UNCERTAIN RATIONALITIES \

1) This new likelihood allows infinitely more q’s than the QRE -
but still not all q’s.

2) Solution: Note that in real world rationality uncertain.
3) Model this:
* Define B,(q) = B.(q;, q_,) as rationality value . of q; given q
* We know that if B.(q) = B.(q"), then
P(q|vY/P(q [ = explaS(q)]/ expla S(q7)]
* Require also that if S(q) = S(q’), then
P(q|Y/P(q’ |V =G(Bi(q)/ G(B(]") |
for some function G(.) (e.g., a hyperbolic tangent).
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| UNCERTAIN RATIONALITIES \

e™ YG(B(q))
[dq e®'PG(B(q))

4) So P(q|v =

* As desired, P(q | v) is nowhere-zero (if G is positive)

[dq q(x)e™'?G(B(q))
[dq e®'G(B(q))

Therefore P(x | 1) =

Use Monte Carlo to evaluate this.

* In contrast, to find QRE must solve coupled set of equations

* So PGT often scales far better than QRE.
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Auction Scheme 1

e Pre-GDP: K flights over next T minutes.

* During GDP: reduced to K’ flights over next T minutes.
— Each airline affected by GDP submits as many bids (in $)
as it had pre-GDP flights.

— Following the order of bid sizes, airlines are allocated the
earliest flight that fits their schedule.

e Auirlines only pay their bids for allocated GDP flights.
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A

a W =
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Pre-GDP Schedule

1:00 1:00

111

22 1:00 1:10
333 1:20 1:20
444 1:20 1:30
555 1:20 1:40

Allocation
Procedure
1. C has the highest bid
and the earliest slot it
can use is 1:20.
2. Bis second and the
earliest remaining slot
it can use is 1:00.
3. Bis third and the
earliest remaining slot
it can use is 1:40.

GDP Schedule

1:00 B 227
1:20 C 555

l :40 B 44’49.8 49/51



LIKELIHOOD SAYS q IS A NE \

L R
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1) Entropic prior, P(q) x expla S(q)]
2) P(v| q) =0 for non-NE q’s, uniform over the three NE q’s
3) Se: P(I[L] x[T]|vy = P(D|x[R][|y) = 1/[2+ w(a)]
iP([(L, 2R)/3] x (T, 2D)/3] | vy = w(a)/ [2 + w(a)]
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