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Abstract: Conventional quantum mechanics answers this question by specifying the required mathematical properties of wavefunctions and invoking
the Born postulate. The ontological question remains unanswered. There is one exception to this. A variation of the Feynman chessboard model
allows a classical stochastic process to assemble a wavefunction, based solely on the geometry of spacetime paths. A direct comparison of how a
related process assembles a Probability Density Function reveals both how and why PDFs and wavefunctions differ from the perspective of an
underlying kinetic theory. If the fine-scale motion of a particle through spacetime is continuous and position is a single valued function of time, then
we are able to describe ensembles of paths directly by PDFs. However, should paths have time reversed portions so that position is not a
single-valued function of time, a ssimple Bernoulli counting of paths fails, breaking the link to PDF\'s! Under certain circumstances, correcting the
path-counting to accommodate time-reversed sections results in wavefunctions not PDFs. The result isthat a single “switch\' simultaneously turns on
both special relativity and quantum propagation. Physically, fine-scale random motion in space alone yields a diffusive process with PDFs governed
by the Telegraph equations. If the fine-scale motion includes both directions in time, the result is a wavefunction satisfying the Dirac equation that
also provides a detailed answer to the title question.
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Wavefunctions gnd Ontology

@ Quantum mechanics is a frequency calculus, yet the object of this
calculus is the wavefunction or ‘probability amplitude’.
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Wavefunctions gnd Ontology

@ Quantum mechanics is a frequency calculus, yet the object of this
calculus is the wavefunction or ‘probability amplitude’'.

@ We know how wavefunctions propagate in time, how to extract
them using classical hamiltonians and how we can apply the Born
rule to convert them to probability density functions.
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Wavefunctions gnd Ontology

@ Quantum mechanics is a frequency calculus, yet the object of this
calculus is the wavefunction or ‘probability amplitude’.

@ We know how wavefunctions propagate in time, how to extract
them using classical hamiltonians and how we can apply the Born

rule to convert them to probability density functions.

@ We do not, however, know what they are (or if we do, we disagree
with the majority of our colleagues!)
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Interpretation: A spectrum

Pirsa: 08110045

Instramentalist?

"There is no quantum worid. There is only an abstract physical description.
It is wrong to think that the task of physics is to find out Aow nature is.
Physics concerns what we can say about nature.” Niels Bohr

Page 8/132
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Interpretation: A spectrum

Instramentalist? Realist?

"There is no quantum workd There is onfy an abstract pfiysical description.
It ts wrong to think that the task of physics is to find out how nature is.
Physics concerns what we can say about nature.” Niels Bohr

"Twel do not need deep theories to tell us
that parailel universes exist, single-particle
interference phenomena tefl us that..”

Dawvid Deutsch

( on the Many Worlds interpretation)
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Compare Classical Statistical Mechanics
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Compare Classical Statistical Mechanics

@ |n contrast to probability amplitudes, the acceptance of the
‘probability density function’ (PDF) in relation to counting
processes is practically universal among physicists.
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Compare Classical Statistical Mechanics

@ |n contrast to probability amplitudes, the acceptance of the
‘probability density function’ (PDF) in relation to counting
processes is practically universal among physicists.

@ We do not have a large spectrum of interpretations of diffusion
equations.
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Compare Classical Statistical Mechanics

@ In contrast to probability amplitudes, the acceptance of the
‘probability density function’ (PDF) in relation to counting
processes is practically universal among physicists.

@ We do not have a large spectrum of interpretations of diffusion
equations.

@ Bohr, Einstein and Deutsch would have little problem accepting
PDFs (and Weiner integrals) without recourse to ‘Many Worlds'.
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Compare Classical Statistical Mechanics

@ [n contrast to probability amplitudes, the acceptance of the
‘probability density function’ (PDF) in relation to counting
processes is practically universal among physicists.

@ We do not have a large spectrum of interpretations of diffusion
equations.

@ Bohr, Einstein and Deutsch would have little problem accepting
PDFs (and Weiner integrals) without recourse to ‘Many Worlds'.

@ In this talk we construct a counting argument for wavefunctions
that shows, in a transparent way, exactly what a wavefunction is in
a classical context where we do not have to worry about the
ambiguous status of reality in quantum mechanics.
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Classical vs. Qyantum

Classical

Quantum

Kinetic ‘picture’ Kac (Poisson)

Chessboard

ou ou

Telegraph/Dirac | 5 = o5 +aoxU

Telegraph/KG | ZY — 22U | 2y

ot az2

ow -
:o'_;;)—er!ma'xlU
__ o0 'm M

Heat/Schrédinger . R % —iD ’i;
Characteristic Bernoulli
Random Variable X e€{1,0}

Table: Three sets of partial differential equations are compared. The left

column contains phenomenological equations that have a basis in Kinetic

theory. The PDF solutions are expected values of sums of the Bernoulli

random variable. The right column contains ‘quantum’ equations obtained
from the classical equations through a formal analytic continuation.
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Interpretive Differences

Classical Quantum
Status Phenomenology Fundamental
Ontology Kinetic Theory Unknown

Counting Process Yes No
Uncertainty Principle Yes Yes
Special Relativity No Yes
Complex Numbers No Yes
Quantum scale physics No Yes

Conventional bridge 1T —1 | — 1

Table: The partial differential equations from the perspective of classical
statistical mechanics. The PDF solutions of the classical equations are easy
to understand, but do not ultimately illuminate quantum scale or relativistic
physics. The Quantum equations are difficult to extend and interpret because
there is no known process beneath them. Canonical quantization involves a
formal analytic continuation.
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Classical vs. Qyantum

Classical Quantum
Kinetic ‘picture’ Kac (Poisson) Chessboard
Telegraph/Dirac | 2 = 0,27 + aoU 2 = 0,22 + imaoyV
TelegraphKG | Y — 2V | 2y = :3273 + (im)?y
Heat/Schrédinger — 2. X =iD ’i’é
Characteristic Bernoulli
Random Variable X €{1,0}

Table: Three sets of partial differential equations are compared. The left
column contains phenomenological equations that have a basis in Kinetic
theory. The PDF solutions are expected values of sums of the Bernoulli
random variable. The right column contains ‘quantum’ equations obtained
from the classical equations through a formal analytic continuation.
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Interpretive Differences

Classical Quantum
Status Phenomenology Fundamental
Ontology Kinetic Theory Unknown

Counting Process Yes No
Uncertainty Principle Yes Yes
Special Relativity No Yes
Complex Numbers No Yes
Quantum scale physics No Yes

Conventional bridge 1T—1 | — 1

Table: The partial differential equations from the perspective of classical
statistical mechanics. The PDF solutions of the classical equations are easy
to understand, but do not ultimately illuminate quantum scale or relativistic
physics. The Quantum equations are difficult to extend and interpret because
there is no known process beneath them. Canonical quantization involves a
formal analytic continuation.
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Path Counting and the Bernoulli Random variable

@ When counting objects we need to distinguish counted objects
from everything else.
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Path Counting and the Bernoulli Random variable

@ When counting objects we need to distinguish counted objects
from everything else.

@ The random variable for this is Bernoulli:

X — 1 Object present
- |0 Otherwise

This is the stochastic version of an indicator function.
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Path Counting and the Bernoulli Random variable

@ When counting objects we need to distinguish counted objects
from everything else.

@ The random variable for this is Bernoulli:

X — 1 Object present
- |0 Otherwise

This Is the stochastic version of an indicator function.

@ Classically, when we count paths (as in diffusion) it is the
expectation value of a normalized sum of Bernoulli random
variables that becomes a PDF in the continuum limit. So:

(Normalized sum of X’s) “mnuum Umit e
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Bernoulli example

Classical ‘counting’ stochastic processes are based on a Bernoulli
random variable X with X < {0.1}

i A Random Path

@ Consider an (x. t) lattice
with a discrete random
walk.
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Bernoulli example

Classical ‘counting’ stochastic processes are based on a Bernoulli
random variable X with X < {0.1}

t
A

@ Consider an (x. t) lattice
with a discrete random
walk.

@ A Bernoulli random
variable shows the path.
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Bernoulli example

Classical ‘counting’ stochastic processes are based on a Bernoulli
random variable X with X < {0.1}

i 2 Random Paths with Bernouilli Z
@ Consider an (x. f) lattice

2 with a discrete random
walk.

@ A Bernoulli random
variable shows the path.

2 @ Discrete continuity
maintains normalization.
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Bernoulli example

Classical ‘counting’ stochastic processes are based on a Bernoulli
random variable X with X < {0.1}

i A Probability Mass Function Z
@ Consider an (x. t) lattice
I '3 1 : =
with a discrete random
2l b2 1 walk.
= . @ A Bernoulli random
variable shows the path.
1./2] I 1 . = .
@ Discrete continuity
72 T 1 maintains normalization.
2 = 1 @ Probability Mass
Function evolves.
> X
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Bernoulli example

Classical ‘counting’ stochastic processes are based on a Bernoulli
random variable X with X < {0.1}

: Ensemble Average PMF Z . )
@ Consider an (x. t) lattice
. with a discrete random
walk.
1 @ A Bernoulli random
1 variable shows the path.
: @ Discrete continuity

maintains normalization.

@ Probability Mass
1 Function evolves.

> x @ Ensemble Average PMF
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The Kac Model of the Classical PDEs
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The Kac Model pf the Classical PDEs

@ Using the Bernoulli random variable X = {0. 1} for counting classical
paths leads to the formation of classical probability density functions
under appropriate conditions.
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The Kac Model of the Classical PDEs

@ Using the Bernoulli random variable X = {0. 1} for counting classical
paths leads to the formation of classical probability density functions
under appropriate conditions.

@ Paths on a lattice, lattice spacing . Direction
change probability e m. t

@ Conservation of probability on the lattice
gives:

W (y+e) = (1—em)W.(y)+emW_(y) L P o
W(y+e) = (1—emW_(y)+emW,.(y)
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The Kac Model of the Classical PDEs

@ Using the Bernoulli random variable X = {0. 1} for counting classical
paths leads to the formation of classical probability density functions

under appropriate conditions.

@ Paths on a lattice, lattice spacing . Direction .

change probability e m.
@ Conservation of probability on the lattice

gives:

W.(y+e) = (1—emW.(y)+emW_(y) N S o
Wi(y+te) = (1—emW (y)+emW.(y) —

@ W. is a probability mass function that is the expected value of the
normalized sum of Bernoulli random variables. If we start all paths off
at y = 0 in the + state we get, in the continuum limit:

ORE cosh(my)
W (sinh(my)) ' J
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Kac Model with x-dependence

@ With the x-dependence the difference equations are:

w.(x.y+e) = (1—emw.(x—ey)+emw_(x.y)
W (X—ey+e) = (1—emw (X.y)+emw. (X —e€.y)
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Kac Model with x-dependence

@ With the x-dependence the difference equations are:

wo(x.y+e) = (1—emw.(x—ecy)+emw_(x.y)
W (x—ey+e = (1—emw_(x.y)+emw.(x —ey)

@ To lowest order in € we see that:

ow,  owy
ow_ _ ow.
gy  Ix B =
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Kac Model with x-dependence

@ With the x-dependence the difference equations are:

w.o(x.y+e) = (1—emw.(x—ey)+emw_(x.y)
W (x—ey+e = (1—emw_(X.¥)+emw.(x —ey)

@ lo lowest order in € we see that:

ow,  owy

e e —mw, +mw_
ow _ ow.
oy  Ix B =

@ or, using the Pauli matrices and writing U = e W:
ouU ouU
W = Uzﬁ 5 m{?'xu
@ Note that U /s just the expected value of sums of the Bernoulli
- ob@iidom variable. U just counts paths.
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Counting tentative paths.

The Bernoulli random variable X with X < {0, 1} worked well to count
paths that were continuous in the y direction. Paths that can
double-back are another question!
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Counting tentative paths.

The Bernoulli random variable X with X < {0, 1} worked well to count
paths that were continuous in the y direction. Paths that can
double-back are another question!

@ Consider an (x. y) lattice
with a discrete random
walk with reversing steps.

irsa: 08110045 Page 35/132

R e e
SR e =



Counting tentative paths.

The Bernoulli random variable X with X < {0, 1} worked well to count
paths that were continuous in the y direction. Paths that can
double-back are another question!

@ Consider an (x. y) lattice
with a discrete random
walk with reversing steps.

@ The Bernoulli sum of
path links is
y-dependent.
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Counting tentative paths.

The Bernoulli random variable X with X < {0, 1} worked well to count

paths that were continuous in the y direction. Paths that can
double-back are another question!

@ Consider an (x. y) lattice
with a discrete random
walk with reversing steps.

@ The Bernoulli sum of
path links is
y-dependent.

@ Bernoulli cannot handle
paths with reversing
steps.
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Counting with Anti-Bernoulli

The Bernoulli random variable X with X < {0.1} cannot be used to
count paths that reverse themselves. Instead. consider the random
variable Y with Y < {—1.0.1}. Here:

1 link traversed in the +y direction.
¥=<46 link not traversed

—1 link traversed in the —y direction.
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Counting with Anti-Bernoulli

The Bernoulli random variable X with X < {0.1} cannot be used to

count paths that reverse themselves. Instead. consider the random
variable Y with Y < {—1.0.1}. Here:

1 link traversed in the +y direction.
¥r—=<n link not traversed

—1 link traversed in the —y direction.

If a discrete path is (discretely) continuous from the minimum y to the
maximum y, the Anti-Bernoulli variable takes care of reversed links.
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Counting with Anti-Bernoulli

Here is a path with reversed link traversal.

]

@ Path reversals require
more information to be

kept for each link.
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Counting with Anti-Bernoulli

Here is a path with reversed link traversal.

Lt

@ Path reversals require
more information to be
kept for each link.

@ A Bernoulli RV at each
link would not maintain a
continuous normalization

iny.
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Counting with Anti-Bernoulli

Here is a path with reversed link traversal.

@ Path reversals require
more information to be
kept for each link.

@ A Bernoulli RV at each
link would not maintain a
continuous normalization
Iny.

@ An Anti-Bernoulli RV at
each link keeps track of
net forward passage of
the path.
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Counting with Anti-Bernoulli

Here is a path with reversed link traversal.

¥ Reversed steps and Bernoulli Z

f
e @ Path reversals require

more information to be
kept for each link.

@ A Bernoulli RV at each
link would not maintain a
continuous normalization

iny.
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Counting with Anti-Bernoulli

Here is a path with reversed link traversal.

@ Path reversals require
more information to be
kept for each link.

@ A Bernoulli RV at each
link would not maintain a
continuous normalization
iny.

@ An Anti-Bernoulli RV at
each link keeps track of
net forward passage of
the path.
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Continuum Limi

@ For non-reversing walks on a lattice, the expected value of the
Bernoulli random variable yields a classical Probability Density
Function (PDF), say Px(x.y) with [~ Px(x.y)dx =1

irsa: 08110045 Page 45/132
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Continuum Limi

@ For non-reversing walks on a lattice, the expected value of the
Bernoulli random variable yields a classical Probability Density
Function (PDF), say Px(x.y) with [~ Px(x.y)dx =1

@ For walks on a lattice with reversed links the expected value of
Bernoulli random variables do not usually yield a continuous
distribution with the properties of a PDF.

However, for some walks with reversed links, the expected value
of the Anti-Bernoulli random variable yields an oscillatory density.
not a PDF! The following model is an example of this.
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Entwined Path Example

@ Forward and reversed
¥ y = paths are ‘Entwined'.
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Entwined Path Example

@ Forward and reversed

%4 - s paths are ‘Entwined’.
" -3
E @ Paths cannot be counted
x by regular Bernoulli.
+1
1
4 = 1
-
+1
A
Entwined Path Enumerative Path
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Entwined Path Example

@ Forward and reversed

N ¥ = paths are ‘Entwined'.
O ) E @ Paths cannot be counted
| 2 by regular Bernoulli.
| -1 @ Sum over all paths on the
) right with Anti-Bernoulli
q% . RV'’s yields a
& 5 2-component Dirac Egn.
| .z (4-component if other
Entwined Path Enumerative Path enumerative path kept.)
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The Entwined Eath Model of the Dirac Equation
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The Entwined Eath Model of the Dirac Equation

@ Using the Anti-Bernoulli random variable Y = {—1.0.1} for
counting classical paths leads to the formation of density functions
under appropriate conditions.

irsa: 08110045 Page 51/132
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The Entwined Eath Model of the Dirac Equation

@ Using the Anti-Bernoulli random variable Y < {—1.0.1} for
counting classical paths leads to the formation of density functions

under appropriate conditions.

@ Paths on a lattice, lattice spacing e.
Direction change probability e m. .

@ Continuity of enumerative paths on the
lattice gives:

o, (y+e) = (1 —emd (y)—emd_(y)
d_(y+e) = (1—emd_(y) +emo_(y)

irsa: 08110045 Page 52/132
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The Entwined Eath Model of the Dirac Equation

@ Using the Anti-Bernoulli random variable Y < {—1.0.1} for
counting classical paths leads to the formation of density functions
under appropriate conditions.

@ Paths on a lattice, lattice spacing e.
Direction change probability e m. .

@ Continuity of enumerative paths on the
lattice gives:

<

o, (y+e) = (1—em&, (y)—emod_(y)
d_(y +¢€) (1 —em)®_(y) +emd_(y)

@ &_. is a mass function that is the expected value of the normalized
sum of Anti-Bernoulli random variables. It is not a probability mass
function since it is not non-negative.

irsa: 08110045 Page 53/132




If we start all paths off at y = 0 in the + state we get, in the continuum
limit: @

_ o—my [cOs(my)
i (sin(my))

Although we no longer have a PDF, note the two-component density
has a rotational feature to its equilibration!
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The Entwined Eath Model of the Dirac Equation

@ Using the Anti-Bernoulli random variable Y < {—1.0.1} for
counting classical paths leads to the formation of density functions
under appropriate conditions.

@ Paths on a latiice, lattice spacing e.
Direction change probability e m. .

@ Continuity of enumerative paths on the
lattice gives:

¢, (y+e) = (1—em&y(y)—emod_(y)
d_(y +¢€) (1 —em)®_(y) +emd_(y)
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Entwined Path Example

@ Forward and reversed

¥ = paths are ‘Entwined’.
| p @ Paths cannot be counted
. by regular Bernoulli.
-1 @ Sum over all paths on the
) right with Anti-Bernoulli
! RV’s yields a
*‘ 2-component Dirac Eqgn.
2 - (4-component if other
Entwined Path Enumerative Path enumerative path kept.)
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The Entwined Eath Model of the Dirac Equation
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If we start all paths off at y = 0 in the + state we get, in the continuum
limit: @

_ o—my (COs(my)
)= (sin(my))

Although we no longer have a PDF, note the two-component density
has a rotational feature to its equilibration!
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If we start all paths off at y = 0 in the + state we get, in the continuum
limit: @

o(y) = e~ (Cos(my ))

sin(my)

Although we no longer have a PDF, note the two-component density
has a rotational feature to its equilibration!

Retaining the x-dependence, we get the difference equations

o (X.y+¢€) = (1—emo.(X—€y)—emo_(X.y)
o_(X—ey+e) = (1 —emo_(x.y)+emo(x—e.y)
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If we start all paths off at y = 0 in the + state we get, in the continuum
limit: @

o(y) = e~ (CDS(WY))

sin(my)

Although we no longer have a PDF, note the two-component density
has a rotational feature to its equilibration!
Retaining the x-dependence, we get the difference equations

o.(x.y+e) = (1—emo.(Xx—€y)—emo_(x.Yy)
o_(x—ey+e) = (1—emo_(x.y)+emor(x—ey)
To lowest order in € we see that:
dor  doy
(_)y — 8)( —— mO_|_ — Mo_
do_ do_ _
(_)y == —W—mfj_+m(3+
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If we write 0. = e, U = (i*) the above becomes:

v _ow
ay ~ “Tox 7y

This is a two-component form of the Dirac equation!
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If we write 0. = e ™y, U = (i*) the above becomes:

o oV W

gy  ZTox 7
This is a two-component form of the Dirac equation!
About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!
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If we write 0. = ey, U = (i*) , the above becomes:

o oV PRI

gy  ZTox 7y
This is a two-component form of the Dirac equation!
About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!

@ We know what wavefunction solutions are ... they are equilibrium
densities of sums of the Anti-Bernoulli random variable.
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If we write 0. = e ™y, U = (i*) the above becomes:
oV ov

This is a two-component form of the Dirac equation!

About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!

@ We know what wavefunction solutions are ... they are equilibrium
densities of sums of the Anti-Bernoulli random variable.

@ We know why we get wavefunctions and not PDFs ... paths have
both orientations with respect to y, necessitating Anti-Bernoulli
identification.
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f_.'+

If we write 0. — e ™y, U =
b

), the above becomes:

ov oV P—

gy  ZTox 7y
This is a two-component form of the Dirac equation!
About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!

@ We know what wavefunction solutions are ... they are equilibrium
densities of sums of the Anti-Bernoulli random variable.

@ We know why we get wavefunctions and not PDFs ... paths have
both orientations with respect to y, necessitating Anti-Bernoulli
identification.

@ There is no ambiguous interpretation with respect to ‘reality’ ... we
know what is being counted.
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If we start all paths off at y = 0 in the + state we get, in the continuum
limit:

o(y) = =™ cos(my)

)= sin(my)

Although we no longer have a PDF, note the two-component density
has a rotational feature to its equilibration!

Retaining the x-dependence, we get the difference equations

o.(x.y+e) = (1—em)o.(Xx—€y)—emo_(x.Yy)
o_(x—ey+e) = (1—emo_(x.y)+emor(x—ey)
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If we start all paths off at y = 0 in the + state we get, in the continuum
limit:
o(y) = =™ cos(my)
¥)= sin(my)

Although we no longer have a PDF, note the two-component density
has a rotational feature to its equilibration!
Retaining the x-dependence, we get the difference equations

o.(x.y+e) = (1—em)o.(Xx—€y)—emo_(x.Yy)
o_(x—ey+e) = (1—em)o_(x.y)+emor(x—e.y)
To lowest order in € we see that:
doy  Jdoi
(_)y — ()X — M O_]_ — M o_
Jdo_ B do_ - o
(_)y — ()X d_ Oy
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If we write 0. = e ™y, U = (;Jr) the above becomes:

v _ v
ay  Zox 7y

This is a two-component form of the Dirac equation!
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If we write 0. = e ™., U = (i+) the above becomes:

ov oV PR

gy  ZTox 7y
This is a two-component form of the Dirac equation!
About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!
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If we write 0. = e ™, U = (E“L) the above becomes:
oV ov .

This is a two-component form of the Dirac equation!

About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!

@ We know what wavefunction solutions are ... they are equilibrium
densities of sums of the Anti-Bernoulli random variable.
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If we write 0. = e ™, U = (;“L) the above becomes:
oV ov .

This is a two-component form of the Dirac equation!

About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!

@ We know what wavefunction solutions are ... they are equilibrium
densities of sums of the Anti-Bernoulli random variable.

@ We know why we get wavefunctions and not PDFs ... paths have
both orientations with respect to y, necessitating Anti-Bernoulli
identification.
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If we write 0. = e ™y, U = (i“L) the above becomes:
oV ov .

This is a two-component form of the Dirac equation!

About the Derivation

@ There is no formal analytic continuation involved, only a classical
counting process!

@ We know what wavefunction solutions are ... they are equilibrium
densities of sums of the Anti-Bernoulli random variable.

@ We know why we get wavefunctions and not PDFs ... paths have
both orientations with respect to y, necessitating Anti-Bernoulli
identification.

@ There is no ambiguous interpretation with respect to ‘reality’ ... we
know what is being counted.
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Dirac Wavefunctions through Entwined Paths

Classical Quantum
Status Phenomenology Fundamental
Phenomenology
Ontology Kinetic Theory -Unknown EPs
Counting Process Yes Ne Yes

Uncertainty Principle Yes Yes
Special Relativity No Yes
Complex Numbers No Yes
Quantum scale physics No Yes

Bridge | non-reversing paths  reversing paths

Table: The partial differential equations from the perspective of classical
statistical mechanics and classical path counting. The Quantum equations

are easily incorporated if reversing paths are allowed. The quantum context is
invoked with a label change, ...y — L.
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Question
Does the Dirac equation so derived actually describe a classical stochastic
process?
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Question

Does the Dirac equation so derived actually describe a classical stochastic
process?

Answer

Yes! Any accountant, actuary or applied mathematician, (in ignorance of QM)
would be comfortable with the derivation. It uses only elementary counting
methods and is easily verified numerically.
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Question

Does the Dirac equation so derived actually describe a classical stochastic
process?

Answer

Yes! Any accountant, actuary or applied mathematician, (in ignorance of QM)
would be comfortable with the derivation. It uses only elementary counting
methods and is easily verified numerically.

Question

Given the long list of interpretive peculiarities of quantum mechanics, how can
they possibly be lurking in a simple classical model.
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Question
Does the Dirac equation so derived actually describe a classical stochastic

process?

Answer
Yes! Any accountant, actuary or applied mathematician, (in ignorance of QM)
would be comfortable with the derivation. It uses only elementary counting

methods and is easily verified numerically.

Question

Given the long list of interpretive peculiarities of quantum mechanics, how can
they possibly be lurking in a simple classical model.

Answer

When we think of y as a spatial variable, the reversible paths are easily
visualized and the necessity of the Anti-Bernoulli random variable is quite
obvious. In the quantum context y is macroscopic time and the implication is that

for the Dirac equation to actually appear, a particle has to traverse a spacetime
region multiple times!




Question
Are causality violations expected? \
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Question
Are causality violations expected? J

Answer

The derivation presupposes a ‘free boundary’ at large values of y. The
Dirac equation propagates the ‘initial conditions’ subject to this
supposition. If there is an observation at large y this will change the
large-y boundary condition that will, in turn have to ‘equilibrate’ with the
initial conditions via the underlying stochastic process. The initial
conditions are always within the past light-cone however.
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Question
Are causality violations expected? J

Answer

The derivation presupposes a ‘free boundary’ at large values of y. The
Dirac equation propagates the ‘initial conditions’ subject to this
supposition. If there is an observation at large y this will change the
large-y boundary condition that will, in turn have to ‘equilibrate’ with the
initial conditions via the underlying stochastic process. The initial
conditions are always within the past light-cone however.

Question
Is entanglement expected in multi-particle versions? J
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Question
Are causality violations expected? J

Answer

The derivation presupposes a ‘free boundary’ at large values of y. The
Dirac equation propagates the ‘initial conditions’ subject to this
supposition. If there is an observation at large y this will change the
large-y boundary condition that will, in turn have to ‘equilibrate’ with the
initial conditions via the underlying stochastic process. The initial
conditions are always within the past light-cone however.

Question
Is entanglement expected in multi-particle versions? J
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Question
Are causality violations expected?

Answer

The derivation presupposes a ‘free boundary’ at large values of y. The
Dirac equation propagates the ‘initial conditions’ subject to this
supposition. If there is an observation at large y this will change the
large-y boundary condition that will, in turn have to ‘equilibrate’ with the
initial conditions via the underlying stochastic process. The initial
conditions are always within the past light-cone however.

Question
Is entanglement expected in multi-particle versions?

Answer

If two ‘particles” are coupled by initial conditions then even if the particles
are ‘observed’ at space-like separations, the measurements communicate
through the initial conditions. They are entangled.
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Question
Does this work comment on Bells Inequalities and ‘Hidden Variables'? I

irsa: 08110045 B = Page 87/132

=



Question
Does this work comment on Bells Inequalities and ‘Hidden Variables'? }

Answer

Most current thought on issues surrounding Bell's inequalities
presupposes that retro-causal information is not possible. This derivation
strongly suggests that the Dirac equation actually assumes that it is
available, is in equilibrium with the initial conditions, and is the source of
unitary propagation!
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Question
Does this work comment on Bég:;ﬂs Inequalities and ‘Hidden Variables'?

Answer

Most current thought on issues surrounding Bell's inequalities
presupposes that retro-causal information is not possible. This derivation
strongly suggests that the Dirac equation actually assumes that it is
available, is in equilibrium with the initial conditions, and is the source of
unitary propagation!

Question

What about the exponential decay typical of the stochastic process
expanding into spacetime. It is simply removed mathematically, but if this
is relevant to QM why don't we see it in nature?

irsa: 08110045

Page 92/132



Question
Does this work comment on Bglls Inequalities and ‘Hidden Variables'?

Answer

Most current thought on issues surrounding Bell's inequalities
presupposes that retro-causal information is not possible. This derivation
strongly suggests that the Dirac equation actually assumes that it is
available, is in equilibrium with the initial conditions, and is the source of
unitary propagation!

Question

What about the exponential decay typical of the stochastic process
expanding into spacetime. It is simply removed mathematically, but if this
is relevant to QM why don't we see it in nature?
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Question
Does this work comment on Bg%\lls Inequalities and "Hidden Variables'?

Answer

Most current thought on issues surrounding Bell's inequalities
presupposes that retro-causal information is not possible. This derivation
strongly suggests that the Dirac equation actually assumes that it is
available, is in equilibrium with the initial conditions, and is the source of
unitary propagation!

Question

What about the exponential decay typical of the stochastic process
expanding into spacetime. It is simply removed mathematically, but if this
is relevant to QM why don't we see it in nature?

Answer

It turns out that you do not need a stochastic process ‘directing traffic’ over
the whole spacetime area. You only need it in a small region as an initial
condition. The rest of the process can be completely deterministic! This
removes the exponential decay.
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Deterministic Propagation
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@ Each path returns to
the origin leaving a
trail of Anti-Bernoulli
RV’s that count paihs.
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Deterministic Propagation
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@ Each path returns to
the origin leaving a
trail of Anti-Bernoulli
RV’s that count paihs.

@ The stochastic
process cycles
repeatedly from the
origin building up a
density of sums of the
AB random variable.
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Component Simulation
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Component Simulation
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Component Simulation

You have opened a document that comtains QuickTime muitimedia content. You can decide whether to piay content now and also set
aptions for what to do when you open this docunment in future.

Olllqt!n muitimedia content this one time
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Component Simulation
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Component Simulation
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Component Simulation
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Component Simulation
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Component Simulation
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Component Simulation
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Component Simulation
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Component Simulation
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Component Simulation 3D, e=' ™!
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Component Simulation 3D, e’ ™!
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Component Simulation 3D, e’ ™!
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Component Simulation 3D, e’ ™!
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Component Simulation 3D, e’ ™!
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Component Simulation 3D, e’ ™!
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Component Simulation 3D, e=' ™!

e RightMoving LeftMoving

e 4 . .

Pirsa: 08110045



Component Simulation 3D, e’ ™!
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Component Simulation 3D TopView, e*' ™!
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Summary

@ The link between the two sets of PDEs is through basic counting.

| Classical Quantum

Kinetic ‘picture’ | Kac (Poisson) Entwined Path

Telegraph/Dirac | %’ .::rz“;g + ao U % | E‘; + imeo,V

Telegraph/KG | ZZ ~ = +iu .4 == + (i )T)E -
- g= s o oy g“w
Heat/Schrdodinger St =Dz 5t =D 5=
Characteristic Bernoulli Anti-Bernoulli
Random Variable | X e {1,0} Yc{1,0,—-1}
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Component Simulation 3D TopView, e*' ™!
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Summary
@ The link between the two sets of PDEs is through basic counting.

Classical Quantum

Kinetic ‘picture’ Kac (Poisson) Entwined Path

Telegraph/Dirac | % - 032% + aezll % = cr;% +imeo,V

Telegraph/KG | ZY _:U% +i U =g t+limry
Heat/Schrédinger % =DZ3 —=iDZ3%

Characteristic | Bernoulli Anti-Bernoulli
Random Variable | X e{1,0} Y<{1.0,—-1}

o
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Summary

@ The link between the two sets of PDEs is through basic counting.

Classical Quantum

Kinetic ‘picture’

Kac (Poisson) Entwined Path

Telegraph/Dirac %U: J_Z)z% + aexll % = crz ’g‘; +imeo,V
FU __ & FY 2.
Telegraph/KG * — o +sz o = =L f’:)
Heat/Schrédinger % =DZ3 Sr=iDZ23
Characteristic Bernoulli Anti-Bernoulli
Random Variable | c {1.0} Y e{1,0,—-1}

@ PDFs: o

(Normalized sum of X's)
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Summary
@ The link between the two sets of PDEs is through basic counting.

Classical Quantum
Kinetic ‘picture’ | Kac (Poisson) Entwined Path
Telegraph/Dirac | %U: J;Z)Z% + aoyll % = criz% +imeo,V
Telegraph/KG | &7 = — +j2U e :;,_f??;z + (i -;E)zb
Heat/Schradinger 2 =D2%% S =iDZZ
Characteristic Bernoulli Anti-Bernoulli
Random Variable X e{1,0} Y €{1,0,—-1}
@ PDFs: o

(Normalized sum of X’s) “omum UMt pppe

@ Wavefunctions:

. »  Continuum Limit -
(Normalized sum of Y's) — Wavefunction
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Conclusions

@ Classical diffusive probability density functions are expected
values of sums of Bernoulli random variables. They are well
understood and do not incite interpretive problems.
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Conclusions

@ Classical diffusive probability density functions are expected
values of sums of Bernoulli random variables. They are well
understood and do not incite interpretive problems.

@ Wavefunctions are generated in a classical context using
reversing paths that require the Anti-Bernoulli random variable. In
this context there are no interpretive problems with wavefunctions.
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Conclusions

@ Classical diffusive probability density functions are expected
values of sums of Bernoulli random variables. They are well
understood and do not incite interpretive problems.

@ Wavefunctions are generated in a classical context using
reversing paths that require the Anti-Bernoulli random variable. In
this context there are no interpretive problems with wavefunctions.

@ This suggests that the Formal Analytic Continuation used in the
quantization process may simply be a shortcut for replacing the
Bernoulli RV with the Anti-Bernoulli RV. as would be appropriate
for the presence of time-reversed paths!
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