Title: Doing physics with non-diagonalizable Hamiltonians and the solution to the ghost problem in fourth-order derivative theories
Date: Nov 28, 2008 11:00 AM
URL: http://pirsa.org/08110037

Abstract: It has long been thought that theories based on equations of motion possessing derivatives of order higher than second are not unitary.
Specifically, they are thought to possess unphysical ghost states with negative norm. However, it turns out that the appropriate Hilbert space for
such theories had not been correctly constructed, and when the theory is formulated properly [Bender and Mannheim, PRL 100, 110402 (2008).
(arXiv:0706.0207 [hep-th]] there are no ghost states at all and time evolution is fully unitary. Unitarity can be established for theories based on both
second and fourth order derivatives, and for theories based on fourth order derivatives aone. In this latter case the Hamiltonian is a
non-diagonalizable, Jordan-block operator which possesses fewer eigenstates than eigenvalues. Despite the lack of completeness of the energy
eigenstates, a consistent, unitary quantum mechanics for the theory can still be formulated [Bender and Mannheim, PRD 78, 025022 (2008).
(arXiv:0807.2607 [hep-th]).] The implications of these results for the construction of a consistent theory of quantum gravity in four spacetime
dimensions will be briefly discussed.
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EVEN IF NON-NORMALIZABLE. STATES CAN STILL BE COMPLETE
Completeness of non-normalizable modes

Philip D. Mannheim and Ionel Simbotin
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THE QUANTUM GRAVITY UNITARITY PROBLEM

[n four spacetime dimensions mmvariance under
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is the conformal Wevl tensor. The associated gravitational equations of motion are the
fourth-order derivative:

Ly _a(_ x - C By R * _ T 10)

T

C'onformal eravity is thus a renormalizable theorv of eravityv since e, 1s dimensionless. Nore-

pver. conformal gravity controls the cosmological constant. Specificallv. in a Robertson-

Walker cosmologyv we have C'*YWF = (. to vield
TH — ). i
so unlike the double-well Higes potential. conformal gravity knows where the zero of energyv

is. However. since the field equations are fourth-order derivative equations. the theorv is

Choueht to have necative norm chost states and not be unitarv.
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Reconstruction of the square step 1y ( w|) = 1. 1 2. 'y = 0 otherwise via sum
Vyllwl|) == a;Yo(yie™ on DIV ERGE“\.T NON- "\OR‘\.I—\LIZ ABLE modes with basis states

which obeyv Y;(y;) = (.

| : - - : - , - 1.1 T T
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CONCLUSION: All that matters is LINEAR relation: v(w) =X, amfm(u
No need to require BILINEAR relation &, f.(u) f.,(w) = =" §(w — '
IMPLICATION: H|v) = Elv) is linear. No reference to (v'|v'). Thus left eigenvector which
pbeys L|H = (L E need not be conjugate of right eigenvector which obeys H|R) = E R).
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THINGS WE TAKE FOR GRANTED IN QUANTUNMI MECHANICS.....

(1) The Hamiltonian must be Hermitian

States such as enerov eigenstates must form a complete set
[5) To be complete states must be normalizable

[6) The scalar product must be given as (min) = 9,

| TR e _ .
[7) The completeness relation must bestven bv = n)(n|l =1

(3) Theories in which (n|n) is negative are unphysical and cannot be formulated i Hilbert space

(9) The Hamiltonian must be diagonalizable
... ATN'T NECESSARILY SO

AND FOR THEORIES BASED ON FOURTH-ORDER DERIVATIVES....
ALL THESE THINGS ARE NECESSARILY NOT SO.......
AND CAN ENABLE FOURTH-ORDER DERIVATIVE CONFORMAL GRAVITY TO
BE A CONSISTENT THEORY OF QUANTUM GRAVITY IN FOUR SPACETIME
DIMENSIONS Page 11/104
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THE QUANTUM GRAVITY UNITARITY PROBLEM

[n four spacetime dimensions invariance 1nndel
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s the conformal Weyvl tensor he assoclated gravitational equations of motion are the

fourth-order derivative:
ta 20" .. — C" R, ] —T"

C'onformal eravitv i1s thus a renormalizable theorv of eravitv since a, 1s dimensionless. NMore-
pver. conformal eravitv controls the cosmoloeical constant. Specificallv. m a Robertson-

Walker cosmoloev we have C'*Y% — (). to vield

is. However. since the field equations are fourth-order derivative equations. the theory is

Fhoueht to have neeative norm
Pirsa: 08110037 Page 12/104



Pirsa: 08110037

M= \k=— M?

Page 13/104




e
PAIS-UHLENBECK OSCILLATOR

sg_T i ” e s [p Ty — /i,"_ = = Jll[_- S m.._‘ = I.I';I i
d*z d-z
e “h_ —— ] = _w_“h_ - ——— .
di= aE -
e &= e J— I—' i o —— i ': I'—I' — I]
[y —— :ff_ " Wy )z WIWS 2

i ) -
_ . 1
! ry - e ! :j l
Ha { - f i |
s — — (11 —— (I -— )
P= — 2Vl — Gq — i YWwilolas — as)

. i s 1.
Pr = — Y@ + ay) — ywsHilas + as )
Pirsa: 08110037 o = = il = Page 14/104



Pirsa: 08110037

T L2 AP\ AP
: i il L I =
Fr =

#

Page 15/104




PAIS-UHLENBECK OSCILLATOR
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Negative norm state problem looks insurmountable, but.....
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERMITIAN

p— T
| — e ¥ 1 " = . J° — — T e

—— - _—— . - £ - - - uA - —— 4 —_—

The states of negative norm are also states of INFINITE norm since | drd=o (= . r)jvyl=z.r) is

divergent. and when acting on such states. one CANNOT set p. = —id/d-

p- and - not Hermitian — they are anti-Hermitian.

H——_— = SR U e = S SR = H — ()
LI “) - 1 =
Hermitias = Hermiti — 1 — Hermitian H 31
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpv. =. )
ARE NOT HERNMITIAN

|I R el —
The states of negative norm are also states of INFINITE norm since [ drdzu (= . r)jvyl=z.r) is
divergent. and when acting on such states. one CANNOT set p. = —id/d-
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Negative norm state problem looks insurmountable. but.....
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PAIS-UHLENBECK OSCILLATOR
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERMITIAN

: 2
The states of negative norm are also states of INFINITE norm since | drd=u (. r)uvylz.r) is

divergent. and when acting on such states. one CANNOT set p. = —id/d-
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p- and - not Hermitian — theyv are anti-Hermitian.
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Negative norm state problem looks insurmountable, but.....
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpv. z. p
ARE NOT HERMITIAN

The states of negative norm are also states of INFINITE norm since | drdzo (. r)vylz. r) is
divergent. and when acting on such states. one CANNOT set p. = —id /0=
|
e ST i o S IR,

p- and : not Hermitian — theyv are anti-Hermitian.
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERNMITIAN

The states of negative norm are also states of INFINITE norm since [ drd=u 5 (z. r)uvylz.r) is

divergent. and when acting on such states. one CANNOT set p. = —id
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Negative norm state problem looks insurmountable, but.....

Pirsa: 08110037 Page 28/104



e
PAIS-UHLENBECK OSCILLATOR

£ 2 _T-. _-"_ e : .f_ l’;- - .-_ ,_,.._,I ] — .'E'l:- B T .-1 [- 3 -_.' ...-\..-': == IE.I: _
1 = | . - _w—w-_' —— ] >

A+ dt- B
Ipy = 5 [ dt[Z” — (W] +w3)2” +wjwsz” ’

7 4 g ‘)

I) T f — |
-.Jr |l 'Ir - f" —
== i — €Lt — (I = (I
Pz = tjwsr a)] — @) + jwwaias — ay).

pr = —yun(aj + a; o3(as ! %)
Pirsa: 08110037 B = = - = Page 29/104



QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERMITIAN

: 2
The states of negative norm are also states of INFINITE norm since (drdzi (= rloylz.r) is

divergent. and when acting on such states. one CANNOT set p. = —id/0-

p- and - not Hermitian — they are anti-Hermitian.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

_‘.", = - - I i | —y !i")
&—=1, PR | €H—0hk 6 —e*F 32
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Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian /4 1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of /
and H are not unitarily equivalent., and thus ....
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+:/r” has a completely real energy spectrum.
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Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian H is thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM

= )/ ) /9 4 {_: & ) ) g 2 IS IS e

H=—e®PgR2—= % 1,22, 1 227 35
2y 2Z2yay 2 2 i

Hln) — Eyin), Hin) —Egn), |n} —=e>“in) 36

k= ) , =12 pig—O ) 1.—Q i
A|H = Ex(n|. (n| = (nle¥/?. (n|le¥H = (nle YE, 3

The energy eigenbra (nle % = (n|PC is not the Dirac conju-
gate of the energy eigenket [n), since (n|H' = (n|E, is not an
eigenvalue equation for .
” ”;r s ;‘IH.-'_H- Yn ‘”| —§ N Eifﬂi’j‘- E; H‘ 38
o : Nk _ 1 —O :
(nle *|\m) = 0m.n. 2n)(nl|e S92 0 n)Enp{nle (39

The ¢ norm is positive and so theory is unitary. Since C~ = 1.
its eigenvalues are +1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOEK AT WAVE FUNCTIONS. FIND THAT Hpv. z. )
ARE NOT HERMITIAN

The states of negative norm are also states of INFINITE norm since [ drd=u (= . r)vyl=z.r) is

divergent. and when acting on such states. one CANNOT set p. = —id/d-

p- and - not Hermitian — theyv are anti-Hermitian.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/1r” has a completely real energy spectrum.
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Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / i1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of H
and H are not unitarily equivalent., and thus ....
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1 NON-HERMITICITY AND UNITARITY

s(t)|as(®)) = (as( <(0)) = (asg(0)]as(! NOT UNITARY 12
—Au(t) = Au(t)H — H' A —Ag(t) = An(t)H — H 45

LEFT-EIGENVECTOR [S NOT DIRAC CONJUGATE OF RIGHT EIGENVECTOR

— (Gs(0)|as(0 UNITARY 13
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Negative norm state problem looks insurmountable, but.....
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. z. )
ARE NOT HERMITIAN

The states of negative norm are also states of INFINITE norm since [ drd=v (= . r)jvylz.r) is
divergent. and when acting on such states. one CANNOT set p. = —id/d-
il iT
e = ——— g <

p- and : not Hermitian — they are anti-Hermitian.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/1r” has a completely real energy spectrum.
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Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / i1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of /
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM
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PO . | =1 Q/2 -y —Q =
A|H = E,(n], (n|= @|e%=., (nle %H = (nle E, 3

The energy eigenbra (nle % = (n|PC is not the Dirac conju-
gate of the energy eigenket 1), since (n|H' = (n|E, is not an
eigenvalue equation for /.
(R|M) = 0ma, Xin)(n|=1, H=2X|n)E,mn| 38
N SR : - ¢ _ 1 —O .
(njle” *|m) = 0m.n, 2|n)(n|€ =1. H=X n)En{nje 39
The ¢ “ norm is positive and so theory is unitary. Since C~ = 1.

its EIgEIlVEllllEb are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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1 NON-HERMITICITY AND UNITARITY

s(8)|as(®)) = (as(0)|eF et ag(0)) = (s (! NOT UNITARY 12
— 4 — 4 H —H*A 1 — A4 H — H 45

LEFT-EIGENVECTOR IS NOT DIRAC CONJUGATE OF RIGHT EIGENVECTOR
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERMITIAN

: 2
The states of negative norm are also states of INFINITE norm since [ drdzo (= rleglz.r) is

divergent. and when acting on such states. one CANNOT set p. = —id/d-

p.- and - not Hermitian — theyv are anti-Hermitian.
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e
PAIS-UHLENBECK OSCILLATOR

HE D) ~ 2(DFE, oy = (BB MOYZ, o — | 7
d*z d=z
| O --h-__...-u..-'l ____,,____-___q___-_._ | )
dt= = dt- -
= )
Ipy = o [dt[Z™ — (W] +w3)2” + wjwyz” |

_f."r —=7 = f'} ——3 jl
e —— 6l — (v — (I — {1
I) - — _;- i | 'S T — (I e 15 (L Ty gy — (15 )
I. - --F\-_--m-l_—'- {!r_ i —— .-».-_ |r'|r_ 7,

“)F)

Pirsa: 08110037 B : = - = Page 43/104



Pirsa: 08110037

= _-l _"F‘ _1' _'F‘ o= __ ir‘
L ean ghost Tes
N
E—E =B

Page 44/104




PAIS-UHLENBECK OSCILLATOR

HNE.E) ~ 2(D)eFE. wy = (B2 + MAY2, =K 7
d : d=z 5
= ....-....__...q..-" — _WLT-..L.--‘- —g =
.r"r_"l'_ - I‘-"r?.._'. i -
I[py = 5 [dt|Z" — (W] +w3)2” +wijwrz| )

e —u i — (k1 —— (1 — {1l
D> — T ViehiGlalélis — €1 + 2vwiwalaos — as)

- . P T
Pr = —Ywila] + ay) — ywsHlao + as 7
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3
|

ai. ay| = : an.adsH — — 24
)~ Tr—— = = = )~ e —— —
a1ty = a-14)y = () H-—* R —— - ()
a5 o | e "l M ot =
asas|i? \J 5

Negative norm state problem looks insurmountable, but.....

Pirsa: 08110037 Page 46/104




QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERNMITIAN

The states of negative norm are also states of INFINITE norm since [ drd=v(z. r)vylz.r) is
divergent. and when acting on such states. one CANNOT set p. = —id/0-
= | { /
e o = g e IR
! |-f:
p- and - not Hermitian — they are anti-Hermitian.
pe— g S MRS = P S i MR 29
l.Lr —_ —_— —_— — | s = e —_.— — T — H —— i)
] - -
Hermitias - Hermiti =1 n — Hermit H 1
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

‘4'-\" q Wan 1 W 1 —y II'II;l F T

2_1. e PFl—0 |[E.H—0 €—~P 39

() ==l '*L_r _J _r ] V¥ — _ l Oy |-F:F.I_ = —h‘j | 243

e — CRIEINY L LYyl (k — — 10§ | — | =)
9 9

T _ . —Q2g,.Q2_ P 9 T2, T > %9 3 |

H — £ - Hf— . — - B __}H_;_f ¥ —jﬁlf —'—_q}.g.]_..u_}u D s

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / i1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM

= _I‘-} -} -} ‘.J f-)_ {_E_ " 7. P i v I---
Il —e VEHeMIS—— . — _t apxt - utuny 35
T~ ~ \ O /2~
Hin) = Exin), Hin) = Exn), |n) ==/ “|n; 36

. . 1=1.Q/2 O 1. —Q S
n|H = Ep(n], (n|= @nle%/=. (nle %H = (nle CE, 3

The energy eigenbra (nle % = (n|PC is not the Dirac conju-
gate of the energy eigenket [n), since (n|H' = (n|E, is not an
eigenvalue equation for /.
(nlm) = 0man, Xln)ym| =1, H =2X|n)E,(n 38
PR ) SR : ~ _€) _ _€) ;
(nje “\m) =O0m.n. 2|n)(nle <1 Il En(nle ™ 39
The ¢ “ norm is positive and so theory is unitary. Since C~ = 1.

its E'lgen\«-alueb are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+i/r” has a completely real energy spectrum.

& =1, |C.FF—0 |C.H|—0 C—e*F 32
()_ T . ___q__1 ) __}.' 1 — - l ' |--i.-.___...-.._}! i
Q2 = alpq S, e <

9 o)
- 0Py P, € Y29, 7 9929 ,
H—e “He"'"=—+—s+t_ufhr +qupy 34
alf e -h]_ 2 el

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian /H is thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of /
and H are not unitarily equivalent., and thus ....
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERNMITIAN

. D |—{wy +we Junqwaz® + iywpunzr — —{wy +um)a I
The states of negative norm are also states of INFINITE norm since [ drd=o (= . r)jeylz. r) is

divergent. and when acting on such states. one CANNOT set p. = —id/0d-

p- and - not Hermitian — they are anti-Hermitian.
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PAIS-UHLENBECK OSCILLATOR

i -_ri _T-_ T e : ._f'_ "- ;II-- .-_ __,___I' — .E:- B Tl ._1 [- = —. P ) — 'E-‘ fi
d*= d-z
ey —+—aln T u)a s — U ™~y
i'JJT_ i f_lnfrT- -
Ipy = 5 [dt[Z” — (W] +w3)2” + wjwsz” '

o —— R — {11 — — (1] -
& I &
Y. — PV ]S I — (1 — v sl (3o — (15 )
[ g e "‘r_ = e ’r_ g
— — & (] — R — Ao (] — (15 )
iy s ' e i )

pr = —ywilay +ay) — ywslas + as .5,
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Negative norm state problem looks insurmountable. but.....
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

C>=1. [C.PT]=0. [C.H]=0. C=¢“P 39

- ¥ 5 5o ~ w1 + wo)

Q = alpq + vwiuwsry|. a = loo | 3

o ST
) )
€D ) /9 P q- Y = o Y 9 9 9
H—e Y/2HeS/= — =— +t 3+ -wWiT +Swuay 34
2 2y 2 2

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian H is thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM

= Ny 3 /9 J o 5 <y <) & ¥ D 9 i
B—e Q2P 2 + = 4 Lu2:2 4 Lodudy? 35
e = - )/~ 3 1
Hln) = Ex\n), Hln) = Exn), |n) =% “n) 36

=y

o= ! . 1=1.Q/ - 1.—0 /1. —Q I
BlH = E(it], | =(nles'~, (nle “H = (nle *E, 3

The energy eigenbra (nle % = (n|PC is not the Dirac conju-

gate of the energy eigenket |n), since (n|H' = (n|E, is not an
eigenvalue equation for /.

ﬁ._f--? H? = ri”,_”_ Y| ’-:f-.?i =1 H=—Jn) E” H| 33
&} \ - % —() : - —&) .
(n|e '-lm_ = Omn, 24n)(nle * =1, H =XIn)E,{nle ™ 39

The ¢ “ norm is positive and so theory is unitary. Since C~ = 1.
its ElgEﬂVEllllEb are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

=1, |C FF|—0 O H)—0 € —e*F 32

- N - 7 e S . . |21 w2
Q = a|lpqg + v wiwsry|, a=——-"-log | | >

Sl Tl W D
By oy
. — 0/ () /2 }'}_ fjld 3 o 5 % 2 B TS e
H = “FHe" " =—1+4+——5Ftans Lt uquoy 34
2 £z ...h]_ 2 Pl

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian /H is thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of H
and H are not unitarily equivalent. and thus ....
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hper. -.
ARE NOT HERNMITIAN

The states of negative norm are also states of INFINITE norm since [ drd=v (. r)jueylz. r) is
divergent. and when acting on such states. one CANNOT set p. = —id/d-
i "7
e — = S ),
— ' f.-r- =
p- and - not Hermitian — theyv are anti-Hermitian.
| = P32 o —Ap=/2 . — P ey T AP2 — 20
f—r:'—— C - uy iy '.——___I'___ :‘er — {)
Hermitiaz = Hermiti = — Hermitian H 1
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THE QUANTUM GRAVITY UNITARITY PROBLEM

[n four Spacetine dimenslions mvarialce undael

. | : k. :
C Aprs — H = = "m_: ey — YAxYpuw| — = LAY, -'R = »_n'ﬁ’_l.' — Y Jg?h' 5 _'.-"__-~'JE' hE | J

0

E 1 I - | 3 n - T 2 & ] . il hai=: | . d I = . s il
Is tne Oniorimal Wes 1 [ensor 1 e assoclated eravitallonal edinations ol Mmotiol are e

fourth-order derivative:
o, |20, — OBy —T™

C'onformal eravitv i1s thus a renormalizable theorv of eravitv since a, 1s dimensionless. MNore-

oravity controls the cosmological constant. Specificall

is. However. since the field equations are fourth-order derivative equations. the theorv is
thoueght to have negative norm ghost states and not be unitarv.
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GHOST PROBLEM AND UNITARITY
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

C>=1. [C.PT]=0. [C.H|=0. C=¢€%P 32
: r 2 A A , 1 W] T w22 S
Q = a|pq + v wiuwsry|. a=——"log]| | %
' - Twiwzr Wi — W
o) oy
. O/ O/ i”_ ff’_‘ ) . ) 3 S B B .
H=e “/"He"'" = —t+5——5+wiz” +Jwijwsy

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian H is thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM

= o o = ) 'y {J & <) ) Iy =} ) =) SHE
H — ¢ Q “Fle /= = I— 5 T 1’— T WL T TwWWhly )
Hin) = Exn), H|n) = Euxn), |n)=e<' <n) 36

gt~ . . 1 Q/2 O iy T
A|H = Ex(i|l. (n| = @le%>, (n|le ¥H = (nle “E, 37

The energy eigenbra (nle % = (n|PC is not the Dirac conju-
gate of the energy eigenket n), since (n|H' = (n|E, is not an
eigenvalue equation for /.

f__f--i' f},‘.r:-_; = ai”f,'”_ EH -:_:,r";.r| — 1 H — E.H E ”| ::;;
/ —f} \ = e o _—l(__) ¥ . _l‘.} ‘
(n|€ -!m._ — Omn, 2n)Ynle ¢ =1, H =3Xn)E,(n|le “ 39

The ¢ “ norm is positive and so theory is unitary. Since C~ = 1.
its E'lgenvalue&a are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpv. -.
ARE NOT HERMITIAN

1) @ . - o
(rr
The states of negative norm are also states of INFINITE norm since [ drdzo (= rleylz.r) is
divergent. and when acting on such states. one CANNOT set p. = —id /0=
7 ] i
o —— — L Sl e — _‘\
r.-f'
p- and - not Hermitian — theyv are anti-Hermitian.
— P32 —Fp=/2 — eTP:=3/2y —FP=T/2 20
H=—— — — 7+ 5 et = H — ()
] - -
Hermit = Hermiti e n—H G0t 7
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

_1'I--'I W 1 Wan 1 i = f.—l x
=13 . FPE—0 |CH—=0 € —c-F 32
I = BE, i 1 = |"';"'.f_ BB """"j | PY
Q = a|pq + v wiuwsry|. a=——"0Hlog]| | 33
o Jwiwn Wl W
) g B F a2 F o :
H = - HF i :“}_ﬁ_ﬁ__]*lf —:_-;.1..._-_3};‘ 24

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / i1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of H
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM

- OO0 F q- 3 T 2 95 e
H=e “/"He"'" =—+—5+ wiz” + Jwjway 35

9

Hin) = Ex\n), H|n) = Eun), R} — e's “|7a) 36

=y

(=i " . ~1.Q/ 0 i€ S
n|H = Ex(nt|]. (n] = nle%/~. (nle “H = (nle “E, 3%
The energy eigenbra (nle % = (n|PC is not the Dirac conju-
L 19 o
gate of the energy eigenket [n), since (n|H' = (n|E, is not an
eigenvalue equation for /.
':'_f-'? f}?j.: = ;‘I”.,_”_ Y.|n r.l:,r-';r! — H =YX m)Enin 38

—() - % g —{() : - —() ;
\nje -~ ”! — Om.n- )3 n)NE = — i H =Yln E.—;R.H e - 39

The ¢ norm is positive and so theory is unitary. Since C~ = 1.
its mgenvalueb are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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1 NON-HERMITICITY AND UNITARITY

: 2 — (ae(l z(0)) = (ag . NOT UNITARY 12

LEFT-EIGENVECTOR IS NOT DIRAC CONJUGATE OF RIGHT EIGENVECTOR

== rs( 0 UNITARY 1S
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....THE NORM IS NOT THE DIRAC NORM

= - J' £y = o) Ty {Jj 7 ) ) rl =} =) =) e

H=¢ Y= HeY = = £ 1—} + — W T + Wy 39
29 29wy 2 p. i

i & Ve T Sy

Hin) = E,—; ). Hin) — L'—_,;.gr!.. i) — €™ N 20

fli= _ . 1=1.Q/2 vy ia— @] G
n|H = E,(n|l. (n|=(nle¥=. (nle %H = (nle FE, 3

The energy eigenbra (nle % = (n|PC is not the Dirac conju-
gate of the energy eigenket |n), since (n|H' = (n|E, is not an
eigenvalue equation for /.
” ,rn, — ‘EIH_H- E 7 ’”| = H o E.H E H‘ _':;"‘_w
L ;S ; ~ —Q | i) .
\2|€ F|M) = Om.n. )3 n)\n|e & = 1. H = Yn E.r;f.lf? € & 39
The ¢ “ norm is positive and so theory is unitary. Since C~ = 1.

its mgen\«-alueb are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

1.-'| 1 VW | i Wan ] —y fr) '3 T4
&=41, C.FF—0 |C.HI—0 C€—e<F 32
: " o) ) oy _ _T__ ||_,;_.: e _,_.'-'.l‘ .'l
Q = alpg + v uwjuwsrzyl, o« =—-"-Ilog |— — 33
b TwWiw2 W W
QP g.Q2_P € Y22 Y 2929 .
H —e ~He™ " =o—to -+ uiF +ujuoy 3

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / i1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of H
and H are not unitarily equivalent. and thus ....
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1 NON-HERMITICITY AND UNITARITY

: 2 — (ol 2(0)) == (ax = NOT UNITARY {2

LEFT-EIGENVECTOR IS NOT DIRAC CONJUGATE OF RIGHT EIGENVECTOR

= (g (0)|as(0 UNITARY 35
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NON-DIAGONALIZABILITY AND UNITARITY
THE SINGULAR EQUAL-FREQUENCY LIMIT
In equal frequency limit the diagonalizing operator () becomes

singular and partial fraction decomposition of propagator be-
comes undefined.

volx.y.t) = exp — (W] T W '..f_': “F w"_w‘:_{.j: — JWWoyr| expl —iEgt).
Eg = (W —.:_} /2 510
vilz,y,.t) = (x + woy)vplz, f!.f!r_"““"—%. Ei = Eg+ wy
Ua(x.y.t) = (r +wy)vglz.y. t e 2t £y = Epg+ wo Y|
UOtE, I L] — eXpi— _.,‘:;;;: = H-::.U-f' ) w‘-f': —iwt|, Epg=w
_ _ 52
! [ 4 A 3 e e Y U0\, Y. f F_fh-f. tq' — tq“ —1 .Hj..:}

TWO one-particle states have collapsed into ONE state.
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THE MISSING ENERGY EIGENSTATES....

| by 3 e e 2

H = T i
RE) —-— 2. - a l] — '+ €. Y — ] — € =

ll ) P _l_w._ = L —
ﬁ_ N+ € Ns — € 1
2w+ €) = | 2w —€) = )

€ —f
) y .
—F ] - +e ™ — € o — € U ¥

.H | - Y | _.h; = H]

-;} .-:I g
. | 2+ € —\ad — € )€ o
L= | ’

_-'_i{_.w. 2 ]_4. B Bt I% _j..-«.- B P

; L0 1

Non-diagonalizable. Jordan-block matrix with TWO eigenval-

ues (A = 1. Ao = 1 since ITr = 1. Det = 1), but only ONE

eigenvector.

l 1|f"_||"—-—-‘[|
‘.H 1|”f|_| d |
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... BECAME NONSTATIONARY

; . ol Y. 1) — Uiz, . 1
Wial\T. 1. — i : '
1 o D¢

= (x +wy)el + y| Yplzx.y. 1) b 61
I!’Jil " I ._ (J*_ 9 S P ! -a-.]_ ; _]_
—WE, ¥, — | — ==Y E -4l i UE. 4.1 D
Ot ' 2y Oxr= dy 2 = :

Stationary plus non-stationary together are complete since

just the right number of independent polynomial functions of
r and y.

9, : & F- =
ﬂ— f r‘!l_!' rf_f; { IB o il /o f :‘_‘_ll . TN [) = — rf.rrf;;_r‘_ I B\, Y, [ ‘_1 iy A [
I - dy ' = - |
62
e, | |
HTf [dzdyvg(z.y.t)Va(z.y.t) =0 63

Norm preserved in time so time evolution is unitary.
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Conformal Supergravity in Twistor-String Theory

N. Berkovits and E. Witten

June 2004 (arXiv:hep-th/040605). JHEP 0408 (2004) 009

“1he net effect is that the translation generator D acts as
¥

IHP

where P would r present ort “Ila]l‘.‘t' translations and the off-di: L O nal % arises
from [D. 9| # 0.

This matrix is not diagonalizable. This clashes with our usual experience.
We are accustomed to the idea that the translation generators are Hermitian
pperators and so can be diagonalized. However. conformal supergravity is not
a unitarv theorv. and one svmptom of this is that the translation generators

are undiagonalizable.”

Bender and Mannheim: Not so fast.
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THE MISSING ENERGY EIGENSTATES....

7 1 (o~ + € dw™ — € _
ey — = W =wAHE wr=w — ¢ ¥l

ll o) P _l_ g —

) S = &) =
o +€) = | Sl —'€) = )3

E —
9
(1Y (4P -3, (wie O )
o U i—‘ !"‘ — . 1§
\ 2w £- o= — € 0 2w — €

- |jw T = i _._n.nu- o ‘%-IF s
"f“ — ‘ ) o ¥

_‘)J_* AL T O s Pa Do L ele=

| L)

Hl}_:f—:l'nzjﬁ _H:_":\

Non-diagonalizable. Jordan-block matrix with TWO eigenval-
ues (\f = 1. Ao = 1 since ITr = 1, Det = 1), but only ONE
eigenvector.

! y -‘K — 1] -“:11.-i

1 1)(e) (e
‘-H 1‘ f/|:| cd
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NON-DIAGONALIZABILITY AND UNITARITY
THE SINGULAR EQUAL-FREQUENCY LIMIT
In equal frequency limit the diagonalizing operator () becomes

singular and partial fraction decomposition of propagator be-
comes undefined.

o\ X, Y. L) = eXP — W T W ..f_"l T w'-_w‘j_{_,f: — JWiuwWHyr| expl —iFEgt).

EH — (W] — W /2 510,

I' f”_-f_ — !—_._._H"f (03] i ”’_f‘ﬂ _.Im-l.;. El =— () —'—...._,l
Uo(x.,y.t) = (x+wiy)g(z. y, t)e 2" E> = Eg+ w» 51

volz, y.t) = exp |—yw’y —yw yr —ywr” —iwt|, Ey=w

i | -
' it . : 4
V(. y.t) = (r +wy)plx.y.t)e ™. Py = BEg+w 53

TWO one-particle states have collapsed into ONE state.
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... BECAME NONSTATIONARY

ole. Y. t) — iz, .1

halz, 1) — hm -

i _,f’_-
— [(x + wy)it + y| Yo(z.y.t)e ™" 60
e, r f 1L @ 9, 5 9 Y a5 ! '1
iI—IWNE. Y. L) —]— W E W 1Y E .1 D
It : | 2vOx= Y 2 = '

Stationary plus non-stationary together are complete since

just the right number of independent polynomial functions of
r and y.

g : d r =
i— [ dxr dy IB T,y talz, y, £) = — dxr dy r- vplz,.y, t)vslz,y, t
o4 - dy t _" - |
62
e, | __
— [ dx r_[‘f.; :‘U . 1.t WANT. Y, g ==l O
ot | | § |

Norm preserved in time so time evolution i1s unitary.
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Conformal Supergravity in Twistor-String Theory

\ HH"_'I@ ri'frrﬁ ;:Ilti F, \'\Lii"ﬁ-l[

June 2004 (arXiv:hep-th/040605). JHEP 0408 (2004) 009

“The net etfect 1s that the translation eenerator D acts as

where P would represent ordinary translations and the off-diagonal * arises
from [D. !{-J'"jr__ ==}

This matrix is not diagonalizable. This clashes with our usual experience.
We are accustomed to the idea that the translation generators are Hermitian
operators and so can be diagonalized. However. conformal supergravity is not
a unitarv theorv. and one svmptom of this is that the translation generators

are undiaconalizable.

Bender and Mannheim: Not so fast.
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... BECAME NONSTATIONARY

. wWwlxE.y.1) e 1.1
a2 5] = i 5¢
=l | [ s = r;f.f——r; UVO\TL. Y. e 25 GO
f! I ._ !'j_l 9 y ) “ ; -a-.1 l
i—w(x. Yy, t) = |— : — I +yw T+ —wy |vlzE.y. 1 O
Ot ' | 290=x° Dy 2 . | '

Stationary plus non-stationary together are complete since

just the right number of independent polynomial functions of
r and y.

f.} f) - =
i— [dxdyvg(z,y,t)Ya(x, y, t) = — r[uh;r— vlr.y. t)va(z.y.t
ot : dy ‘ ] J
62
_d | s
i— [dx dy vplr.y.t)vs(r.y.t) =U 05
ot | ' - |

Norm preserved in time so time evolution is unitary.
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+i/r” has a completely real energy spectrum.

s S— T oy 1 —¥ () 3 T
C2=1. [C.PT]=0. [C.H|=0. C=¢€9P 32
. N iy ) =} = L ."'L_ _""'__}I| =)
Q = a|lpqg + v wiwsry|, a=——-log | %
' - T2 W W
=7 =)

. _ O/ /o [;'_ I’f‘_‘ s Yy iy 3 3 DD :

H —e S/ Hew "= —— +t =+ ;WiT + Wiy 34
2 oty T Z Z

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / is thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of H
and H are not unitarily equivalent. and thus ....

Pirsa: 08110037 Page 80/104



QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERMITIAN

The states of negative norm are also states of INFINITE norm since [ drd=v (. r)juvylz. r) is

divergent. and when acting on such states. one CANNOT set p. = —id/d-

p- and - not Hermitian — they are anti-Hermitian.
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PAIS-UHLENBECK OSCILLATOR

HME D) s 2T e — (B MDY= o —E 17
g = : d-- :
1 _.._.'____,._,1 —__-_h.-._r e S
dt+ = dt- -
= | |
[II :—_...r]’.f_ "-_ _._-_...- :-_.a.-...-:_ )

‘frj. ——1 .f-'.l == ._}l
., el | . -— {1 —+— (1 -— L=
IU_- — W_#: .r,.f; — (1 -+ a'"ﬂ'*ﬁ'; H; — H_'F-
— — RNy — B3 )] — i B — (o

j‘j.. — — YV th1 1 €L —— ISl 1o — (I :..}1'
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Negative norm state problem looks insurmountable. but.....
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QUANTUNM MECHANICS IS A GLOBAL THEORY. NEED TO SUPPLY GLOBAL
INFORMATION. NEED TO LOOK AT WAVE FUNCTIONS. FIND THAT Hpr. -.
ARE NOT HERNMITIAN

- — —_— . - - - - =d o2 —— s 4 —_

The states of negative norm are also states of INFINITE norm since [ drd=u (. r)uvylz. r) is

divergent. and when acting on such states. one CANNOT set p. = —id /0=

i’ Fay |
-y o D S IR
and - not Hermitian — theyv are anti-Hermitian.
— g™ Log— N S —_ 3= — ™ = = - = 20
H = — — o pld —_.:.I —_—— :H = i)
Hermitian [r.p] = i. Hermitian [y.q] = i. non — Hermitian H 1
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The Hamiltonian is not Hermitian — but it is PT symmetric.
and thus still has real eigenvalues. Bender and collaborators
showed that H = p~+/r” has a completely real energy spectrum.

=1 |C.PE—0 |C.H—0 &E—eF 32

U 3 WK 1 (W1 + w2)
(_* — |pq + Y WikoIy|, (k — L_"_‘l | =J=)

s TwWiwn W —w
3 Y
¥ 2272 ¥ , ¥ 1 22,7222 :
H =k - _HF - :-‘:-_,._-'},._'_3_:“1'! —:_.;1w:_?,f 24
¥l Lz -.u]_ Flad 2

Hamiltonian can be diagonalized by a similarity transforma-
tion which 1s non-unitary since () is Hermitian rather than
anti-Hermitian. Original Hamiltonian / i1s thus a Hermitian
Hamiltonian as written in a skew basis. The eigenstates of H
and H are not unitarily equivalent. and thus ....
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....THE NORM IS NOT THE DIRAC NORM

~ 0 /O ) /9 7 {_: $ 5 9 ) 5 I -l

H — ¢ l(_' —H{ '[‘; - — i;_ 3 % = T-«.-TJ_ q = __\}WI.A.-E;_I_ __j‘_j
Z L7Yul] 2 A

T~ ~ O /21~ o

Hin) = Ex\n), H|n) = Exn), n} —e>|in 36

k= . . 1=1.Q/2 —Q )€ i
‘A|H = Ep(|. (n| = (nle%/?. (n|le¥H = (nle " YE, 3

The energy eigenbra (nle~ % = (n|PC is not the Dirac conju-
gate of the energy eigenket n), since (n|H' = (n|E, is not an
eigenvalue equation for /.
(b)Y —8nyn,. Xl —1. H —Yh)E,(n 38
W | : ~ ¢ _ ..t €] :
(nle ¢|\m) =0mn., 2n)(nle Y =1. H=Yn En(nle ™ (39
The ¢ “ norm is positive and so theory is unitary. Since C~ = 1.

its ElgEIlYalllEb are =1. with the relative plus and minus signs
in the fourth-order propagator being due to the fact that the
two poles have opposite signed eigenvalues of C'.
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1 NON-HERMITICITY AND UNITARITY

= (el it —iHt (0)) =2 (o (| NOT UNITARY 12

l = = ]
— Ac A
1 . I T A 1 — A g 5
J— o T ] — T ol T {
¥ ; ¥ ! ¥ T pig | |

LEFT-EIGENVECTOR IS NOT DIRAC CONJUGATE OF RIGHT EIGENVECTOR

— (as(0)|e™e | ag(0)) = (as(0)|as(0 UNITARY 18
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NON-DIAGONALIZABILITY AND UNITARITY
THE SINGULAR EQUAL-FREQUENCY LIMIT

In equal frequency limit the diagonalizing operator () becomes
singular and partial fraction decomposition of propagator be-
comes undefined.

-

VolZ,Y,T) = eXp |—Awj +wr))\x™ + W'lw:y: — ywiwoyx| exp(—iEyt).
EH — | WJ_ i “.._3' _} :ﬂ_]
Yile,y.1) = (x + woy)yglx, _fj.?t.f_"*'l'_'_ Ey = Ey+ wy
Uo(x.y.t) = (x +wiy)vg(z. y, t)e “2° E> = £+ w»o 51
vplz, .t) = exXpi— _.::;;’f' — YW yr —ywe —iwt|, Eg=w
52
{ [ 5 Ay |3 t) =T L LY U0\ Y. 8 {‘-__f*-f_ t = tqu L 4] .Hy:?}

TWO one-particle states have collapsed into ONE state.
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Conformal Supergravity in Twistor-String Theory
N. Berkovits and E. Witten
June 2004 (arXiv:hep-th/040605). JHEP 0408 (2004) 009

“The net effect is that the translation generator D acts as

f £ = |
|0 P j
where P would represent ordinary translations and the off-diagonal * arises
from D !{-r’jr__ = —= | 3
This matrix is not diagonalizable. This clashes with our usual experience.
We are accustomed to the idea that the translation generators are Hermitian
pperators and so can be diagonalized. However. conformal supergravity is not
a unitarv theorv. and one svmptom of this is that the translation generators

are undiaconalizable.

Bender and Mannheim: Not so fast.
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NVHAT IS SO SPECIAL ABOUT FOURTH-ORDER THEORIES TO CAUSE ALL THIS

for a scalar field. Assume translation invariance

LA FL i i i - 3 LAN BN 4. -

|

ider the Lehmann Representation
and a bounded. real enerev eigenspectrum with states of momentum A" with &7 > 0. We

P.r i P-r .- 11 e i 1 : oo
ran set olr) — e** “oll) e ' _ 11_"_" WISIONallv set X | n | = 1L. T_'u_:-tl Can snow

O A ol uy ()} % (Al .-? '_"__—.a (| T—¥ |,l
-\\.||'I ||:_|"|| 107 '||r "—]H{| | _llll.l_II]

li'i. S
\Molr)o(y)|i) = | r.f"m:_;':- m-) | =(q0)0(q m>)e 4 {(z—v) 66

Thus finallv obtain the Lehmann r« presentation
Q| 'o(x)o(y REY — .-'I.lﬂ\' dm=p(m~ e -’ 6

This relation holds for anv interactine two-point function no matter what i1ts equation ot

motion. with it alwayvs being the FREFE SEC O\D ORDER Feynman propagator which

1 he mass shell condition L.".*_ = .--f'_ 1s alwavs second-order

appears in the integral 'ur-r.-m.ﬂ-
The Lehmann representation thus holds in fourth-order theories also. However. for larce k-

the second-order Fevnman propagator behaves as 1/k~. whereas for fourth-order theories the

. 3 | s | § = = = -
propagator behaves as 1/k*. Hence (Smolin) we have a contradiction if p(m~) is positive
definite.
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Solution is that spectral function cannot be positive definite. and we cannot set = |n)(n| =1
Rather we must set =|n){nle ™ = 1 (and not =|n){nl —=|m){ml = 1). and distineuish
between left and rieht momentum eicenvectors. Thus must use |R) and (L| = (Rle %.

\With this choice. the spectral function is replaced bv

) i - R . -
f-_;.' ,-_ir— — _}_. ‘= \_. -_'!_li L:: == '-j’“ ] E_} e L?r_J L)) !mf_: '.{‘.__.! = 'L:j"_?' ) !‘._{ H "'__{“ / [ 05
n '

Now there is no positivitv requirement and we can cancel the 1/k* behavior without having
fo give up unitaritv. Since we still impose the realitv of the momentum eigenvalues. the
Hamiltonian of the theorv must be PT invariant rather than Hermitian. From the Lehmann
representation we thus conclude that the Hamiltonian of theories such as the fourth-order
Pais-Uhlenbeck oscillator cannot be Hermitian and mmst instead be PT mvariant. just as we
had found directly

THE REMARKABLE MORAL OF THE STORY

Consider ANY higher derivative theorv in which the equation of motion is of the form
f(D)o = 0 where D = 9,0/ and f(D) = za,D". Also require that all momentum
eigenvalues be real. In such a theory. at large k? the propagator will behave as 1/k%". Hence
there will be a contradiction with the Lehmann l'f.‘!'}l'ffhf*ilr;ttil.ill if we l'i*f]llil‘r.* the standard
©|n){(n| = 1. Rather. such theories must be PT theories rather than standard Hermitian
pnes. Hence once we depart from second-order equations we are forced to PT-invariant. non-
Hermitian Hamiltonians. PT-invariance is thus the general rule. and it is onlv a historical
accldent (second-order theories were encountered first) that 1t was not discovered earlier.
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DYNAMICAL SYMMETRY BREAKING
AND THE COSMOLOGICAL CONSTANT PROBLEM

The zero-point energy and cosmological constant problems are two separate
problems. With dynamical symmetry breaking they solve each other.

The zero-point energyv problem alreadyv exists in a free field theorv. and as such is separate
from anv cosmological constant term that might be induced bv spontaneous svimmetrv break-
ing. The cosmological constant i1s associated with the minimum of the ssmmetrv breaking
potential while the zero-point energy is associated with the fluctnations about it. Moreover.
the zero-point term and the cosmological constant term even transform differently under a
general coordinate transformation. the former possessing a fiuid velocity and being maximally
3-svmmetric. with the latter possessing no fluid velocity and being maximally 4-svmmetric.
The zero-point fluctuation term is associated with a perfect matter fiuid in which both p,,
and p,, are positive.— so that T,,,, = (pm—+Pm [_;1[*1*_1-"?1”;_:1r- While the cosmological constant
term is associated with a perfect fluid in which p = —p. —so that T, = —Ag,,.

When the symmetry is broken dynamically by fermion condensates. it is the
fermionic zero-point fluctuations which cause the change in the vacuum in
the first place. to thus actually produce the cosmological constant. In this
case the zero-point and cosmological constant terms are not independent.
and are related in a way which allows each one to cancel the other. so that
both the zero-point and cosmological constant problems solve each other.
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FOUR-FERNMII MEAN-FIELD THEORY IN TWO DIMENSIONS
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Dn mcoherently adding the contributions of modes wath p* = (E,. —=p.0.0). p* = (E,. 0. =p.0). we finally obtam
fiff_:, () 0 i \
f 0 27°/E, O 0o |
l 0 0 "'_y: f el 0
Y iy (0 2 E.
fo yield a perfect flmd form with p,, ~ 6£,. p ~ 2p-/E,. That this 1s NOT a perfect fimd with p,, = —p,, 1s becanse

the averaging is only 3-dimensional. ie. for modes which obev the wave equation only the 3-momentum is averaged over.
Moreover. the velocity of the fluid U7 is a timelike vector. and is allowed simply because a Minkowski metric distinguishes
between timelike and spacelike.
In flat space. for T** ~ k*k”/E, one can also construct the total energy and momentum as P* = [d&*xT™. to find that
P~ Eg, P =0, (72
with there being no zero-pomnt total momentum. However one can also evalunate

to thus vield a zero-point quadrupole pressure tensor. Thus the absence of a zero-point total momentum does not mean the

absence of a zero-pomt pressure: and while such a term plavs no role in filat space it still couples to gravity in curved space.
To underscore the fact that the zeropomt term 1s not the same as a cosmological constant term. we note that for a
free massless field where p#p,, = (). the energy-momentum tensor is traceless and p,, = 3p,,. something not possible for a

rosmological constant term. since a traceless Ag,, would regquire A = 0.

A cosmological constant term is induced when the symmetry 1= broken and adds a term of the form of T,,,, = —Ag,,.- It
vields a contribution to the trace of the form 7%, = —4A, with the zero-point energy and the cosmological constant terms
thus bemng different. In the presence of both the energy density i1s given by Ty = g — A

When mass is generated dyvnamically in a four-Fermi theoryv, the mean field is produced bv zero-point filuctuations. The
rosmological constant 1s thus mduced by zero-pomt fiuctmations also and can thus be related to the zero-pomnt energy. Smce
the trace of T, 1s zero in a conformal mvanant theorv. 3p,, — p,., — 4A = (0, and the zero-pomnt and cosmological constant

terms cancel each other identicallv. Neither can be bigger or smaller than the other.
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FOUR-FERNMII MEAN-FIELD THEORY IN TWO DIMENSIONS
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Dn mncoherently adding the contributions of modes wath p* = (E,. —=p.0.0). p* = (E,.0. =p.0). we finally obtam
bE., () 0 0 .'|.
[ 0 2°/E, 0 0 |
l 0 0 2 | E, 0
() (0 0 2p/E,
to vield a perfect thmd form with p,, ~ 6E,. p,, ~ 2p~/E,. That this is NOT a perfect fhmd with p, = —p,, 1s becanse

the averagimg i1s only 3-dimensional. i.e. for modes which obev the wave equation only the 3-momentum 1s averaged over.
Moreover. the velocity of the fluid [ is a timelike vector. and is allowed simplyv because a Minkowski metric distinguishes
between timelike and spacelike.

In fiat space. for T* ~ k*E"/E,. one can also construct the total energy and momentum as P* = [ d&rT". to find that

P~ B, =0 (72
with there bemmg no zero-point total momentum. However one can also evalunate

[BeT? ~ [ & "E“ i (73

to thus vield a zero-point quadrupole pressure tensor. Thus the absence of a zero-point total momentum does not mean the
absence of a zero-point pressure: and while such a term plavs no role in flat space it still couples to gravity in curved space.

To underscore the fact that the zero-pomt term 1s not the same as a cosmological constant term. we note that for a
free massless field where p#p, = (. the energy-momentum tensor is traceless and p,, = 3p,.. something not possible for a
rosmological constant term. since a traceless Ag,, would reguire A = 0.

A cosmological constant term 1s induced when the symmetry is broken and adds a term of the form of T,,, = —Ag,,.- It
vields a contribution to the trace of the form 7%, = —4A, with the zero-point enerzy and the cosmological constant terms
thus bemng different. In the presence of both the energy density s miven by Ty = p., + A

When mass is generated dyvnamically in a four-Fermi theorv, the mean field is produced bv zero-point fluctuations. The
rosmological constant 1s thus mmduced by zero-pomt filuctmations also and can thus be related to the zero-pomt energy. Smce
the trace of T, is zero in a conformal invariant theorv. 3p,, — p,,, — 4A = 0. and the zero-point and cosmological constant

terms cancel each other identically. Neither can be bigger or smaller than the other.
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Dn mcoherently adding the contributions of modes wath p* = (E,. =p.0.0). p* = (E,. 0. =p.0). we finally obtamn
r-‘.f:, 0 0 ) "l
[ 0 2¢°/E, 0 0 |
l 0 0 20 | E, 0
-y %
] 0 0 2p t__
to yield a perfect fimd form with g, ~ 6E,. pn» ~ 2p~/E,. That this is NOT a perfect filmd with p,, = —pm 15 because

the averagimg is only 3-dimensional. i.e. for modes which obev the wave equation only the 3-momentum is averaged over.
Moreover. the velocity of the fluid T is a timelike vector. and i1s allowed simply because a Minkowski metric distinguishes
between timelike and spacelike.

In flat space. for T"* ~ k*E”/E,. one can also construct the total energy and momentum as P* = [ rT ", to find that

PI' M E;._ P: — i} |_."";t

with there bemng no zero-pomnt total momentum. However one can also evalnate

[ BrT ~ [ P KK i (T2)
l|II f O lII L i E 4 id

to thus vield a zero-point quadrupole pressure tensor. Thus the absence of a zero-point total momentum does not mean the

absence of a zero-point pressure: and while such a term plavs no role in fiat space 1t still couples to gravity In curved space.
To underscore the fact that the zero-pomt term 1s not the same as a cosmological constant term. we note that for a
free massless field where p#p, = (). the energy-momentum tensor is traceless and p,, = 3p... something not pessible for a
rosmological constant term. since a traceless Ag, ., would reguire A = 0.
A cosmological constant term i1s induced when the svmmetry is broken and adds a term of the form of T,,,, = —Ag,..- It
vields a contribution to the trace of the form T%, = —4\. with the zero-point enerzy and the cosmological constant terms
thus being different. In the presence of both the energy density is given by T — pn — AL

When mass 1s generated dynamically in a four-Fermi theorv, the mean field i1s produced by zero-point filuctuations. The
rosmological constant 1s thms mmduced by zero-pomt fiuctmations also and can thus be related to the zero-pomnt energy. Smce
the trace of T,,,, 1s zero in a conformal mvanant theorv. 3p,, — p,, — 4A = 0. and the zero-point and cosmological constant

terms cancel each other identically. Neither can be bigger or smaller than the other.
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FOUR-FERNMII MEAN-FIELD THEORY IN TWO DIMENSIONS
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CANCELLATION OF ZERO-POINT AND \ IN TRACE OF [,
Incoherently adding together modes with p* = (E,. p) and (E,. —p) gives

\-irrlf | -'E" L | |' -E_r'u — I| __E () \ f f
= | —+— ) e — f— hr Ik — [} (]
= E I P J-',-' L \ —1 p L” | | i) _I“- L J ! f

S|T™|S) = (P + Poa)UPU” + pag™ — . S|T" |S) = pm — pm — 2N =0. (82

Thus 2\ = p,, — pm. neither bigger nor smaller. The reason for this is that all of \. p,,
and p,, are determined in one the same state |.S). For the case of a fundamental scalar
feld o(x). A = Mo is determined by the vacuum (location of the minimum of the Higes
double-well potential). while p,, and p,, are determined bv whichever matter field frequency
|ig1-|jr".- are occupied. ;I{I-i-:'r' one Cannot relate \ to Pm and Pm Ul standard «
fundamental Higgs field. to thus give rise to the cosmological constant problem. If however
scalar 1LII :,H i -;-I.f‘|||:fn I l:.'r'fl|,'-"]}i["‘;-[_,ellhi.-l] condensate (S|luw .‘_"" then can relate relat \.

Pm and p.,. and even nave them cancel each other.

Comparison test: If Higes is a c-number condensate then will NOT be produced m
an accelerator such as the LHC. while if Hieos is fundamental then will be IO luced in an
accelerator.
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CANCELLATION OF ZERO-POINT AND M\ IN /[, ITSELF

]'l_lli T SDACEeLIINe 1«

-

where «a, is dimensionless and C'y,,. is the conformal Wevl tensor. The associated gravita-
flonal equations of motion are the fourth-order derivative:

Y

_j_“”_'.-,[:_ .-,__'-,'._-.-..:_ o f FEEAL -'lr]: _J;' == I ;\'_—I

Thus again get cancellation of zero-point and \ terms in T, itself. but now need to include
rero-point fluctuations in eravitational feld as well. While (S]]2( _— e, S

vanishes in a classical cosmoloeical backeround. quantum-mechanicallyv there 1s a zero-point

Huctuation contribution. Usine the sravitational zero-point Huctuations to cancel the matter

beld zero-point Huctuations and .\ is onlv achievable in a renormalizable theorv of eravitv.

Hence works in conformal eravitv but not in standard esravity
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FOUR-FERNMII MEAN-FIELD THEORY IN TWO DIMENSIONS

i f — Y the 1 1r—HFoertmn T hio v 1= Fay n
Za e il - ] _ . =
}
w1t (¥ a (¥ o i e 1 o ~ = oyt
| - 1 - b
—
- - = - - p— | — [
o | - - i L. = & | L . -, i
i _'| . i | =
| L 1 ' g i
Inap ;
b - — - | - =x He -
! —_— — A A ' |
I - -
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CANCELLATION OF ZERO-POINT AND A\ IN TRACE OF 1,
[Incoherently adding together modes with p* = (E,. p) and (E,. —p) gives

\.-1""5’: | E P ) ' E.—-‘* =g ) ' LE;'- ) " Lf 71
= E il I. D P~ j__ . \ —pP I.f:: L-__-. 'I \ i) :j';-'l L-_.' / I iy . o~

SIT™|S) = (P + Pn)UPU" + pug’™ — g™ A. S|TH,|S) = Pm — pm —2A = 0. (82

i L

Thus 2\ = p,, — pm. neither bisger nor smaller. The reason for this is that all of \. p,.
and p,, are determined in one the same state |.S). For the case of a fundamental scalar
feld o(x). A = \o* is determined by the vacuum (location of the minimum of the Higeos
double-well potential). while p,, and p,, are determined bv whichever matter field frequency
modes are occupied. Hence one cannot relate \ to p,, and p,, in standard cosmology with a
i'.'l!!*E;I]' +.'1!T-l. H‘.;‘;‘rﬂ ]l' Lo T:it'-lH F1Ve 11se 1O ']51 i --—-'[[;41;1:'_"'1' tl CONStant niri bl 1. [IL ];la‘.i'!"‘.'i‘]'

scalar ]"' 1S a c-number {:;'EII;-':]f|["‘;-[_.élll1i.:]] condensate Sty .‘_"" then can relate relate /\.

P Al P, alld evell nave fthem cancel each other.

Comparison test: If Higes is a c-number condensate then will NOT be produced m
an accelerator such as the LHC. while if Higes is fundamental then will be produced in an

accelerator.
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