Title: Meson widths from string worldsheet instantons. Date: Nov 25, 2008 11:00 AM URL: http://pirsa.org/08110033 Abstract: We discuss various properties of holographic mesons in a deconfined strongly coupled plasma. We show that such mesons obtain a width from a non-perturbative effect. On the string theory side this is due to open string modes on a D-brane tunneling into a black hole through worldsheet instantons. On the field theory side these instantons have the simple interpretation as heavy thermal quarks. We also comment on how this non-perturbative effect has important consequences for the phase structure of the Yang-Mills theory obtained in the classical gravity limit. Pirsa: 08110033 Page 1/61 # Meson widths from string worldsheet instantons Tom Faulkner, MIT TF, Hong Liu arxiv:0807.0063 Qudsia Ejaz, TF, Hong Liu, Krishna Rajagopal and Urs Wiedemann arxiv:0712.0590 # Meson widths from string worldsheet instantons Tom Faulkner, MIT TF, Hong Liu arxiv:0807.0063 Qudsia Ejaz, TF, Hong Liu, Krishna Rajagopal and Urs Wiedemann arxiv:0712.0590 ### Outline - Motivation - Meson screening length from Semi-classical Strings - Meson dispersion relations a subluminal limiting velocity - Meson widths a nonperturbative calculation - Phase diagram of strongly coupled $\mathcal{N}=2$ plasma revisited - Conclusions 1 Pirsa: 08110033 Page 4/6 ## Motivation: J/Ψ and the QGP - Charmonium $(J/\Psi,...)$ and Bottomonium $(\Upsilon,...)$ survive the deconfinement transition $T=T_c$ - Attributed to their small size compared to T_c^{-1} . - · Good probes of the QGP - Consider medium effects: - Color screening weakens potential between quarks and anti-quarks - \rightarrow bound state eventually dissociates at some $T \rightarrow T_{\rm diss}$ - Collisions with deconfined thermal quarks and gluons can break apart bound state - → medium induced width ## Dissociation and Suppression #### Lattice: - Screened heavy quark potential - \rightarrow screening length $L_s(T)$ decreases with TDissociation for $L_s(T_{\text{diss}}) = \text{size}$ of bound state - Lattice calculation of spectral functions: - $\rightarrow J/\Psi$ peak becomes broader with increasing T - For J/Ψ , $T_{\rm diss} = 1.5 2.5T_c$ J/Ψ suppression: Observed in heavy ion collisions through suppression in production of J/Ψ relative to p-p collisions ## Theoretical challenges - Heavy quark mesons produced in heavy ion collisions can have large momentum relative to the plasma. - Characterize screening length, dissociation temperature, meson width for a moving meson - Hard problem for Lattice QCD - We study a toy model via AdS/CFT. Try to extract such medium effects focusing on their momentum dependence. 4 Pirsa: 08110033 Pa $$AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \, \mathrm{SYM} \quad (\alpha' \sim 1/\sqrt{\lambda} \quad g_s \sim 1/N_c)$$ H. Liu, K. Rajagopal, U. Wiedemann Chernicoff, Garcia, Guijosa Peeters, Sonnenshein, Zamaklar Screening at zero velocity $L_S \sim 1/T$ At non-zero velocity $L_S(v) \sim (1/T)(1-v^2)^{1/4}$ ## Theoretical challenges - Heavy quark mesons produced in heavy ion collisions can have large momentum relative to the plasma. - Characterize screening length, dissociation temperature, meson width for a moving meson - Hard problem for Lattice QCD - We study a toy model via AdS/CFT. Try to extract such medium effects focusing on their momentum dependence. 4 Pirsa: 08110033 Page 9/6 ## Dissociation and Suppression #### Lattice: - Screened heavy quark potential - \rightarrow screening length $L_s(T)$ decreases with TDissociation for $L_s(T_{\text{diss}}) = \text{size}$ of bound state - Lattice calculation of spectral functions: - $\rightarrow J/\Psi$ peak becomes broader with increasing T - For J/Ψ , $T_{\rm diss} = 1.5 2.5T_c$ J/Ψ suppression: Observed in heavy ion collisions through suppression in production of J/Ψ relative to p-p collisions Pirsa: 08110033 Page 10/6 $$AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \text{ SYM} \quad (\alpha' \sim 1/\sqrt{\lambda} \quad g_s \sim 1/N_c)$$ H. Liu, K. Rajagopal, U. Wiedemann Chernicoff, Garcia, Guijosa Peeters, Sonnenshein, Zamaklar Screening at zero velocity $L_S \sim 1/T$ At non-zero velocity $L_S(v) \sim (1/T)(1-v^2)^{1/4}$ Suggests mesons with higher velocity relative to plasma will dissociate at lower T. In other words: dissociation at $L_S(v) \sim meson\ size \sim M^{-1}$, so at a given T, $L_S(v) \sim (1/T)(1-v^2)^{1/4}$ implies one of two things: $$v_{ m max} \sim 1 - \left(\frac{T}{M}\right)^4$$ $\frac{q_{ m max}}{M} \sim \left(\frac{M}{T}\right)^2$ where the last relationship has used the relativistic dispersion relation. We will see evidence for both. $$AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4 \, \mathrm{SYM} \quad (\alpha' \sim 1/\sqrt{\lambda} \quad g_s \sim 1/N_c)$$ H. Liu, K. Rajagopal, U. Wiedemann Chernicoff, Garcia, Guijosa Peeters, Sonnenshein, Zamaklar Screening at zero velocity $L_S \sim 1/T$ At non-zero velocity $L_S(v) \sim (1/T)(1-v^2)^{1/4}$ Suggests mesons with higher velocity relative to plasma will dissociate at lower T. In other words: dissociation at $L_S(v) \sim meson \ size \sim M^{-1}$, so at a given T, $L_S(v) \sim (1/T)(1-v^2)^{1/4}$ implies one of two things: $$v_{ m max} \sim 1 - \left(\frac{T}{M}\right)^4$$ $\frac{q_{ m max}}{M} \sim \left(\frac{M}{T}\right)^2$ where the last relationship has used the relativistic dispersion relation. We will see evidence for both. Meson dispersion relations 7 Pirsa: 08110033 Page 15/6 ## Dynamical quarks - the D3/D7 system Adding quarks to $\mathcal{N}=4\mathrm{SYM}$ equivalent to adding D branes (open strings) in the string theory. $Karch,\ Katz$ Specifically: $\mathcal{N}=4$ SYM $\rightarrow \mathcal{N}=2$ SYM $+N_f$ fundamental quarks achieved by embedding D7 branes in $AdS_5 \times S^5$. (Minimal area - DBI) Babington, Erdmenger, Evans, Guralnik, Kirsch (BEEGK); Kruczenski, Mateos, Myers, Winters. ## Meson dictionary Temperature \equiv black hole. $T = r_0/\pi R^2$. Meson \equiv fluctuations of D7 brane. $M \sim (r_m - r_0)/R^2$ Quark \equiv strings ending on horizon. $m_q^{(T)} = (r_m - r_0)/lpha'$ Rough scales: $M \sim m_q/\sqrt{\lambda} \rightarrow m_q \gg M \rightarrow E_{\rm BE} \sim 2m_q \gg M$. $d\Omega_5^2 = d\theta^2 + \sin^2\theta d\Omega_3^2 + \cos^2\theta d\phi^2$ and $\rho = r\sin(\theta), y = r\cos(\theta)$ ### Dissociation Increase temperature (equivalent to decreasing the quark mass.) Eventually D7 brane will fall into horizon. Mateos, Myers, Thomson; Hoyos, Landsteiner, Montero Mesons dissociate above a critical temperature $T_{\rm diss} \sim 1/M$. Focus on the embedding sits outside of horizon, pictured left. Pirsa: 08110033 Page 18/6 ## Meson dictionary Temperature \equiv black hole. $T = r_0/\pi R^2$. Meson \equiv fluctuations of D7 brane. $M \sim (r_m - r_0)/R^2$ Quark \equiv strings ending on horizon. $m_q^{(T)} = (r_m - r_0)/lpha'$ Rough scales: $M \sim m_q/\sqrt{\lambda} \rightarrow m_q \gg M \rightarrow E_{\rm BE} \sim 2m_q \gg M$. $d\Omega_5^2 = d\theta^2 + \sin^2\theta d\Omega_3^2 + \cos^2\theta d\phi^2$ and $\rho = r\sin(\theta), y = r\cos(\theta)$ ### Dissociation Increase temperature (equivalent to decreasing the quark mass.) Eventually D7 brane will fall into horizon. Mateos, Myers, Thomson; Hoyos, Landsteiner, Montero Mesons dissociate above a critical temperature $T_{\rm diss} \sim 1/M$. Focus on the embedding sits outside of horizon, pictured left. Pirsa: 08110033 Page 20/6 ## Meson spectrum 2 transverse directions - radial mode χ_u and angular mode χ_{ϕ} . \rightarrow Couple to operators in the field theory $\sim \bar{q}q$. Choose orthonormal basis of normal space: $$\delta X^\mu = \chi_u n_u^\mu + \chi_\phi n_\phi^\mu$$ Embedding of D7: $K_u = 0$ and $K_{\phi} = 0$ Action for the fluctuations $$S = -\frac{\mu_7}{2} \int d^8 \xi \sqrt{h} \left((\partial \chi_u)^2 + (\partial \chi_\phi)^2 + m_u^2 \chi_u^2 + m_\phi^2 \chi_\phi^2 \right)$$ $$m_u^2 = R_{uu} + R_{u\phi\phi u} + 2R_{\phi\phi} + {}^{(8)}R - R$$ $$m_\phi^2 = -R_{\phi\phi} - R_{u\phi\phi u}$$ $m_i^2 \to -3$ which gives $\Delta_{\mathcal{O}} = 3$. ## Meson spectrum - dispersion relations Concentrate on transverse scalar χ_{ϕ} : $\partial_{\alpha}(\sqrt{g}\partial^{\alpha}\chi_{\phi}) + \sqrt{g}m_{\phi}^{2}\chi_{\phi} = 0$ $$\chi_{\phi} = e^{-i\omega t + i\vec{k}\cdot\vec{x}}Y_l(S_3)\psi(\theta) \quad \rightarrow \quad \hat{H}(\vec{k},l)\psi(\theta) = \omega^2\psi(\theta)$$ Mateos, Myers, Thomson Rajagopal, Wiedemann $T < T_{\text{diss}}$ - discrete spectrum, $\omega = \omega_n(\vec{k}, l)$. General argument: Large k - wave function localized at "tip" \rightarrow $\omega = kv_0$ with $v_0 = \sqrt{\frac{-g_{tt}}{g_{xx}}}\Big|_{tiv}$ ## Meson spectrum 2 transverse directions - radial mode χ_u and angular mode χ_{ϕ} . \rightarrow Couple to operators in the field theory $\sim \bar{q}q$. Choose orthonormal basis of normal space: $$\delta X^{\mu} = \chi_u n_u^{\mu} + \chi_{\phi} n_{\phi}^{\mu}$$ Embedding of D7: $K_u = 0$ and $K_{\phi} = 0$ Action for the fluctuations $$S = -\frac{\mu_7}{2} \int d^8 \xi \sqrt{h} \left((\partial \chi_u)^2 + (\partial \chi_\phi)^2 + m_u^2 \chi_u^2 + m_\phi^2 \chi_\phi^2 \right)$$ $$m_u^2 = R_{uu} + R_{u\phi\phi u} + 2R_{\phi\phi} + {}^{(8)}R - R$$ $$m_\phi^2 = -R_{\phi\phi} - R_{u\phi\phi u}$$ $m_i^2 \to -3$ which gives $\Delta_{\mathcal{O}} = 3$. ## Meson spectrum - dispersion relations Concentrate on transverse scalar χ_{ϕ} : $\partial_{\alpha}(\sqrt{g}\partial^{\alpha}\chi_{\phi}) + \sqrt{g}m_{\phi}^{2}\chi_{\phi} = 0$ $$\chi_{\phi} = e^{-i\omega t + i\vec{k}\cdot\vec{x}}Y_l(S_3)\psi(\theta) \quad \rightarrow \quad \hat{H}(\vec{k},l)\psi(\theta) = \omega^2\psi(\theta)$$ Mateos, Myers, Thomson Rajagopal, Wiedemann $T < T_{\text{diss}}$ - discrete spectrum, $\omega = \omega_n(\vec{k}, l)$. General argument: Large k - wave function localized at "tip" \rightarrow $$\omega = k v_0$$ with $v_0 = \sqrt{\frac{-g_{tt}}{g_{xx}}} \bigg|_{ ext{tip}}$ ## The limiting velocity Can analytically solve for the large k dispersion relation: $$\omega^2 = k^2 v_0^2 + k\Omega(n+2) + \mathcal{O}(1/k)$$ $v_0 \sim \frac{1 - (T/M)^4}{1 + (T/M)^4}$ Consistent with semiclassical strings Maximum velocity slightly higher than limiting velocity. ## Meson widths 14 Pirsa: 08110033 Page 26/6 #### Puzzle I - zero width? - For T < T_{diss}, mesons have zero width. (Recall gluons are deconfined.) - Due to topology of D7 brane: fluctuations on brane see an induced geometry which is asymptotically AdS and smoothly capped off at some finite radius r_m (in AdS/CFT this is usually associated with confinement.) - Relax $\alpha' \to 0$ limit : derivative expansion on D brane. Mesons still stable to any order in a perturbative α' expansion. - But, bound states should always have a non-zero width in a finite temperature medium. - Implies; - $\rightarrow g_s$ correction - \rightarrow Nonperturbative α' correction. 15 Pirsa: 08110033 Page 27/61 ## Puzzle II - chemical potential Gauge field A_µ(r) on D7 brane ↔ conserved baryon/quark current J_µ in field theory. More specifically the behavior of the gauge field at the boundary is, $$A_t(r) \to \mu + n_q/r^2 + \dots$$ (1) - Turn on constant gauge field $A_t(r) = \mu$: still a solution!. \rightarrow So $n_q = 0$ and mesons still stable. This is a puzzle at non-zero T. - Again true in a perturbative α' expansion. (For $\mu > m_q^{(T)}$ a new phase where D7 falls into horizon is thermodynamically preferred - see later.) Pirsa: 08110033 Page 28/6 ## Expectations from field theory - Thermal contribution: - 1. Recall $\beta m_q^{(T)} \sim \sqrt{\lambda} M/T$, so quark densities are suppressed, $$n_{\pm} \sim e^{-\beta m_q^{(T)} \pm \beta \mu} \to \mathcal{O}(e^{-\sqrt{\lambda}})$$ 2. Similarly $E_{\rm BE} \sim 2m_q$. At zero T mesons stable as tightly bound. At finite temperature thermal fluctuations can tear quarks apart, but fluctuations also exponentially suppressed in $\sqrt{\lambda}$. Not visible in perturbative $1/\sqrt{\lambda}$ expansion. Can only have non-perturbative origins on the worldsheet. - $1/N_c$: the annihilation process, meson \rightarrow meson + meson etc. - 1/N_c²: there are thermal contributions to the width from processes that do not break apart the meson; see Dusling, Erdmenger, Kaminski, Rust, Teaney, Young 17 ### World sheet instanton In Euclidean time there exists a non trivial "cycle with boundary" albeit wrapping Euclidean time, Extremal solution to world sheet action: will contribute to the spacetime effective action. 18 Pirsa: 08110033 Page 30/6 ## World sheet instanton ~ Thermal quark In Euclidean time there exists a non trivial "cycle with boundary" albeit wrapping Euclidean time, Extremal solution to world sheet action: will contribute to the spacetime effective action. Effectively changes the topology of the D7 brane. 19 Pirsa: 08110033 Page 31/61 ## Spacetime Effective Action Calculate string partition function $$S_E[\chi] = \int_{ m disk} DX \, e^{-I[X] - I_{ m bdry}[\chi,X]}$$ - X denotes the worldsheet fields. - I[X] is the world sheet action (Nambu-Goto), $$I[X] = rac{1}{2\pilpha'}\int_C \sqrt{\det P[G]} + \oint_\Sigma P[A] + \dots$$ I_B[χ, X] action on boundary of worldsheet, allowing for presence of some background (open string) fields χ. Saddle point approximation, $$S_E = S_{m=0} + S_{m=1} + S_{m=-1} + \dots$$ and $S_{m=0} \to S_{DBI}$ In $m = \pm 1$ sectors, $I_{m=\pm 1} = \beta m_q^{(T)} \pm \mu \beta \rightarrow$ thermally suppressed. ## World sheet instanton ~ Thermal quark In Euclidean time there exists a non trivial "cycle with boundary" albeit wrapping Euclidean time, Extremal solution to world sheet action: will contribute to the spacetime effective action. Effectively changes the topology of the D7 brane. 19 Pirsa: 08110033 ## Spacetime Effective Action Calculate string partition function $$S_E[\chi] = \int_{ m disk} DX \, e^{-I[X] - I_{ m bdry}[\chi,X]}$$ - X denotes the worldsheet fields. - I[X] is the world sheet action (Nambu-Goto), $$I[X] = \frac{1}{2\pi\alpha'} \int_C \sqrt{\det P[G]} + \oint_{\Sigma} P[A] + \dots$$ I_B[χ, X] action on boundary of worldsheet, allowing for presence of some background (open string) fields χ. Saddle point approximation, $$S_E = S_{m=0} + S_{m=1} + S_{m=-1} + \dots$$ and $S_{m=0} \to S_{DBI}$ In $m = \pm 1$ sectors, $I_{m=\pm 1} = \beta m_q^{(T)} \pm \mu \beta \rightarrow$ thermally suppressed. ## Free Energy Firstly, set χ to zero; $$S_E[0] = \int_{\mathrm{disk}} DX \, e^{-I[X]}$$ Contribution to free energy, $$eta F_{\pm}(eta,\mu) = S_{m=\pm 1} = e^{\pm \mu eta} e^{-eta m_q^{(T)}} rac{1}{g_s} DV_3 \quad o \quad n_{\pm} = e^{\pm \mu eta} e^{-eta m_q^{(T)}} rac{1}{g_s} DV_3$$ Quark densities! Instantons \leftrightarrow Boltzmann gas of quarks. - ± quarks, antiquarks - g_s^{-1} disk worldsheet! $n_\pm \propto N_c$ - D functional determinant, includes fermions, hard! - V₃ three bosonic zero modes (c.f. DBI: has 8 bosonic zero modes.) #### Width Calculation Integrate out fluctuations on the world sheet. Quadratic action for χ^{ϕ} schematically, $S_{DBI}[\chi^{\phi}]+$ $$S_{m=\pm 1}[\chi_{\phi}] \sim \int d^3x_0 d\tau d\tau' \, \left(\chi^{\phi}(\tau, \vec{x}_0) \tilde{G}_D(\tau, \tau') \chi^{\phi}(\tau', \vec{x}_0)\right)_{\theta=0}$$ $\tilde{G}_D(\tau,\tau')\sim$ "boundary" to "boundary" propagator on the worldsheet disk. Compute meson correlators in Euclidean. After analytic continuation find poles shifted by small imaginary part. Alternatively, compute directly in real times. Continue worldsheet disk \rightarrow Rindler spacetime $ds^2 = d\rho^2 - \rho^2 d\eta^2$. Use $\tilde{G}_R(t-t')!$ $$\partial_{lpha}\left(\sqrt{-g}\partial^{lpha}\chi^{\phi} ight)-m_{\phi}^{2}\sqrt{-g}\chi^{\phi}=- rac{R^{2}n_{\pm}\delta(heta)}{\mu_{7}\pilpha'eta^{2}}\int dt'\, ilde{G}_{R}(t-t')\chi^{\phi}(t')$$ Momentum space (l=0): $$\hat{H}(\vec{k}, l = 0)\psi - \frac{i\omega n_{\pm}}{4\pi^{3}\alpha'\mu_{7}A}\delta(\theta)\psi(\theta) = \omega^{2}\psi(\theta)$$ Perturbation theory problem with a delta function! Write $\omega = \omega_n - \frac{i}{2}\Gamma_n$ find, $$\Gamma_n^{\pm 1}= rac{32\pi^3\sqrt{\lambda}}{N_cm_q^2}|\psi_n(heta=0)|^2n_\pm$$ Recall $n_{\pm} \propto N_c$ so $\Gamma \sim \mathcal{O}(1)$ in N_c . Incredibly simple result. Integrate out fluctuations on the world sheet. Quadratic action for χ^{ϕ} schematically, $S_{DBI}[\chi^{\phi}]+$ $$S_{m=\pm 1}[\chi_{\phi}] \sim \int d^3x_0 d\tau d\tau' \, \left(\chi^{\phi}(\tau, \vec{x}_0) \tilde{G}_D(\tau, \tau') \chi^{\phi}(\tau', \vec{x}_0)\right)_{\theta=0}$$ $\tilde{G}_D(\tau,\tau') \sim$ "boundary" to "boundary" propagator on the worldsheet disk. Compute meson correlators in Euclidean. After analytic continuation find poles shifted by small imaginary part. Alternatively, compute directly in real times. Continue worldsheet disk \rightarrow Rindler spacetime $ds^2 = d\rho^2 - \rho^2 d\eta^2$. Use $\tilde{G}_R(t-t')!$ $$\partial_{lpha}\left(\sqrt{-g}\partial^{lpha}\chi^{\phi} ight)-m_{\phi}^{2}\sqrt{-g}\chi^{\phi}=- rac{R^{2}n_{\pm}\delta(heta)}{\mu_{7}\pilpha'eta^{2}}\int dt'\, ilde{G}_{R}(t-t')\chi^{\phi}(t')$$ Momentum space (l=0): $$\hat{H}(\vec{k}, l = 0)\psi - \frac{i\omega n_{\pm}}{4\pi^{3}\alpha'\mu_{7}A}\delta(\theta)\psi(\theta) = \omega^{2}\psi(\theta)$$ Perturbation theory problem with a delta function! Write $\omega = \omega_n - \frac{i}{2}\Gamma_n$ find, $$\Gamma_n^{\pm 1}= rac{32\pi^3\sqrt{\lambda}}{N_cm_q^2}|\psi_n(heta=0)|^2n_\pm$$ Recall $n_{\pm} \propto N_c$ so $\Gamma \sim \mathcal{O}(1)$ in N_c . Incredibly simple result. ### Interpretation - String theory perspective: open string modes living on a D brane which lies outside a black hole can tunnel into the black hole. - Field theory perspective: - Our width from left process. Dominant thermal process which breaks apart meson. - However right process more interesting from QCD perspective. Subdominant in this strongly coupled gauge theory. Note $n_{\pm}(T,\mu)$ not calculated; depends on functional determinant. Cannot extract width directly; However n_{\pm} is k independent, so we take the ratio: $$rac{\Gamma_n(k)}{\Gamma_n(0)} = rac{|\psi_n(\theta=0; \vec{k})|^2}{|\psi_n(\theta=0; \vec{k}=0)|^2}$$ Use large k analytic results for wave function, grows quadratically; $$\Gamma_n(k)/\Gamma_n(0) = R_n[T/M](k/M)^2 + \mathcal{O}(k)$$ Temperatures $T \ll M$ and for $k \gg \frac{M^3}{T^2}$; $$\Gamma_n(k)/\Gamma_n(0) \approx \frac{2(4\pi)^4}{(n+2)(n+3/2)} \frac{T^4k^2}{M^6}$$ - Width turns up at same momentum that the meson group velocity reaches its maximum. - $\Gamma \sim T^4 k^2/M^6$ consistent with semiclassical string analysis of screening length. 26 Note $n_{\pm}(T,\mu)$ not calculated; depends on functional determinant. Cannot extract width directly; However n_{\pm} is k independent, so we take the ratio: $$rac{\Gamma_n(k)}{\Gamma_n(0)} = rac{|\psi_n(\theta=0; \vec{k})|^2}{|\psi_n(\theta=0; \vec{k}=0)|^2}$$ Use large k analytic results for wave function, grows quadratically; $$\Gamma_n(k)/\Gamma_n(0) = R_n[T/M](k/M)^2 + \mathcal{O}(k)$$ Temperatures $T \ll M$ and for $k \gg \frac{M^3}{T^2}$; $$\Gamma_n(k)/\Gamma_n(0) \approx \frac{2(4\pi)^4}{(n+2)(n+3/2)} \frac{T^4k^2}{M^6}$$ - Width turns up at same momentum that the meson group velocity reaches its maximum. - $\Gamma \sim T^4 k^2/M^6$ consistent with semiclassical string analysis of screening length. 26 Note $n_{\pm}(T,\mu)$ not calculated; depends on functional determinant. Cannot extract width directly; However n_{\pm} is k independent, so we take the ratio: $$\frac{\Gamma_n(k)}{\Gamma_n(0)} = \frac{|\psi_n(\theta = 0; \vec{k})|^2}{|\psi_n(\theta = 0; \vec{k} = 0)|^2}$$ Use large k analytic results for wave function, grows quadratically; $$\Gamma_n(k)/\Gamma_n(0) = R_n[T/M](k/M)^2 + \mathcal{O}(k)$$ Temperatures $T \ll M$ and for $k \gg \frac{M^3}{T^2}$; $$\Gamma_n(k)/\Gamma_n(0) \approx \frac{2(4\pi)^4}{(n+2)(n+3/2)} \frac{T^4k^2}{M^6}$$ $$\partial_{lpha}\left(\sqrt{-g}\partial^{lpha}\chi^{\phi} ight)-m_{\phi}^{2}\sqrt{-g}\chi^{\phi}=- rac{R^{2}n_{\pm}\delta(heta)}{\mu_{7}\pilpha'eta^{2}}\int dt'\, ilde{G}_{R}(t-t')\chi^{\phi}(t')$$ Momentum space (l=0): $$\hat{H}(\vec{k}, l = 0)\psi - \frac{i\omega n_{\pm}}{4\pi^{3}\alpha'\mu_{7}A}\delta(\theta)\psi(\theta) = \omega^{2}\psi(\theta)$$ Perturbation theory problem with a delta function! Write $\omega = \omega_n - \frac{i}{2}\Gamma_n$ find, $$\Gamma_n^{\pm 1} = rac{32\pi^3\sqrt{\lambda}}{N_cm_q^2}|\psi_n(heta=0)|^2n_\pm$$ Recall $n_{\pm} \propto N_c$ so $\Gamma \sim \mathcal{O}(1)$ in N_c . Incredibly simple result. Note $n_{\pm}(T,\mu)$ not calculated; depends on functional determinant. Cannot extract width directly; However n_{\pm} is k independent, so we take the ratio: $$rac{\Gamma_n(k)}{\Gamma_n(0)} = rac{|\psi_n(\theta=0; \vec{k})|^2}{|\psi_n(\theta=0; \vec{k}=0)|^2}$$ Use large k analytic results for wave function, grows quadratically; $$\Gamma_n(k)/\Gamma_n(0) = R_n[T/M](k/M)^2 + \mathcal{O}(k)$$ Temperatures $T \ll M$ and for $k \gg \frac{M^3}{T^2}$; $$\Gamma_n(k)/\Gamma_n(0) \approx \frac{2(4\pi)^4}{(n+2)(n+3/2)} \frac{T^4k^2}{M^6}$$ - Width turns up at same momentum that the meson group velocity reaches its maximum. - $\Gamma \sim T^4 k^2/M^6$ consistent with semiclassical string analysis of screening length. 26 Pirsa: 08110033 Page 48/61 # Comparison to phase with $\mu > m_q^{(T)}$ Kobayashi, Mateos, Matsuura, Myers, Thomson; Erdmenger, Kaminski, Rust; Myers, Sinha For $\mu > m_q^{(T)}$ a new phase is thermodynamically favored where D7 branes fall into horizon through a narrow neck. Neck looks like a bundle of strings. Width of neck $w \propto n_q^{1/2}$. For small quark densities such that $w < \alpha'^{1/2}$, DBI description bad. For $w \ll \alpha'^{1/2}$, instantons (strings) are the better description. 27 Pirsa: 08110033 Page 49/61 ## Comparison to phase with $\mu > m_q^{(T)}$ Meson spectrum is now continuous. Width as a function of momentum for this phase has been calculated; Pirsa: 08110033 Page 50/6 ## Phase Diagram - Redux (see previous work by: Mateos, Matsuura, Myers, Thomson; Ghoroku, Ishihara, Nakamura; Nakamura, Seo, Sin, Yogendran) Pirsa: 08110033 Page 51/6 ### Small density analysis TF, Hong Liu to appear. Embeding becomes singular as $n_q \to 0$. The limit $n_q \to 0$ is not uniform for the embeding functions $y(\rho)$: Split into regions: - Inner $y(\rho) = Y_0(\sigma) + \mathcal{O}(n_q)$ with $\rho = n_q^{1/2} \sigma$ - Outer $y(\rho) = y_0(\rho) + \mathcal{O}(n_q)$ Width: study χ_{ϕ} fluctuations (to leading order in n_q) in two regions; match; find exact same result as instanton calculation! Using the two regions we compute perturbatively in n_q thermodynamic quantities such as the chemical potential: $$\mu = m_q^{(T)} - B(T)n_q \log n_q + A(T)n_q + O(n_q^2)$$ Curiously: the $n_q \log(n_q)$ comes from canceling of log divergences between the two regions. This form is confirmed by precise numerical studies: Using this expansion we can show there is a third order phase transition (in the grand canonical ensemble) as $\mu \to m_q^{(T)}$ and $n_q \to 0$: for μ < m_q^(T) we only have Minkowski embedings which are independent of μ: $$P(T,\mu) = P_0(T)$$ • for $\mu > m_q^{(T)}$ we have: $$\frac{\partial^2 P}{\partial \mu_q^2} \propto \left(\frac{\partial \mu_q}{\partial n_q}\right)^{-1} = \frac{1}{A - B - B \log n_q} \to 0$$ $$\frac{\partial^3 P}{\partial \mu_q^3} \propto -\frac{\partial^2 \mu_q}{\partial n_q^2} \left(\frac{\partial \mu_q}{\partial n_q}\right)^{-2} = \frac{B}{n_q} \frac{1}{(A-B-B\log n_q)^2} \to \infty$$ Becomes 2nd order for B(T) = 0 and thermodynamically unstable for small ϵ when B(T) < 0 (susceptability is negative). The functions A(T) and B(T) can be evaluated; Where η is some messy function of T. Note: B(T) = 0 at two points. T = 0 (see Karch, O'Bannon) and some $T = T_c$. ## Phase diagram of D3/D7 system TF, Hong Liu in progress. New picture of the phase structure at finite λ , Do these non perturbative effects smooth out the transition between these two phases? Pirsa: 08110033 Page 56/6 ## Conclusions/Open questions - studied dynamical properties of mesons via AdS/CFT - · characterized the limiting velocity at high momentum - found a width via a nonperturbative correction, width grows like k² for large k. - do these features apply to QCD? - gluon contribution to breakup of the meson. Does this also grow with k? - Nature of the phase transition, $\mu \to m_q^{(T)}$ 35 Using this expansion we can show there is a third order phase transition (in the grand canonical ensemble) as $\mu \to m_q^{(T)}$ and $n_q \to 0$: for μ < m_q^(T) we only have Minkowski embedings which are independent of μ: $$P(T,\mu) = P_0(T)$$ • for $\mu > m_q^{(T)}$ we have: $$\frac{\partial^2 P}{\partial \mu_q^2} \propto \left(\frac{\partial \mu_q}{\partial n_q}\right)^{-1} = \frac{1}{A - B - B \log n_q} \to 0$$ $$\frac{\partial^3 P}{\partial \mu_q^3} \propto -\frac{\partial^2 \mu_q}{\partial n_q^2} \left(\frac{\partial \mu_q}{\partial n_q}\right)^{-2} = \frac{B}{n_q} \frac{1}{(A-B-B\log n_q)^2} \to \infty$$ Note $n_{\pm}(T,\mu)$ not calculated; depends on functional determinant. Cannot extract width directly; However n_{\pm} is k independent, so we take the ratio: $$rac{\Gamma_n(k)}{\Gamma_n(0)} = rac{|\psi_n(\theta=0; \vec{k})|^2}{|\psi_n(\theta=0; \vec{k}=0)|^2}$$ Use large k analytic results for wave function, grows quadratically; $$\Gamma_n(k)/\Gamma_n(0) = R_n[T/M](k/M)^2 + \mathcal{O}(k)$$ Temperatures $T \ll M$ and for $k \gg \frac{M^3}{T^2}$; $$\Gamma_n(k)/\Gamma_n(0) \approx \frac{2(4\pi)^4}{(n+2)(n+3/2)} \frac{T^4k^2}{M^6}$$ ### Interpretation - String theory perspective: open string modes living on a D brane which lies outside a black hole can tunnel into the black hole. - Field theory perspective: - Our width from left process. Dominant thermal process which breaks apart meson. - However right process more interesting from QCD perspective. Subdominant in this strongly coupled gauge theory. Note $n_{\pm}(T,\mu)$ not calculated; depends on functional determinant. Cannot extract width directly; However n_{\pm} is k independent, so we take the ratio: $$rac{\Gamma_n(k)}{\Gamma_n(0)} = rac{|\psi_n(\theta=0; \vec{k})|^2}{|\psi_n(\theta=0; \vec{k}=0)|^2}$$ Use large k analytic results for wave function, grows quadratically; $$\Gamma_n(k)/\Gamma_n(0) = R_n[T/M](k/M)^2 + \mathcal{O}(k)$$ Temperatures $T \ll M$ and for $k \gg \frac{M^3}{T^2}$; $$\Gamma_n(k)/\Gamma_n(0) \approx \frac{2(4\pi)^4}{(n+2)(n+3/2)} \frac{T^4k^2}{M^6}$$