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Far End Control
Modeling Shocks
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Far End Control

Modeling Shocks

Continuum Idealization:

e The limit shrinks the shock region onto a two dimensional
boundary.
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Modeling Shocks

Continuum |dealization:

e [he limit shrinks the shock region onto a two dimensional
boundary.

e On either side of the boundary the fluid's behavior is
governed by the relevant partial differential equations of

fluid dynamics.
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e The limit shrinks the shock region onto a two dimensional
boundary.

Continuum Idealization:

e On either side of the boundary the fluid's behavior is
governed by the relevant partial differential equations of
fluid dynamics.

¢ Behavior at the boundary is not law governed—no
differential equation holds; instead we have algebraic
“Jump conditions” —singular behavior across the boundary.
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Far End Control

Modeling Shocks

e The limit shrinks the shock region onto a two dimensional
boundary.

Continuum ldealization:

On either side of the boundary the fluid's behavior is
governed by the relevant partial differential equations of
fluid dynamics.

Behavior at the boundary is not law governed-—no
differential equation holds; instead we have algebraic
“Jump conditions” —singular behavior across the boundary.

Standard view: Such boundaries are relatively unimportant
to the physics—they are not law-governed. Covering law
accounts of explanation relegate boundary conditions (and
initial conditions) to secondary status in explanation.
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Icle alipation
Continuum Idealization:

¢ Nonstandard View:

¢ [he boundary is the most important feature needed to
understand the behavior of interest—the shock
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ik alization
Continuum ldealization:
e Nonstandard View:
¢ The boundary is the most important feature needed to

understand the behavior of interest—the shock.
¢ The shock/boundary “still dominates the overall behavior

through the way in which it constrains the manner in which
the ‘law governed regions’ piece together.” (Mark Wilson)
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Far End Control

Rays and the Rainbow Caustic

Figure: Raindrop and Light Rays
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Far End Control

Modeling Shocks

Continuum l|dealization:

e Nonstandard View:
¢ The boundary is the most important feature needed to

understand the behavior of interest—the shock
e [he shock 'boundary “still dominates the overall behavior

through the way in which it constrains the manner in which
the 'law governed regions’ piece together.” (Mark Wilson)
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Far End Control

Rays and the Rainbow Caustic

Figure: Raindrop and Light Rays
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Rays and the Rainbow Caustic

Figure: Fold Caustic
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Rays and the Rainbow Caustic

Figure: Raindrop and Light Rays
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Far End Control
Rays and the Rainbow Caustic

Figure: Fold Caustic
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Far End Control
Ray [heory or Geometrical Optics

e The ray theory is capable of locating (only approximately)
the primary bow of a rainbow—the caustic surface.
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e The ray theory is capable of locating (only approximately)
the primary bow of a rainbow—the caustic surface.

e [he ray theory fails to adequately account for the
intensities that one observes. In fact, on the ray theory a
caustic is a line on which the intensity of light is strictly
speaking infinite,
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e The ray theory is capable of locating (only approximately)
the primary bow of a rainbow—the caustic surface.

e The ray theory fails to adequately account for the
intensities that one observes. In fact, on the ray theory a
caustic is a line on which the intensity of light is strictly
speaking infinite,

¢ This represents a kind of discontinuity or singularity in the
theory. It is the A — O limit of the wave theory and is
analogous to the continuum limit yielding a singular shock.
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_ Far End Control
Ray | heory or Geometrical Optics

The ray theory is capable of locating (only approximately)
the primary bow of a rainbow—the caustic surface.

The ray theory fails to adequately account for the
intensities that one observes. In fact, on the ray theory a
caustic is a line on which the intensity of light is strictly
speaking infinite.

This represents a kind of discontinuity or singularity in the
theory. It is the A — O limit of the wave theory and is
analogous to the continuum limit yielding a singular shock.

The ray theory is incapable of describing the so-called
supernumerary bows—bows resulting from wave
interference—that are sometimes seen as faint arcs of
alternating pink and green on the lit side of the main
rainbow arc.
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|

Figure. Supernumerary Bows
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Figure: Supernumerary Bows
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Far End Control
Ray Theory or Geometrical Optics

So why do we need the ray theory at all?
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Far End Control
Ray [heory or Geometrical Optics

So why do we need the ray theory at all?

o Because the stability (under perturbation) of the caustics
(of the ray-theoretic focal structures) plays an essential
role in our understanding of the wave phenomena.
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Far End Control

Airy Equation m

In 1838 George Biddell Airy derived a definite integral from the
undulatory or wave theory of light from which one can
determine the variation in intensity of light near a caustic of

geometrical or ray optics. The term “caustic” literally means
“burning surface” and in nature they are extremely bright lines
and surfaces caused by the natural focusing of light. They are,
in a very obvious sense “dominant” features of light
phenomena.
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Far End Control

Airy Equation

Airy recognized that the singularity at the caustic was an
artifact of the ray theory, and by properly incorporating effects
of diffraction using the wave theory, he was able to derive the
definite integral of equation (1).

Ai(x) : 1[01 cos (’; 4 xt) dt. (1)

irsa: 08110027 Page 96/169




Far End Control

Airy Equation

|

Figure: Airy Function and Supernumerary Bows
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Far End Control

Airy's Convergent Expansion

Using a convergent series representation of this function, Airy
was able to compute values for Ai(x) for x between -5.6 to
4+5.6, where x is the distance along a normal to the caustic,
negative values on the lit side, positive values in the shadow.

Airy's series converges for all values of x and, as a result of this
convergence, we may take it to be an exact representation of
the Airy function. Unfortunately, this range of values allows
one to locate only the first two dark bands on the it side of the
caustic. Because of the slow convergence of the series Airy was
unable to extend his calculations beyond this limited range
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Airy Equation
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Far End Control
Airy's Convergent Expansion m

Using a convergent series representation of this function, Airy
was able to compute values for Ai(x) for x between -5.6 to
4+5.6, where x is the distance along a normal to the caustic,
negative values on the lit side, positive values in the shadow
Airy's series converges for all values of x and, as a result of this
convergence, we may take it to be an exact representation of
the Airy function. Unfortunately, this range of values allows
one to locate only the first two dark bands on the it side of the
caustic. Because of the slow convergence of the series Airy was
unable to extend his calculations beyond this limited range
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Far End Control

Divergent Asymptotic Expansions

In 1850, in the first of several discussions having their genesis
in Airy's caustic paper, Stokes noted that despite the fact that
Airy's series converges, " . when [x] is at all large the
calculation becomes exceeding laborious.” [Stokes(1966b), p.
329] He was motivated, therefore, to express the Airy integral

as a solution of a differential equation in a form that would
exhibit “what terms are of most importance when x is large
... [Stokes(1966b). p. 331] Stokes was aimed for physical
understanding—a desire to display in the most perspicuous
fashion those structures or features that dominate the
phenomenon of interest, namely, the rainbow.
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Far End Control
Divergent Asymptotic Expansions

o "“After many trials | at last succeeded in putting Mr Airy's
integral under a form from which its numerical value can
be calculated with extreme facility when [x] [the distance
from the geometrical caustic| is large, whether positive or

negative, or even moderately large.” [Stokes(1966b).
p.330]
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o "“After many trials | at last succeeded in putting Mr Airy's
integral under a form from which its numerical value can
be calculated with extreme facility when [x] [the distance
from the geometrical caustic| is large, whether positive or
negative, or even moderately large.” [Stokes(1966b),
p.330]

"Moreover the form of the expression points out, without

any numerical calculation the law of the progress of the
function when [x] is large.” [Stokes(1966b), pp. 330]
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Far End Control
Divergent Asymptotic Expansions

Had Stokes had large supercomputers at his disposal, there still
would be compelling reasons for engaging in this asymptotic
investigation—namely, that such investigations can often
highlight important mathematical structures that are hidden in
(or obscured by) the exact, convergent expansion.
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Far End Control
Divergent Asymptotic Expansions m

Stokes derived his asymptotic (divergent) expansion by finding
the differential equation for which the Airy integral (1) was a
solution and by using what is now known as the WKB method.
He examined the general case where the argument can be
complex and arrived at the following differential equation:

d?u

e zu = 0.
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Far End Control
Divergent Asymptotic Expansions

Stokes reasoned as follows (and, at base, this is the type of
asymptotic reasoning behind the WKB method) Let us focus
on large values of |z| which reflects our interest in being able to
describe the locations and intensities of the bows relatively far
from the caustic. If we increase |z| by a small increment 4z,
the proportionate increase of |z| will be small. That is, for large
|z| we can effectively regard z as a constant. If we make this
assumption, then equation (2) has the approximate solution:

.

u(z) = Ai(z) = Ae” o3 + Bei‘i, (3)

where A and B are arbitrary constants.
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Far End Control
Divergent Asymptotic Expansions [ﬂ

“The approximate integral [(3)] points out the existence of
circular functions . ..in the true integral” In fact, the
approximate ‘solution’ (3) shows that when z is real and
positive, the behavior of the solution to equation (2) can be
exponential in character and when z is real and negative, its
behavior will be oscillatory or trigonometric in character
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Stokes reasoned as follows (and, at base, this is the type of
asymptotic reasoning behind the WKB method). Let us focus
on large values of |z| which reflects our interest in being able to
describe the locations and intensities of the bows relatively far
from the caustic. If we increase |z| by a small increment 4z,
the proportionate increase of |z| will be small. That is, for large
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Far End Control
Divergent Asymptotic Expansions

“The approximate integral [(3)] points out the existence of
circular functions . ..in the true integral” In fact, the
approximate ‘solution’ (3) shows that when 2 is real and
positive, the behavior of the solution to equation (2) can be
exponential in character and when z is real and negative, its
behavior will be oscillatory or trigonometric in character
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Far End Control

Airy vs. Stokes
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Far End Control

Airy vs. Stokes

e Stokes' “solution” and, in particular, its leading terms,
explicitly exhibits the oscillatory and exponential character
of the “true indegral.” This provides a crucial component
of our understanding of the physical phenomenon of
interest. Our understanding of the patterns present in the

rainbow is provided by the relatively transparent
mathematical representation of these dominant
characteristics.

Airy's convergent series provides an ‘exact’ solution to the
equation for all values of |z|, but virtually no information
about the dominant physical features of the phenomenon
is conveyed by the analytical form of the terms of the
series.
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Airy vs. Stokes

o Airy's convergent series:
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Far End Control

Airy vs. Stokes

Stokes' “solution” and, in particular, its leading terms,
explicitly exhibits the oscillatory and exponential character
of the “true integral.” This provides a crucial component
of our understanding of the physical phenomenon of
interest. Our understanding of the patterns present in the

rainbow is provided by the relatively transparent
mathematical representation of these dominant
characteristics.

Airy's convergent series provides an ‘exact’ solution to the
equation for all values of |z|, but virtually no information
about the dominant physical features of the phenomenon
1s conveyed by the analytical form of the terms of the
series.
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Far End Control

Asymptotic Representations

Standard view:

e Asymptotic representations of various functions are
particularly useful.
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Far End Control

Asymptotic Representations

Standard view:

¢ Asymptotic representations of various functions are
particularly useful.

¢ [hey provide quite accurate numerical values even when
one considers very few terms in the series. For example,
most applications of the WKB method retain only the first
term in the asymptotic expansion.
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Standard view:

¢ Asymptotic representations of various functions are
particularly useful.

¢ [ hey provide quite accurate numerical values even when
one considers very few terms in the series. For example,
most applications of the WKB method retain only the first
term in the asymptotic expansion.

* However, because the late terms of such series typically
diverge, they have historically been taken to be inherently
vague and without any coherent meaning.
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Asymptotic Representations

o Asymptotic representations of various functions are
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particularly useful.

They provide quite accurate numerical values even when
one considers very few terms in the series. For example,
most applications of the WKB method retain only the first
term in the asymptotic expansion.

However, because the late terms of such series typically
diverge, they have historically been taken to be inherently
vague and without any coherent meaning.

Contemporary understanding of asymptotic expansions
rejects this skeptical assessment of the meaningfulness of
asymptotic expansions, and, in fact, one can see, already in
Stokes' own work, the seeds of this modern point of view.
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Far End Control
Asymptotic Representations m

* Stokes noted that “[a] semi-convergent [divergent] series
(considered numerically, and apart from its analytical
form) defines a function only subject to a certain amount
of vagueness ...." [Stokes(1966a), p. 285]

e Stokes' parenthetical remark here seems to say that while
there i1s numerical vagueness in asymptotic expansions,
there may be exact formal information captured in the full
asymptotic expansion

Pirsa: 08110027 Page 118/169




Far End Control

R. B. Dingle (1973

“[A]symptotic expansions are normal, immediately

comprehensible, functions of their variables in so far as

functional form is concerned. ... A complete asymptotic

expansion of a function f(x) may therefore be defined as an
expansion containing an asymptotic series which formally
.. exactly obeys—throughout a certain phase sector—all those
o relations satisfied by f(x) which do not involve any numerical
v value of x other than on the infinite circle |x| — > : for
Instance,

ot S e ©® Functional form as |x| = ., 1.e. boundary conditions on
f and its derivatives at infinity

£ swvn i a0

® Differential, difference and integral equations.

© Relations involving other parameters incorporated, such as

recurrence relations between orders.” [Dingle(1973), pp.
19-20]

Pirsa: 08110027 Page 119/169




Far End Control

R. B. Dingle

¢ In maintaining that a complete asymptotic expansion for a
given function f(z) is not inherently vague or meaningless
because of the divergence of the asymptotic series in the
expansion, Dingle commits himself to providing an
interpretation of the late terms of the series.
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Far End Control

R. B. Dingle E;j]

* In maintaining that a complete asymptotic expansion for a
given function f(z) is not inherently vague or meaningless
because of the divergence of the asymptotic series in the
expansion, Dingle commits himself to providing an
interpretation of the late terms of the series.

To put this another way, Dingle is committed to
interpreting the infinities arise when one takes the
singularities in the theory (the places of breakdown)
seriously.
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Far End Control

R. B. Dingle Eﬂ

* In maintaining that a complete asymptotic expansion for a
given function f(z) is not inherently vague or meaningless
because of the divergence of the asymptotic series in the
expansion, Dingle commits himself to providing an
interpretation of the late terms of the series.

To put this another way, Dingle is committed to
interpreting the infinities arise when one takes the
singularities in the theory (the places of breakdown)
seriously.

This interpretation is based on a theorem of Darboux from
1878.
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Far End Control

Asymptotic Interpretation

e Darboux's Theorem entails that the late terms in a
convergent Taylor expansion depend only on the behavior
of the function in the immediate neighborhood of the
singularity closest to the point of expansion.
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Asymptotic Interpretation

e Darboux's Theorem entails that the late terms in a
convergent Taylor expansion depend only on the behavior
of the function in the immediate neighborhood of the
singularity closest to the point of expansion.
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Far End Control

Asymptotic Interpretation

e Darboux's Theorem entails that the late terms in a
convergent Taylor expansion depend only on the behavior
of the function in the immediate neighborhood of the
singularity closest to the point of expansion.

e Dingle: This extends to asymptotic (that is, divergent)
series as well.
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Far End Control
Asymptotic Interpretation @

e Darboux's Theorem entails that the late terms in a
convergent Taylor expansion depend only on the behavior
of the function in the immediate neighborhood of the
singularity closest to the point of expansion.

e Dingle: This extends to asymptotic (that is, divergent)
series as well.

¢ Almost without exception, the late terms of divergent
series will have the same form.
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Far End Control
Asymptotic Interpretation [;}]

The late terms (n > 1)

of any asymptotic power series will transpire to be
expressible in a standard limiting form

(n + constant)!/(variable)”, the accuracy of this
limiting representation increasing with n .... This
conclusion . . .is critically important in two ways: hrst,
because it provides a valuable lead on how asymptotic
power series and expansions containing them might
best be defined, and second, because is shows that
substantially a single theory of interpretation will
apply equally to late terms of all such asymptotic
series. [Dingle(1973), p. 4 with a slight change in
notation|
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Far End Control

Asymptotic Interpretation

e Almost does not matter what the nature of the singularity
of the function is—whether it is a pole, a branch point,
etc.
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Far End Control
Asymptotic Interpretation @

¢ Almost does not matter what the nature of the singularity
of the function is—whether it is a pole, a branch point,
etc.

¢ Almost does not matter how the asymptotic expansion is
derived—whether from an integral representation, from a
differential equation, etc.
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Far End Control
Asymptotic Interpretation m

e Almost does not matter what the nature of the singularity
of the function is—whether it is a pole, a branch point,
etc.

¢ Almost does not matter how the asymptotic expansion is
derived—whether from an integral representation, from a
differential equation, etc.

e In virtually all cases, the late terms in the asymptotic
expansions will have one of four basic forms that he calls
“terminants,”
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Far End Control

Asymptotic Interpretation

e Almost does not matter what the nature of the singularity
of the function is—whether it is a pole, a branch point,
etc.

Almost does not matter how the asymptotic expansion is
derived—whether from an integral representation, from a
differential equation, etc.

In virtually all cases, the late terms in the asymptotic
expansions will have one of four basic forms that he calls
“terminants.”

A vast range of functions are such that through
asymptotic analysis they can be transformed so as to
exhibit a common, universal pattern:

Function = first n terms of asymptotic series + n'" x
terminant.[Dingle(1973), p. 411]

th
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Far End Control
Asymptotic Interpretation Eﬂ

e Almost does not matter what the nature of the singularity
of the function is—whether it is a pole, a branch point,
etc,

Almost does not matter how the asymptotic expansion is
derived—whether from an integral representation, from a
differential equation, etc.

In virtually all cases, the late terms in the asymptotic
expansions will have one of four basic forms that he calls
“terminants.”

A vast range of functions are such that through
asymptotic analysis they can be transformed so as to
exhibit a common, wuniversal pattern:

Function = first n terms of asymptotic series + nth x
terminant.[Dingle(1973), p. 411]
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Far End Control
Asymptotic Interpretation: Lessons

o Asymptotics provides complete information about the
function, and hence, about the phenomenon it represents,
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Far End Control
Asymptotic Interpretation: Lessons

e Asymptotics provides complete information about the
function, and hence, about the phenomenon it represents.

¢ Asymptotic expansions often result from a focus on a
singularity in a given theory or at the boundary between
two theories.
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Far End Control
Asymptotic Interpretation: Lessons

e Asymptotics provides complete information about the
function, and hence, about the phenomenon it represents.

Asymptotic expansions often result from a focus on a
singularity in a given theory or at the boundary between
two theories.

The singularities very often are associated with the
essential or dominant physical features—features that are
In some sense generic and not specific to any one single
instance: the shock boundaries, the stable focal surfaces
of light.
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Far End Control
Asymptotic Interpretation: Lessons m

Asymptotics provides complete information about the
function, and hence, about the phenomenon it represents.

Asymptotic expansions often result from a focus on a
singularity in a given theory or at the boundary between
two theories.

The singularities very often are associated with the
essential or dominant physical features—features that are
in some sense generic and not specific to any one single
instance: the shock boundaries, the stable focal surfaces
of light.

Thus, even though there may not be real physical
singularities, the mathematical singularities reflect
essential features of the situation.
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Far End Control
Asymptotic Representations and

Idealizations

¢ Most applications of mathematics to the description and
explanation of physical phenomena do involve

simplifications of a sort.
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Far End Control
Asymptotic Representations and m

Idealizations

¢ Most applications of mathematics to the description and
explanation of physical phenomena do involve

simplifications of a sort.

e Most applications involve idealizations in which certain
parameters are treated asymptotically.
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Far End Control
Asymptotic Representations and m

Idealizations

e Most applications of mathematics to the description and
explanation of physical phenomena do involve
simplifications of a sort.

e Most applications involve idealizations in which certain
parameters are treated asymptotically.

e Such asymptotic limiting idealizations are essential for
obtaining genuine scientific explanation and understanding.
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Far End Control
Asymptotic Representations and m

Idealizations

« Many (if not most) investigations of physical phenomena
focus on patterns of physical behavior—those aspects of a
system that replay themselves in varying circumstances.
This reflects a kind of stability under various changes of
the phenomenon of interest. (Details surrounding distinct

instances don't matter.)
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Asymptotic Representations and Eﬂ

Idealizations

Many (if not most) investigations of physical phenomena
focus on patterns of physical behavior—those aspects of a
system that replay themselves in varying circumstances.
This reflects a kind of stability under various changes of
the phenomenon of interest. (Details surrounding distinct

instances don’t matter.)

Asymptotic limits are most effective for examining what
goes on at places where the 'laws’ break down—that is, at
places of singularities in the governing equations of the
phenomena.
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Far End Control

Asymptotic Representations and

Robert W, Idealizations

e Many (if not most) investigations of physical phenomena
. focus on patterns of physical behavior—those aspects of a
o system that replay themselves in varying circumstances.
Saehtion This reflects a kind of stability under various changes of
nobes on the the phenomenon of interest. (Details surrounding distinct

Ay |r.|r‘r4'!

instances don't matter.)
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Expontions Asymptotic limits are most effective for examining what
oo goes on at places where the ‘laws’ break down—that is, at
SO e e places of singularities in the governing equations of the

VWor bd
phenomena.
e bbby

| These ‘physical’ singularities and their ‘effects’—how they

e dominate the observed phenomena—are themselves best
investigated through asymptotic representations of the
solutions to the relevant governing equations. Stokes and

s the rainbow. Ry
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Asymptotic Representations and
Idealizations

e Interplay between the ‘physical’ singularities and the
mathematical singularities.
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¢ [he ray-theoretic singularities need to be dealt with by the
wave theory—accomplished by Airy in deriving his integral
equation,

¢ However, the ray-theoretic singularity dominates the
physical phenomenon.
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Asymptotic Representations and
Idealizations

e Interplay between the ‘physical’ singularities and the
mathematical singularities.

¢ [he ray-theoretic singularities need to be dealt with by the
wave theory——accomplished by Airy in deriving his integral
equation,

¢ However, the ray-theoretic singularity dominates the
physical phenomenon.

e The mathematical singularities in the asymptotic
equations constrain the structure of the solutions to the
governing equations,
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Asymptotic Representations and

Idealizations

(otroduction Alfred Seeger (2000) in the introduction to Special Functions:

dealization A Unified Theory Based on Singularities:

“In mapping a complex physical situation onto manageable

.. mathematics, location and character of the singularities reflect

Y - the essentials of the situation, whereas the parameters not

b iis directly associated with the singularities usually carry incidental
information, e.g. on the physical properties of the specitic
material under consideration. Recognizing this led to a new
appreciation of the importance of asymptotic expansions and of
the Stokes' phenomenon. On the mathematical side, it is the
singularities of the differential equations resulting from the
mapping that determine the character of the solutions.”

[Slavyanov and Lay(2000), p. vii]

| TR
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e Physical systems are often extremely complex.
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stable features in the world demands that we idealize in a

certain way.

e Such idealizations focus on the “essentials of the
situation.”
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Conclusions

Physical systems are often extremely complex.

This complexity together with the existence of regular,
stable features in the world demands that we idealize in a

certain way.

Such idealizations focus on the “essentials of the
situation.”

In turn, our mathematical attention is focused on certain

singularities in the relevant mathematical equations which
require asymptotic investigations.
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onclusions

Physical systems are often extremely complex.

This complexity together with the existence of regular,
stable features in the world demands that we idealize in a
certain way.

Such idealizations focus on the “essentials of the
situation.”

In turn, our mathematical attention is focused on certain
singularities in the relevant mathematical equations which
require asymptotic investigations.

Interplay between physics and mathematics mediated by
singularities.
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Wigner's

The “unreasonable effectiveness of mathematics in the natural
sciences.’

e The "appropriateness of the language of mathematics for
the formulation of the laws of physics” is a "miracle” —"a

wonderful gift which we neither understand nor deserve.”
[Wigner(1967), p. 237]
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Wigner's Problem m

The “"unreasonable effectiveness of mathematics in the natural
sciences.”

e The “appropriateness of the language of mathematics for
the formulation of the laws of physics” is a “"miracle”—"a

wonderful gift which we neither understand nor deserve.”
[Wigner(1967), p. 237]

e Suggestion: The study of the asymptotics of various
| functions and the reasons for their usefulness in
Remarks on mathematical physics may very well help to dispel the

the Philosophy
of
Mathematics

appearance of the miraculous (and for some, the divine).
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e Mark Steiner in, The Applicability of Mathematics as a
Philosophical Problem, argues that contemporary
mathematical physicists employ various (analogical)
strategies in forming and discovering new theories about
unobservable aspects of the world. He argues that these
analogical strategies are fully anthropocentric—that is,
that they depend for their success, upon humans having a
special place in the world.

He aims to maintain the miraculous nature of the
applicability of mathematics to the world by
demonstrating repeatedly that physicists employ analogies
in discovery that are tied primarily to the formalism of
existing theories and that cannot in any way be taken to
be physically motivated.

Pirsa: 08110027 Page 155/169




oot mowy

iokes om e

Viry lovne gl

i Ii'l-bq|""

| s poamvn ey
A ¥ H\.jﬂa W

e -t e

« ik il thep

Hemarbs on
the Philosophy
o
Mathematics

Pirsa: 08110027

Far End Control
The Applicability of Mathematics Eﬂ

e Mark Steiner in, The Applicability of Mathematics as a

Philosophical Problem, argues that contemporary
mathematical physicists employ various (analogical)
strategies in forming and discovering new theories about
unobservable aspects of the world. He argues that these
analogical strategies are fully anthropocentric—that is,
that they depend for their success, upon humans having a
special place in the world.

He aims to maintain the miraculous nature of the
applicability of mathematics to the world by
demonstrating repeatedly that physicists employ analogies
in discovery that are tied primarily to the formalism of
existing theories and that cannot in any way be taken to
be physically motivated.
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The Applicability of Mathematics

¢ [ he discussion here provides some reasons to think that
the world actually dictates that we employ asymptotic
representations to best understand what we observe.
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¢ [he discussion here provides some reasons to think that
the world actually dictates that we employ asymptotic
representations to best understand what we observe.

¢ The very nature of many phenomena that are
investigated—their stability under changes in detail, their
association with singularities or places of breakdown of
various theories—constrains the nature of those
Investigations,

Remarks on
the Philosophy
of
Mathematics
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The Applicability of Mathematics

¢ The discussion here provides some reasons to think that
the world actually dictates that we employ asymptotic
representations to best understand what we observe.

¢ The very nature of many phenomena that are
investigated—their stability under changes in detail, their
association with singularities or places of breakdown of
various theories—constrains the nature of those
investigations.
The dominant and real features of phenomena require that
we employ limiting idealizations in forming the
mathematical equations with which we may represent the
phenomena.
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The Applicability of Mathematics

| hope that the discussion here leads us to question the
anthropocentric role of the mathematician's appreciation for
beauty (or formal analogy) as an important criterion for what
arguably should be paradigm examples of mathematics'
applicability to the world; namely, the extraordinary
effectiveness of mathematical asymptotics in describing and
explaining the physical world.
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