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Abstract: The semiclassical-quantum correspondence (SQC) is anew principle which has enabled the explicit solution of the quantum constraints of
GR in the full theory in the Ashtekar variables for gravity coupled to matter. The solutions, which constitute the physical space of states
implementing the quantum dynamics of GR in the Dirac procedure, include a specia class of states known as the generalized Kodama states
(GKod). The GKodS can be seen as an analogue of the pure Kodama state (Kod) when quantum gravity (QGRA) is coupled to matter fields
guantized on the same footing. The criterion for finiteness stems from a precise cancellation of the ultraviolet singularities stemming from the
guantum Hamiltonian constraint, allowing for an exact solution. This signifies the following developments for 4D QGRA: (i) Equivalence among
the Dirac, reduced phase, geometric and path integration approaches to quantization for GKods; (ii) A generalization of topological field theory to
include matter fields via the instanton representation of GKod; (iii) A possible mechanism to establish 4D QGRA, via tree networks, as a
renormalizable theory (iv) A direct link from QGRA to Minkoswki spacetime physics, which would enable tests of 4D QGRA without the necessity
to access the Planck scale (v) A third-quantized analogy to second quantized spin network states implementing the quantum dynamics of GR. The
aforementioned algorithm is designed to construct explicit solutions to the constraints of the full theory by inspection, while implementing any
desired &€ boundary&€™ conditions on the states necessary to reduce to the appropriate semiclassical limit. Conversely, the finite states of 4D
QGRA can place severe restrictions on phenomena occurring in the weak gravitational limit below the Planck scale. While we demonstrate this for
the GKodS in this talk, the procedure can be applied to obtain a family of states labeled by two arbitrary functions of position, which possess the
requisite Hilbert space structure in the limit where the matter fields are turned off. Remaining areas of research in progress include the illumination
of the Hilbert space structure of the GKodS, analysis of various models for which the SQC can produce tractable solutions, in the full theory and in
minisuperspace, and the addressal of any issues of interest regarding the mathematical rigor of the states.
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Implications of a finite state of QGRA

» Formal equivalence of Dirac. RPS. path integration
and geometric quantization procedures
— Would mplv convergence of the path integral for GR
— Hence the effective action for gravity would be finite
» No need to access the Planck scale to test for or
measure quantum gravitational effects

— QGRA would place constraints on phenomena below the
Planck scale consistent with a finite state. which cannot be
deduced based on classical GR or QFT alone

— This would mmplyv a verifiable semiclassical limit
* No more cosmological constant problem
— \ 15 a fundamental expansion parameter of the theorv
— Nonperturbative QGRA would explam why A 1s so small

Pirsa: 08110025 Page 3/47




The pure Kodama state
VU kod| Al = exp [—G(GAh)_IICS[A]]

* (Chern-Simons functional of a selt-dual SU(2) connection in
the Ashtekar varniables A7 (x. %), . (x. t)

» Exact solution to the quantum constraints of vacuum GR with
cosmological term. discovered bv Hideo Kodama: (Hideo
Kodama: Phvs. Rev. D42 (1990) 2548)

* Has a well-defined semiclassical limit below the Planck scale
of quantum DeSitter spacetime (Lee Smolin: hep-th/0207079)

* Candidate for the ground state wavetunction of the universe

* Open 1ssues with the Kodama state

— Normalizability and Unitarity (Ed Witten objections by analogy to
Yang-Mills theory: gr-qc/0306083)
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Why is V¥ k4| Al special?

* Only known nontrivial exact solution to the
constraints of quantum GR 1in the full theory

* Both a semiclassical and exact quantum state
 Resembles TQFT. which 1s renormalizable/finite

| ;
UoqlA] = exp [—Bf_ﬁcm“ / tr(_{ NdA+ZANAT .4)

J oM -

' L di AGA_ )]
= eﬂ){—ﬁ(ﬁGM'l trF A Fi ~ exp| tr(E \F + LE E)
M ! Lt 24 /]

« But if our umiverse also includes quantized matter
fields coupled to quantized gravity:
* How cany ,_,[.A] be generalized accordingly”
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Generalized Kodama states Yoxod[A%(z), v (x)]

* Is there an analogous wavetunction of the universe that

— Exactly solves the quantum constramts of 4D general relativity. for the
full theory, coupled to matter fields quantized on the same footing’

— Bears an analogous topological representation in the presence of matter
fields as the pure Kodama state does to 4D TQFT devoid of matter?

— Is both a semiclassical and an exact quantum state to all orders”

— Has a well-defined semiclassical limit below the Planck scale (e g QFT
of matter fields on Minkowski spacetime. or whatever could be
consistent with accelerator experiments or observation)’

» This leads to the principle of the Semiclassical Quantum
correspondence (SQC), which requires a consistent and
exhaustive application of the CCR 1n the functional
Schrodinger representation as a necessary condition for a finite
state of full quantum gravitv (Evo Ita: Class. Quantum Grav.
(2008) 125001 and 125002, and articles on gr-qc archive)
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General procedure
» CDIJ Ansatz (Capovilla/Dell/Jacobson):

— Solves classical constraints of GR with matter fields
(Thiemann: Class. Quantum Grav. 10 (1993)1907-1921)

~y : A y
0q(T) = Wae|Aj (z), ¥ ()] Be(x)
* But we want the quantum constraints to be solved
— Quantize the CDJ matrix subject to the SQC

— Expand quantum statistical fluctuations about W g4

§) N
q’ae == __(5(16 e {1&')
A e

— Use the D.O.F. of the CDJ matrix to eliminate all matter-
mduced UV singularities. not as a Lagrange multiplier
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General procedure
« CDJ Ansatz (Capovilla/Dell/Jacobson):

— Solves classical constraints of GR with matter fields
(Thiemann: Class. Quantum Grav. 10 (1993)1907-1921)

~1 / :l '
0q(T) = Wae|Aj (z), ¥ ()] Be(x)
* But we want the quantum constraints to be solved
— Quantize the CDJ matrix subject to the SQC

— Expand quantum statistical fluctuations about W g4

6

A
q’ae — __(536- e ae)
A e

— Use the D.O.F. of the CDJ matrix to eliminate all matter-
mduced UV singularities. not as a Lagrange multiplier
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Kinematic constraints of 4D QGRA

» Diffecomorphism constraint:
B (z)

det B(x) wa(z)(Di(z))* =0

ExcficrlE)— G

e Gauss law constraint:

9B (2) 5~ + CL%() Jery(@) + Gral@)(Ta)3v?(z) = 0

« Mixed partials condition (new. due to SQC):

) O€ e

ma(@) - & [ Bi@iAr @5 = WP (@)
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Kinematic constraints of 4D QGRA

» Diffecomorphism constraint:

B (x _
ooy et () = G gt oma(z) (Diwo(@) = 0

e Gauss law constraint:

9B (2) 5~ + CL%() Jery (@) + Gral@)(Ta)3v P (z) = 0

» Mixed partials condition (new. due to SQC):

/) aE(I.E

TA(T) — G /r B (x)d A (x) oA fa(w®(x))
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Quantum Hamiltonian constraint

* SQC broken due to matter fields: Dilemma
— (1) No phvsical states if constraints not satisfied

— (11) Problem of time m QGRA 1f constraints are satistied

,\ F. e 0 0 0
H‘PQK d[ﬂ?’,ti“i]: —ﬁ3G3€abce.' g
i 6 704} (z) 04b(x) 045 ()
LI §  §F |, : | "
ARG eijp—————Bi(x) + Q[ 6/60%, §/0AZ] | Ugkoa AT, v
17k OA?(I) ﬁ:li(l‘) a.( ) [ / / z}- Ghﬂd[ ? ]
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Quantum Hamiltonian constraint

* SQC broken due to matter fields: Dilemma
— (1) No phyvsical states if constraints not satisfied

— (11) Problem of time mn QGRA 1if constraints are satistied

: AL 5 & @
H¥cxoal A2, 0] = | RGP e — ——
GKod|Ai; V7] 6 JA-()A?(.T) 5;4?(17) 0A7 ()
ol B heE W OR . | :
RRG2ete " Bi(r) 4+ Qe 5/602 6/0A%) | Wkl A2,
JA(?A?(E)M‘E(I) a() [ / / I]_ GK d[ ¥ ]

(0
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Standard form for large class of models coupled to
gravity: Regularization-independent at canonical level

* 9+N system for CDJ deviation matrix

Oﬂheae T AZ&EbeaeEbf T iXQE;IngEfEadEbEECf - GQQh

» Identical structure to EOM of Yang Mills
theorv. which 1s renormalizable and finite

(670% — 870,) A% + g(Fo™ (0" AL) AL — f2°ASH, A

+g fabCfbdeAc Ad'uAE o ]a 0
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Standard form for large class of models coupled to
gravity: Regulanzation-independent at canonical level

* 9+N system for CDJ deviation matrix

Oﬂheae 5 AE&Ebeae €bf T iXQE;IECdEfEadEbEECf — GQQh

» Identical structure to EOM of Yang Mills
theorv. which 1s renormalizable and finite

(670% — 870,) A2 + g(Fo% (0" AL) AL — f¥°ASH, A

+g fabCfbdeAc AdpAE o ]a 0
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General solution by Feynman-like
diagrammatic tree networks

» Third-quantized generalization of spin network
state solving the quantum constraints of GR
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Wavetunction of the Universe

e Perturbative expansion in dimensionless coupling
constant GA or in GA' = GA+G-V(y)

__{ ae+ZGv (HZaEbeHEngbeJCJ Hoziiqu L[f)

ol A2 0] = exp[ [ d'a((HG) W BLAT + 5 £
M |

e Choose f to reproduce SR for matter below the
Planck scale: sets boundary condition on QGRA
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Representations of Yakod

* Boundarv term on final spatial hvpersurface:
Problem of time has disappeared

-{p[(h(})—l /8 Ud% /r qJHEBgéAﬂexp[% /a ) Bz /F m-wﬂ
/ . A ' i . b

 Instanton representation: TQFT plus matter

]

exp {(hG)_l /M Ve FO A Fe}exp L’i

[ dtefa(povy’]
J M
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Wavetunction of the Universe

e Perturbative expansion in dimensionless coupling
constant GA or in GA' = GA+G-V(y)

__{ ae+ZGv (HyaﬁbﬂHEngbe}% Hoztichk ;‘[f)
]

- - 1 AQ 2 £
ol A2 0] = exp[ [ d'a((HG) W BLAZ + 5 £

M
e Choose f to reproduce SR for matter below the
Planck scale: sets boundarv condition on QGRA
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Representations of Yakod

* Boundaryv term on final spatial hvpersurface:
Problem of time has disappeared

'{p{(h(}')_l /a Ud% /r \IJHEBéé'Aﬂexp{% /a ) Bz /F fﬁ-aﬂ
. ! . A ' i U

 Instanton representation: TQFT plus matter

)

exp {(hG)_l /M Ve FO A Fe}exp {ﬁ

[ dtefaDov)
J M
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In progress research

Formalizing Hilbert space structure ot Wz
Generalization to include gravitational DOF (done)
Develop mterpretation as a third-quantized theory
Semigroup nterpretation of the Hamiltonian
constraint functional Green's functions

Yang-Mills theorv requires special treatment since
non-polvnomial 1n the basic varnables

Creation of a library of states for different models 1n
the full theorv: Ultimate goal 1s the Standard Model
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Wavetunction of the Universe

e Perturbative expansion in dimensionless coupling
constant GA or in GA' = GA+G-V(y)

__{ aeJFZGv (HY{IEbeHEngbeJCJ Hozi{;:@q ‘L[f)
]

Varod A, 1] = exp [ ﬁ f d*z((hG) "W, BLA? + %.ﬁq'tﬁ*“)}

e Choose 1 to reproduce SR for matter below the
Planck scale: sets boundarv condition on QGRA
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General solution by Feynman-like
diagrammatic tree networks

* Third-quantized generalization of spin network
state solving the quantum constraints of GR




Solution: Set 90 — q1 — g2 = 0

GB*BJ
4 detB

5 GB*BJ
% 2 detB
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