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In this talk, I'll consider astrophysical black holes (and other compact
objects) interacting with long wavelength gravitational fields (e.g . field
produced by other BH in orbit).

Such systems have a natural formulation in terms of effective field
theories (EFTs). They are also relevant for experiments in gravitational
wave detection, e.g. LIGO and LISA.
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Main Motivation

An interesting class of signals for gravitational wave detectors (eg, LIGO/
LISA) consists of radiation induced inspiral of compact binary systems
(BH or NS constituents). Why?

|. Such systems are strong emitters of gravitational radiation:

1 1 m
~ —G N Bint ~ 1( T
. R(,'\ Eine ~ 10 R(Mpc) m-

giving values in the LIGO range h = AL/L ~ 10~2! _ 10—22
for, eg, solar mass NS/NS at R ~ 3000Mpc

2. Many expected inspiral events per year for upgraded LIGO:

NS/NS NS/BH BH/BH in field BH/BH in clusters
Reat- ¥ 1075 5x100* <1077-10° < 1007107 " ~ 10-5-10°
Dy 20 Mpe 43 Mpe 1) 1)
Rj. vr—! 3x1W0*-03 <4x1W0'-06 <4x107*-06 ~0.04-06
Dwe 300 Mpe 650 Mpe z=104 z =04
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3. Signal is long duration: For binary in close but non-
relativistic orbit, can use virial thm. to get estimate of orbital

dynamics:
> Gym s
M~

tw

I

r r

e.g LIGO can detect signals in a frequency band 10 Hz < » < 1 kHz.

This correspond to orbital parameters

1/3 1/3
r(10 Hz) ~ 300 km (l) — r(1 kHz) ~ 14 km (l)

m : m S

(for comparison, r< ~ 1 km for M ~ Mmg)

13 1/3
v(10 Hz) ~ 0.06 ( = ) — »(1 kHz) ~ 0.3 ( m )
i I - - .
note: MNs ~ Mg, mpu ~ 10me).
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In this regime, the energy loss of the binary to GW's is approx. given
by the quadrupole rad. formula:

{[ _l_ 9 3) . 1
E (—QHH'—> = :} 1\1{“_'
Solving this gives:

- —8/3
<) 1 1 s - I
At ~ - . === ] ~ oI
212 \ v; 1§ M

for the duration of the inspiral event in the LIGO band, and

|
!for the number of orbital cycles spent in the detector band.

' 'Long integration times — waveform is highly sensitive to
'small relativistic effects. LIGO is sensitive to at least (v/ ()
‘ corrections beyond Newtonian gravity for binary dynamics
i (morefor BH/BH). (Cuder et al. astro-ph/9208005)

ot —~5/3
. S 1 1 1
‘ N ~ / w(t)dt = — — — | ~4 x10% focas radians
‘. 32 \ v} vy me:
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Thus, by comparing LIGO measurement and theoretical
|
prediction for waveforms, one can hope to obtain:

|
|
| |. Accurate measurements of masses, spins, distances
| for compact binaries out to R ~ 1000Mpec.

| 2. Stringent tests of (classical) General Relativity.

3. Structure of black holes or neutron stars? (eg.,
dynamics of BH horizons?)

(note: For LISA, binary inspirals follow exactly the same dynamics.
PSA band is 10~ Hz < » < 1 Hz so typical sources have much
rarger mass. For LISA, one has:

FHIBH: mpg ~ 1 S_Sm-:-

BH/NS: MBH ~ ]_05_'-”!,':')
|
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Non-relativistic binary problem is also interesting from the point of view
of field theory, as it is a problem with many different length scales. E.g,
for binary BH:

K = Black hole radius I' = Orbital radius
A\ — Wavelength of grav. radiation

j . i J
cales are correlated: r~rs/ve (viralthm.) A~ r/v
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Because scales are correlated, a single expansion parameter controls
qualitatively different physical effects....

This has been a source of problems for traditional “Post-Newtonian”
methods of computing binary inspiral observables over the last ~30 years
(Damour-Blanchet et.al; Will et.al). The expansion is plagued with e.g.:

Ultraviolet divergences, due to the use of singular (delta fn.) pt particle
sources in 1,

- “Ambiguities” in the calculation of certain terms in the GW observables
at order "Uﬁ in the expansion (Blanchet, Damour et. al).
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|
The reason why this is difficult to decide in traditional PN approaches is
%that there is no manifest separation of scales.

This motivates an alternative, “Wilsonian™ approach, that treats each
'Physical scale independently. In such an approach:

|
" |. Finite size effects are parametrized as Wilson coefficients in
| .
. an pt particle theory.

[

2. These Wilson coefficients can be obtained by a matching
calculation done at y1 ~ 7 Lin the one-body sector, where
the dynamics simplifies.

3. Short distance (UV) divergences can be handled in the usual
way and absorbed into finite size coefficients.

4. Logs of scale ratios — |1] 7 can be understood by RG
| i mw o d S Page 10/70



dinary stars as an EFT problem

inary problem involves a hierarchy of scales, r. < r < r/v
implify by integrating out one at a time

Extended objects (BH/NS) + GR (the “full

theory”) 1

match — =T
Relativistic point particle + GR H
2-body NR problem |

match — =1
7

Composite object + radiation gravitons

(NRGR)

l non-trivial RG running
1 r

" Page 11/70
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The EFTs:

I: each stage in the calculation, the relevant dof’s are worldline localized
+1) dim d.o.f’s with local SO(3) indices, coupled to gravity.

onsider first isolated BH/NS. Then these dynamical moments are just the

ormal (or “quasi-normal”) modes of the field theory (matter+gravitational)
)lat makes up the compact star.

}euristically. matching onto the worldline EFT is just dimensional reduction:

| h =ee " hy(x)

)

D3 he(x) = wihe(x)
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dinary stars as an EFT problem

inary problem involves a hierarchy of scales, r. < r < r/v
implify by integrating out one at a time

Extended objects (BH/NS) + GR (the “full

theory”) 1

match — = r.
Relativistic point particle + GR H
2-body NR problem |

match — =1
7

Composite object + radiation gravitons
(NRGR)
l non-trivial RG running

1 r
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EThe s

L each stage in the calculation, the relevant dof’s are worldline localized
+1) dim d.of’s with local SO(3) indices, coupled to gravity.

onsider first isolated BH/NS. Then these dynamical moments are just the
rmal (or “quasi-normal”) modes of the field theory (matter+gravitational)

)lat makes up the compact star.

I

I
euristically, matching onto the worldline EFT is just dimensional reduction:

h = hy(x)

r > Ts

-

e Q¢\T)

=012 -
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eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
modes. In this case there are some zero modes:

Mode Freq. JE
m(7) () 0
2" r) 0 1T
wiilT) (sp|r|) 0 -

here are also massive “states’”

=2 F=3 =4

0.37367 -0.088061 | 0.59944 -0.092701 | 0.830918 -0.094161
0.34671 -0.273911 | 0.58264 -0.281301 | 0.79663 -0.284431
0.30105 -0.478281 | 0.55168 -0479091 | 077271 -047991 1
0.25150 -0.705141 | 051196 -0690341 | 0.73984 -0.683921

LR VI =] -

Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole
for £ =2_3, and 4 [135]. The frequencies are given in geometrical units and for
converston wmto kHz one should multiply by 2m(5142H =) x (M /M).
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The EFTs:

t each stage in the calculation, the relevant dof’s are worldline localized
+1) dim d.o.f’s with local SO(3) indices, coupled to gravity.

onsider first isolated BH/NS. Then these dynamical moments are just the
ormal (or “quasi-normal”) modes of the field theory (matter+gravitational)
)lat makes up the compact star.

euristically, matching onto the worldline EFT is just dimensional reduction:

h =e "™ hy(x)

Q| T)
d

Dih,t}{? = wy he(x)

=0 L2
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eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
modes. In this case there are some zero modes:

Mode Freq. W o
m(71) () ()

27T ] 0 1+

wijilT) (spin) 0 .

here are also massive “states’”:

=2 =3 £ =4

0.37367 -0.088061 | 0.59944 -0.092701 | 0.80918 -0.094161
0.34671 -0.273911 | 0.58264 -0.281301 | 0.79663 -0.284431
0.30105 -0.478281 | 0.55168 -0479091 | 077271 -047991 1
0.25150 -0.705141 | 051196 -0690341 | 0.73984 -0.683921

W ivw = QB

| Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole
| for £ =2_3, and 4 [135]. The frequencies are given in geometrical units and for
conversion mnto kHz one should multiply by 2x(5142H =) x (M /M).
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ffective Lagrangian is built from these modes and the gravitational field g,.. ()
) practice, we can just keep the massless modes as explicit dofs. Then

S =Sy + Spp
. T f d'z\/gR(x) (m3; = 1/(327GN))

Spp = —m /dT+£‘E/dTE#pE“V+CB [CZTB#”B'U'V + ---

EF'u::ring spin dofs (see R. Porto, gr-qc/051 106 | ; Porto+Rothstein gr-qc/0604099),

is is the most general action consistent with symmetries of the Schwarzschild
H. Here

- dt* = gu,dx*dxz” =proper time along worldline

! (17 = - La
E ="electric parity” components
pv

~ Coioj
of Weyl tensor -

(in rest frame)

B ="magnetic parity’
[73 %

~ Coijk
components of Weyl tensor

lotereouplings involving ,,,, can be set to zero by a field redefinition-ef:the

| S . —— fl-iﬂ l l'"'\ Pl aT - -—"T, Ty %



| - : S
eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
| odes. In this case there are some zero modes:

| Mode Freq. N
m(7) () ()

2" (1) 0 1+

<ij(T) (spin) 0 i

}'uare are also massive “states’”:

£=3 = F—4

0.37367 -0.088061 | 0.59944 -0.092701 | 0.80918 -0.094161
0.34671 -0.273911 | 0.58264 -0.281301 | 0.79663 -0.284431
0.30105 -0.478281 | 0.55168 -0479091 | 0.77271 -047991 1
0.25150 -0.705141 | 051196 -0690341 | 0.73984 -0.683921

TURN U =] - |

| Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole
for £ =23, and 4 [135]. The frequencies are given in geometrical units and for
| conversion mto kHz one should multiply by 2x(5142H =) x (M /M).
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ffective Lagrangian is built from these modes and the gravitational field g,.(x)
) practice, we can just keep the massless modes as explicit dofs. Then

S = SEr + Spp
f Ser = —2m7p, fd4r\/§R(I) (m.?f';,; =1/(327GnN))

Spp — —1In /dT-I-CE/d‘TEFPEpV + €8 /dTBPwBFV + ---

:noring spin dofs (see R. Porto, gr-qc/051 106 | ; Porto+Rothstein gr-qc/0604099),
is is the most general action consistent with symmetries of the Schwarzschild
H. Here

- d7* = gu,dx*dz” =proper time along worldline

E ="electric parity” components
i

~ Coioj
of Weyl tensor i

(in rest frame)

B ="magnetic parity’
(732

~ Coijk
components of Weyl tensor g

lotercouplings involving ,,,, can be set to zero by a field redefinition-ef-the

S L . < — fl-in l l""\ Pl aT - "7, i 1 i



eg, for a Schwarschild black hole, the spectrum contains an infinite tower of
imodes. In this case there are some zero modes:

'~ Mode Freq. F*
|

m(7) 0 ()
| " (1) 0 1T
‘ wiji(T) (SPin) () |

here are also massive “states’”:

£=2 £=—3 =4

0.37367 -0.088061 | 0.59944 -0.092701 | 0.80918 -0.094161
0.34671 -0.273911 | 0.58264 -0.281301 | 0.79663 -0.284431
0.30105 -0.478281 | 0.55168 -0479091 | 077271 -0479911
0.25150 -0.705141 | 0.51196 -0690341 | 0.73984 -0.683921

W e = Q|

Table 1: The first four QNM frequencies (wM ) of the Schwarzschild black hole
for £ =2_3, and 4 [135]. The frequencies are given in geometrical units and for
L converston wmto kHz one should multiply by 2x(5142H =) x (M /M).
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ffective Lagrangian is built from these modes and the gravitational field g,.. ()
) practice, we can just keep the massless modes as explicit dofs. Then

— Seg + Spp
SEH = _2'”1%5'[‘141'\/51?(1) (mp; =1/(327Gn))

Spp = —Hl/dT-FCE/dTE“I,E“p +('B/dTB#UBPV T

noring spin dofs (see R. Porto, gr-qc/051 106 | ; Porto+Rothstein gr-qc/0604099),

is is the most general action consistent with symmetries of the Schwarzschild
H. Here

- dt* = g,,dx"dx” =proper time along worldline

E ="electric parity” components
i

~ Coioj
of Weyl tensor -

(in rest frame)

B ="magnetic parity’
v

~ Coijk
components of Weyl tensor .

loterewuplings involving ,,,, can be set to zero by a field redefinition-ef:the

| S —— rl-iﬂ. l l'"‘\ Pl aT - T, T i



ne operators

Spp =---+¢CE deEm,E“" - L'B/dTBm,B””

' the effective Lagrangian cause deviations from pure geodesic motion. They
e therefore associated with tidal = finite size effects. By including all such ops.
e are systematically parametrizing finite size effects within the pt particle EFT.

{ow are the coefs ¢ 5 calculated? Through matching: Compare amplitudes
1 full BH theory vs. pt. particle EFT.

ook at the elastic process ¢ + BH — g + BH. In the EFT, the amplitude has a
erm CE.B

. ‘:CE-B _
'!AEFT:"'"" ~ - = u_:rl_+_---
H’L‘;,!

o that the cross section has a term

..
irsa: 08110024 CI_E. B
oppr{w) ~---+—F " -
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n the full BH theory, the only scale is the Schwarzschild radius, so

opa(w) = I'Ef(f'_gw')

vhere f(r.w) can be expanded in powers of s« (possibly times logs) for
i'su.r.: <1

n the limit r,w < 1, the full BH result should agree with the pt. particle EFT
alculation. Thus the matching condition is

B
C E.B g§

T

10 8
opa(W) ~ ---+ryw +---=0ogpr(w) ~---+

. HI.'PI

| z
ind therefore CE.B ~ MpT,

Fa\*

9
ight expect this effect to be at most (—) ~ v'? . This is a lower bound
1 finite size corrections »

| .
Large:enhancement possible for NS, Rys ~ 10 x rs. See page 24170
Hannacan + Hindarar arYiwv-0709 19| 5)



Calculating Observables:

the:r integrating out the internal size scale 7, all the long distance two-
:ody physics is calculable from

— — E m,jfdﬂl “I"CE}/({TIE;U +CEJ/dTIB;y
il

|

|

Ihterferomemc detectors (LIGO/LISA) are most sensitive to the phase o(t)
Ff gravitational wave signals. Theoretically this can be calculated from

|

I

i

|

E(v) = grav. binding energy, as a function of orbital velocity.

F(v) = radiated power, as a function of orbital velocity.
dE
Etung == —JF the GW phase measured by LIGO/LISA can be
;lculated : E.g., for extreme mass ratio binary

f ( lJ ) Page 25/70
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1 (classical) field theory, these quantities can be calculated perturbatively
"om a gravitational “Wilson loop” observable. Hold z% (7) fixed, and
ompute

expliSesr(za)] = /th expliSen + 1Spp).
vhere | expanded Gupy = Ny + hpu. Diagrammatically:

iSeff(Ta) = diagrams that remain connected if particle lines are
removed

iSeff(Ta) = - W 4

|
‘ —- (no propagators for particie lines)

| irsa: 08110024 ; 4
e (Donoghue. gr-qc/9512024)
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deff(Za)  generates all relevant observables:

Re S, ff [.ra] = generates classical e.om’s for ;L’f:

nd for a fixed {z;} config., over a large time T — ~c

d*T
dEdQ’

S 1 |
=1ImS, ff[z.] = §/dEd!1

here dl is the differential rate for graviton emission from binary system.
-lassical power spectrum can be obtained from this:

' dP = EdT',

irsa: 08110024 Page 27/70
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It is OK to set up the perturbative expansion in this way. But it is not
optimal for the NR two-body problem:

Feynman rules mix different orders in the velocity expansion.
eg, the one-graviton term in Sefflzal

m

AL
m,m : s
16:71}'” i

i,

Ity

expanding Dp(r) dr = dz"\/1 — v2 generates an infinite
number of terms with different velocity scaling. Not useful for
calculating observables in the NR limit.
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The reason for this is that the pt. particle + gravity theory used
' to generate the Feynman rules contains scales that have not
been properly disentangled. Eg, look at

Hard to tell what order in U this first comes in. This is
decause momentum integrals in this diagram contain all scales
n the binary problem

r. € r<€<L\

irsa: 08110024
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1 (classical) field theory, these quantities can be calculated perturbatively
rom a gravitational “Wilson loop™ observable. Hold z7(7) fixed, and
ompute

expliSesr(za)] = /th exp|iSena + iSpp).
;vhere | expanded Gupr = Nur + h;_“_;. Diagrammatically:

tSeff(Za) = diagrams that remain connected if particle lines are
removed

iSef f(Za) = + %666 T

—= (no propagators for particie lines)

irsa: 08110024 Page 30/70
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. The reason for this is that the pt. particle + gravity theory used
to generate the Feynman rules contains scales that have not
been properly disentangled. Eg, look at

Hard to tell what order in U this first comes in. This is
decause momentum integrals in this diagram contain all scales
n the binary problem

r. €< r<€LA

irsa: 08110024
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It is OK to set up the perturbative expansion in this way. Butit is not
optimal for the NR two-body problem:

Feynman rules mix different orders in the velocity expansion.
eg, the one-graviton term in SefflTal

me
T

m,m o d |asiaae -
— Z .;b /dTadTb |:1 — 2(-1‘(1 ” .I'b_)_| DF{I“ = Iﬁ_)
16:71}3: .

i,

Irey

expanding Dp(xr) dr = dzr"\/1 — v2 generates an infinite
number of terms with different velocity scaling. Not useful for
calculating observables in the NR limit.
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The reason for this is that the pt. particle + gravity theory used
to generate the Feynman rules contains scales that have not
been properly disentangled. Eg, look at

~ P

Hard to tell what orderin U this first comes in. This is
decause momentum integrals in this diagram contain all scales
n the binary problem

r. €< r<€<€

irsa: 08110024
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IR two-body kinematics

onsider point particles with typical mass 7 > mp; bound in orbit by
-aviton exchange, with orbital separation 7" > T

pint particle momenta: (E ~ muv”.p ~ mv) with velocity v
elated to . through Virial theorem:

2 I

" ™~

2 Ll
My

wo types of graviton modes in a typical Feynman diagram:
| Potential: (k” ~ v/r.k ~ 1/r) mediate binding forces,
generate orbits. Never on-shell, so

must integrate out.

Radiation: (k” ~ v/r.k ~v/r) These are the modes that
propagate to the detector. They generate
cuts in diagrams at ;" ~orbital freq.
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- The reason for this is that the pt. particle + gravity theory used
to generate the Feynman rules contains scales that have not
been properly disentangled. Eg, look at

Hard to tell what orderin U this first comes in. This is
decause momentum integrals in this diagram contain all scales
n the binary problem

r. € r<€<<
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IR two-body kinematics

onsider point particles with typical mass 7@ > mp; bound in orbit by
-aviton exchange, with orbital separation 7" > T’

oint particle momenta: (E ~ muv”.p ~ mv) with velocity v
elated to . through Virial theorem:

2 I

g

m%,r
wo types of graviton modes in a typical Feynman diagram:

Potential: (k” ~ v/r.k ~ 1/r) mediate binding forces,
generate orbits. Never on-shell, so
must integrate out.

| Radiation: (k” ~ v/r.k ~v/r) These are the modes that
propagate to the detector. They generate
cuts in diagrams at ;" ~orbital freq.
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So we have to integrate out the short distance potential modes from the
theory.

To accomplish this, decompose
h-,uu(-r) i Euu(*‘r) i 3 Hpu(x)-

The potential graviton modes are encoded in H,,,, with momentum
components

1
BEL .. R .
3 r

It is convenient to make the explicit the difference between J; and dp , so

take FT PPk -
- KX 0
The radiation modes are encoded in /A - Viewed as long wavelength
background field:
— )
irsa: 08110024 aﬂ } l 737 el = } 1 Q- Page 37/70
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Now we can integrate out the potential modes. Formally,

expliSxrar[Ta. hl] = /’DHM exp|iS|h+H, z,| +iSgF].

where we keep the diffeomorphism invariance with respect to the
background field A -

Ser = mp, /d4~1‘\/£:?rpf“-
vith I, = D.,H? — 5D,HS. (ignore ghosts). The potential propagator is
i

; (Hicp (2°) Haa(0)) = —(27)°6° (k + @) 15

6(J.D)Ppu:nd‘

ut ' ~r/v.k~1/r

=) Hy,,/mp; ~ rzfv”f (L = mur > 1)
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]n addition, to integrating out potentials, must perform multipole expansion
of radiation field

| h,, (z°,x) = h,,(z° X) + dx;8;h,, (z°, X)

. ]_ ) ) 1,
I + 50](;03(}3;‘(")} h-luu(.l‘o. X) -+ -

| Z

in both its couplings to (|) point particles (2) potential modes (thru
graviton self interactions). Doing so yields Feynman rules compatible with

small velocity limit. Can work out the scaling of any vertex from the rules

r 1 m>
zh~ - Kk~ — =— ~ pL L =mor
v r Mpy
(virial theorem)
' : - — = /9
| Hk“p/mpL ~ t"]/\/L hruy/'!npl ~ UJ/_/\/Z
fAny Feynman diagram scales as | A L‘-’k

wLirsa-ELoozé 1, k 2 0 ie. L=loop counting factor -



Examples:

m
- T -
| e
't. particle Newton potential | ~ VL
; 1 . |
meracton: . Hoo
l
’ y I
| - i
otential 3-graviton vertex: A 2
- V
"
b
|
s e : | 5/2
\adiation-potential interaction: P aYaVa¥al L
: i | - B —
| VL
I
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!
In addition, to integrating out potentials, must perform multipole expansion
of radiation field

‘ h,,(z°,x) = h,,(z° X) + éx;8;h,, (z°, X)
S =
! + 50](;‘0}{)358}' h.“u(.rﬁ. X) -+ -

!in both its couplings to (1) point particles (2) potential modes (thru
Emviton self interactions). Doing so yields Feynman rules compatible with
Fma]l velocity limit. Can work out the scaling of any vertex from the rules

| ] .
| y 415
zh~— k~ — — ~ vL L =mur
v r Mpy

| (virial theorem)

f 2 = = /9
I
lr\ny Feynman diagram scales as j A -Uk

%féirsa;’l;lms 1, k > 0 ie. L=loop counting factor e
|



Examples:

m
- T -
| —
't. particle Newton potential : ~ VL
i 1 1 I
meraction o - =
I
lotential 3-graviton vertex: | 2
gra : 4 u*
" V L
"
“
!
p S : l 5/2
\adiation-potential interaction: P aYaYaYal t
l L .rl L ‘\. I o T
| VL
|
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What is the effective theory below the scale p = 1/r?

Integrate out potential modes to get effective Lagrangian for radiation
modes:

Clhl=Tg+T1+---

O(h“)j \ O(h")

F() — / dtL[Xa] — many-particle Lagrangian, Feynman graphs w/
noext. /),
1 4 v =
ir— d 2" " (z)h..\z)
2m Pl -

from graphs with one ext. h 7%

T v(:l?) — grav. energy-mom. “pseudo-tensor”

O.T" —0 wmardid)



Zero graviton sector

integrate out . at lowest order. Graphs with no external #,,,

- s - > - - - o
|
|
| ~ ” - —
| — e -
|
- ‘ - - - - -
(a) (b) (c)
b),(c): Calculating in di &=l 0
b),(c): culating in dim.reg. ~ [ o515 =
| Im imo \ [ tmymo [ 1
[3.) = — ) ( — - ) / (fflf!f: _H””l I j'Hmpl-_.l':i —— - ,- / {h‘l
2mpr /] \ 2mp; /. 32rmp,; X3 — X2
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So at this order

S 1 > Gaxmyms
f?._f,:.l‘,,‘:‘/‘{ff — E e —| +---
o 2 |K1 — X9

ith Gy =1/32amp, At O(v®)

o0 ol e
l - T - _— - -— - - -
[
|
' - J:- - e = e - e
v vl 20
| fF %
| F 3 %
A Fi % i g
R ® s b ""’ -I- 2 ]
- “ £ &
s LY F %

Adding these terms plus relativistic corrections to kinetic terms:

' \
Gymyma(my +mo)

1 , Gymyms ., y _ .
. LEIH;_E MV, +- vy +v;) —Tvy-vao—(vi-m)(va-nm)|— -
' ) 2Ixy — Xg| * : - : 2 |X3 —Xa|°

L8 |
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which was first calculated in 1938 by Einstein. Infeld and Hoffmann.



One graviton sector
Must compute the graphs

—_— f-‘- ==
h
™ = &£ &
| - I"{;" > + > hé“ -
U v
> ’ > - * -—
' |
|
= 3 S 3 |
' |
> N > > */"* >
s
0, _
P,
< h

+ uv

I st.graph=LO. Last three graphs are NLO). -



THY encodes all moments. After multipole expanding
hu(2°.x) = h,,(2° X) + 6x;0;h,, (2%, X)

. . _
+ EGXgOXJBiajh-ﬂU(IG. X) + e

ibtain the gauge invariant couplings

1 \

f]_gu = — /df {IH.’_I{]{] - = Q.Pif_l{]-i-
2”’1;}; -
CM \ /- ang. mom.
S N / dz® [X*8:hoo(2°, 0) + Lwsj]
:Zﬂlpg =

i 1 = A= L
ir[h]la'«i T /dJ»‘O [E T Roioj + 53 ‘JRR(}jik - §E "’"C)L«Rmr};}
i irsa: 08110024 A Pl « Page 47/70

| E-quad B-quad E-octo
! R * £
|




One graviton sector

Must compute the graphs B
/4*56 Ay /é e
T’J.I/ — @‘u @\4

_’_

I st.graph=LO. Last three graphs are NLO). page 4870



THY encodes all moments. After multipole expanding
h,(z°.x) = h,,(2° X) + 6x;0;h,, (2°. X)

E__ . _
+ ;ﬂx.gdxiafajhﬂu(_rﬂ_ p 1) I S—

lbtain the gauge invariant couplings

P

I'igo = — /dt {Hif_!{]g - = QP;'}_!{},'-
EIH'PF -
CM ang. mom.
r[hhﬂi — —?JHP; /d.l'D [..Ylf’)ih{j[}(.l'ﬁ.()) = LUHJUJ -

E-quad B-quad E-octo

.. 1 -. W 1 ¥
'r-[h()]sigf . QTHPI /(LUO I:EIJR‘DIUJ * EBLJ‘.ROJ-?:‘: % gEIJAC)kR{]IDJ]P 49/70




v eg.

i _— fd";x:[m(rn-x) — Z Ma [l = 2

| a
|
|
i

i - z : G'\, Iriy, !
1X* = /ddxg; TP =) =Y mu [1 + ;vﬂ — = Z = } o(v’

| a
I

X' =P'/m

mu-a
I'-"I-.'.‘I
|~.:>|n~

N "} O(w*)
b

m—0

| 11 o . o1
B2 = /d“x I:TO + T + _l—‘)XzTﬂﬂ zﬂﬂki‘kl [.I’E.L‘J}TF G 3 O(L‘l)

S SIY FUEPU- DTS
[ — ﬂ’quuxﬂ vﬂ‘. — — fnu —_— xﬂx
' : - —x, — x| | A2 e
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an now use these moments to compute observables, e.g. radiated power to
ILO. Use optical theorem to get

Im m

1

E_Gn, (& i\, 166y (& . \\ Gn, (d .\
T <(df3E"(t)) )+ 45 <(EB (£) >?189< d?E (t) | )

_+—l.l.l.

g, binary system in circular orbit

dE 32 ( 1 )2010 ] 12471}2

dt Gy \M R ke
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Radiative (long dist.) corrections:

Can use EFT to compute radiative corrections. Everything is calculable in
terms of the radiation Lagrangian obtained by matching

S[h] = Sgm|h] + Sqgr + IT'[h]

- 1 = 4 . 1_...
F[h] D G /dJ‘D ]:EUR{}I[}J 5 gBLJLRnﬁ;; 7 7 gEUkakR(}zD;:I

-+ -

NI calcs. can be done in terms of this Lagrangian, for arbitrary moments
(net-just those obtained by matching to the NR limit v < 1) e



an now use these moments to compute observables, e.g. radiated power to
ILO. Use optical theorem to get

]._‘]_'U!_ FI[EE

i
B Cun fFf ... N, BC (Ff .. X, Cu,fd .z, N
E = e ((wE0) )+ T2 EU0) ) + el (E®) )
g, binary system in circular orbit

dE 32 - ] 1247

e — (i) rU]'O 1 rUz _I._ iin

dt Gy \M 336 _
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Radiative (long dist.) corrections:

Can use EFT to compute radiative corrections. Everything is calculable in
terms of the radiation Lagrangian obtained by matching

S[E] :SEH[FL]-I-SGF-I-F[E]

L 1 - £ | WS
F[h] ey p— /d.rD {E”Rmn; + EBLJLR{UE'A* ;2 EE”L&:RO:D;]

-+ -

All calcs. can be done in terms of this Lagrangian, for arbitrary moments
(net-just those obtained by matching to the NR limit v < 1) page sa10



xample: the “tail effect”. Look at the amplitude for rad. graviton
}mss:on from two-body system

| Qi; Qij m

- -

A = 4+ ---+ i -—_(D-q) S

| k | k

| - -

|

|

H1y51cally Outgoing graviton can interact with Newtonian 1/r potential

hf two-body source. Leading effect is from interference. Explicitly
|

| 9 .

. ik” < | m . d*q 1 1
A= e;; (k) ij{-kn[ sz(

4m py 2m%,, 2w)3 g2 k2 — (k+ q)? + ie

| Pirsa: 08110024 Page 55/70

irooped pure Im terms that do not give rise to interference)



Jote that the integral

[_/d3q 1 1 i _ LI —k* —ie
) 2n)3q?k2 —(k+q)2+ie 16ak| |ep ] T2

s log divergentinthelRas q — 0

| d*q 1
I ~ / — for q—0
| 27) @?(k-q)

h1ysically this effect is easy to understand. For q — (), intermediate rad.
hviton is on shell. The IR singularity is then entirely analogous to the IR
livergences found in QM scattering off a Coulomb 1/r potential. In fact,
:he singularity drops from the interference term with the LO amp:

'.Al?‘ = }ALOF 11— (27)Gymlk| + - -]

|
|
for circular orbits, this leads to:

Eiail .
2 — —4m®
| Ero
vhich.is.non-analytic in the expansion parameter = ;=. Note that this 3.

ARGE correction due to factor of 4.



t is amusing to look at further interactions between the outgoing graviton
ind the Newtonian potential of the source:

Qij Qij m =

iA = R T S L + -

| il —_—

il

one finds the structure (keep most IR singular terms in each graph):

m I

tA=1tAro |1 — -~ k:z[(k)—i— : - S k“}j(k) IR
2 2m7p,

2 9
2mp, 2!

3y analogy with Coulomb corrections to scattering, expect the series of tail
corrections to exponentiates into a Coulomb phase (Weinberg, |965).
One finds:

iA=iALoexp {- - = k?‘l(k)]

_m.‘;.;,f
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'ImJI = Coulomb phase. Rel = “Sudakov”



'his can be shown by brute force calculation.  Exponentiation also
xpected on general grounds, based on the analogy with Coulomb
cattering:

|. Exponentiation is necessary in order to ensure all orders cancellation
of 1/err pole terms.

2. Summation is equivalent to using the graviton propagator in Newton
background.

'his leads to a prescription for (partially) resumming the PN expansion:

.
Qi-(ll]) — Q dmbbed (kl) = Q;,...i.(|Kk]) exp {—‘) 3 klf(k)]
2mp,
(“factorization theorem”)
'his*gr&scription leads to a systematic procedure for removing IR R
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t is amusing to look at further interactions between the outgoing graviton
ind the Newtonian potential of the source:

Q:; Qi;

iA = e I B s & . L -

m Qis

L

- -

one finds the structure (keep most IR singular terms in each graph):

m I

tA=1tA o0 |1 — = kgf(k)+ : — S sz(k) - SO
2 2mp,

2 91
2mp, 2!

3y analogy with Coulomb corrections to scattering, expect the series of tail
“orrections to exponentiates into a Coulomb phase (Weinberg, |965).

One finds:

[

iA=iApo exp [- - = k'{r(k)]

_m.‘;;,f
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|
:huI — Coulomb phase. Rel = “Sudakov”



!

‘his can be shown by brute force calculation. = Exponentiation also
xpected on general grounds, based on the analogy with Coulomb
cattering:

- |. Exponentiation is necessary in order to ensure all orders cancellation
- of 1/err pole terms.

i 2. Summation is equivalent to using the graviton propagator in Newton
~ background.

'his leads to a prescription for (partially) resumming the PN expansion:

Qi (Kl) — QSN (k) = Qi s, (K]) exp | — 5P (k)

| oy 2mp,
(“factorization theorem”)

jﬂ'lffaﬁ’r@scription leads to a systematic procedure for removing IR R

| L L P T ARSI ol haf e



\s a test of this prescription, can calculate radiation at order v’ in terms
f the moments at order »” previously calculated. Plug into

dE _ Gy [*dw g
dt vy T 0 2?

1 16 2
SIE @I + BIBI@P + g B @) + -

|
naking the replacements

e .
| Eij(“-") —Eu( )94p|:-21'np;d: I(h‘-’):'

and also for Eiji.Bi; gives after expanding, e.g for circular orbit binary

dE 819l .dE

— = L
dt s 672 dt Lo

n agreement w/ known results (Blanchet, |996)
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It would be interesting to see the full consequences of this “improvement”
of perturbation theory for GW phenomenology.

Can get a rough estimate by looking at binary system in circular orbit. The
resummed power is

Eresum i
Ero

- Recall that, for e.g. LIGO, expansion parameter is:

|
i m haa m #/3
v(10 Hz)mf}.()ﬁ(—) v(1 L}u)~03( )

| me m.
|
iSo for a BH with mpp ~ 10ms correction due to resummation can be
Iarge since:

0.03 < 47v> < 34

‘however at the upper bound, expansion in v probably not very reliable.

|
iALSO: Need to make sure that this expansion is systematic (i.e. are we

iraajtylﬁlmming largest effect at each order?). This is work in progressc.. s



Finite Size Effects:

Recall that in the pt. particle EFT the structure of the binary constituents
(BH or NS) is encoded in the “tidal” operators

| S tey f drE,, E" + cp / drB,,, B*"
|
|

5
W/ CE.B ”1?3! g

|

Flven the scaling of the coefficients + power counting rules in the v < 1
|m'rl:. it is easy to determine the order at which finite size effects come in.
or example:

| CE

L]
]
(]

10
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_eading tidal effect is due to potential graviton exchange:

| CE m
- — - e T o
| |
| |
| | ~ L'® ~ | x vt
| ' | . _
i m m m

|

|

I

.e., tidal effects are suppressed by '" (!) relative to Newtonian gravity, so
ire completely irrelvant for LIGO. However, expect an enhancement for
ess compact objects.

I

~ 10

= R\r n
. 2 5 NS
| cg,B ~ Mp Ry .
5

I -
jo finite size effect is more like  ~ 10° x v'”

zould make a significant difference in the “endpoint” region v — 0.1

Dét@&fﬁble by LIGO? See Flannagan + Hinderer, arXiv:0709.1915 Page 6470



'here are other internal structure effects at lower order in the expansion:

BH horizon absorption: Dissipative effects can be treated within the pt
particle EFT (see WG+Rothstein hep-th/051 1 133). For non-spinning BH’s
thisisa ¢~ effect, so too small for LIGO (LISA?). Absorption is enhanced

by spin to ¢~ (Porto, arXiv:0710.5150)

Spin: Classically this is by definition a finite size effect. Effects of spin on
two-body potentials and eqns. of motion at ©”

Vipn ~S1-S2  Porto+Rothstein, gr-qc/0604009
arXiv:0804.0260

oy~ Porto+Rothstein, arXiv:0804.0260
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these are new results.



Dont know how to explicitly include the dof’s that capture BH absorption.
dowever,by S(O(3) symmetry of Schwarzschild soln, must couple to
ravitons through gauge invariant term

- /er{ﬁEﬂb — /ffTQﬂBUb + -

Zab- Bab = “electric” and “magnetic” components of the Riemann tensor
(classified according to parity).

| 5. Q2 = “electric” and “magnetic” quadrupole moment operators

(composite operators built out of unknown worldline theory).

Ib\ll the dynamics can be calculated if we know the correlation functions
| (QE-B ... QE-B)

|
| Pirsa: 08110024 Page 66/70



A\t leading order need only two-pt fns. Obtain by matching to

ull theory: Solve Schrodinger egn. for h pv in Schwarzschild background,
et

1 6 4
Oabs plw) = —AnT W,
45 :
:FT: Flat space calculation :
ol .
gﬂb.‘i_p(‘-‘-‘J = 9 [TJ.J.F{.... } - .
2Mmpy _
e i e
v/ :
. ' . AT

/ ( J'”E' = 4 T{L)_IE;'{ 0 }{L)i' J.'” ) - — % |:fi,_“.lr';h_i 5 = ri,hfli;,. — Etlzbf}, i Fi ).

=> ImF (w) = 16G5m°w/45
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analogous to AdS/CFT calculations of brane absorption).



;P\l: leading order need only two-pt fns. Obtain by matching to

;Full theory: Solve Schrodinger egn. for h pr in Schwarzschild background,

et

| 1 — 1 — ﬁ 1_‘L

| 45 -

:FT: Flat space calculation :

| 3 :

| e — =

| Grub.-‘m.p( W) = g ImF(w). e -

| ZMpy _ .

| ® . E)
v/ -

| SO ‘ | T T )

| [ p J_Hf_ — T ( T{JE) ({0 }(J_Edl J-l' ) , = — —) OncOpd + 0ndOhe — it),rhﬂ, ,_1'1 F{ l).

| . : ]|

|

|

| ' ImF (w) = 16G5m°w/45
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analogous to AdS/CFT calculations of brane absorption).



itar: also use the same methods to obtain dissipative corrections in stars made
of ordinary matter (e.g. neutron star):

(b)
dFP . B 1 Gy Jabs(-"')mi.qlﬂ?
dw Tfi-—lﬁ'z o -‘-'2 o

where g, .(w) is the body’s low energy graviton absorption cross section.

Would expect that o,55(w) < i

abs

(w) on general grounds, however.
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Conclusions

-FT methods are a useful way of organizing the calculation of gravitational wave
drocesses.

| |. Systematically parametrize and power count finite
size/short distance effects.

| 2. Calculations can be done unambiguously in a pt.
| particle limit, where they simplify.

3. Separation of scales disentangles UV and IR physics.
| Can exploit this to sum/remove IR and UV singularities.

ere, presented the non-relativistic expansion, but the methods work in other
nematic limits of interest to LIGO/LISA, with a suitably modified power

»unting scheme (eg, A = m/M < 1.....)
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