Title: Triviality from the Exact Renormalization Group

Date: Oct 30, 2008 02:00 PM

URL: http://pirsa.org/08100078

Abstract: After reviewing Wilson\'s picture of renormalization, and the associated Exact Renormalization Group, I will show that no (physically acceptable) non-trivial fixed points exist for scalar field theory in D>=4. Consequently, an asymptotic safety scenario is ruled out, and the triviality of the theory is confirmed.

Pirsa: 08100078 Page 1/262

Triviality from The Exact Renormalization Group

Oliver J. Rosten

Sussex U.

October 2008

Qualitative Aspects of the ERG

- Qualitative Aspects of the ERG
 - The Basic Ideas

Outline of this Lecture

- Qualitative Aspects of the ERG
 - The Basic Ideas
- 2 Renormalizability
 - Continuum Limits
- ERG Equations
- Triviality
 - Correlation Functions
 - Technicalities
 - Application to Fixed Points
- Conclusion

Qualitative Aspects of the ERG

0000

- Qualitative Aspects of the ERG
 - The Basic Ideas
- 2 Renormalizability
 - Continuum Limits
- ERG Equations

Qualitative Aspects of the ERG

0000

- Qualitative Aspects of the ERG
 - The Basic Ideas
- 2 Renormalizability
 - Continuum Limits
- ERG Equations
- Triviality
 - Correlation Functions
 - Technicalities
 - Application to Fixed Points

Consider a lattice of spins

Consider a lattice of spins

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale

- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale

What is the effect of blocking?

What is the effect of blocking?

 Suppose the microscopic spins interact only with their nearest neighbours

Pirsa: 08100078 Page 20/262

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions

Pirsa: 08100078 Page 21/262

What is the effect of blocking?

 Suppose the microscopic spins interact only with their nearest neighbours

ERG Equations

- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

Pirsa: 08100078 Page 22/262

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

Consider the space of all possible interactions

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction
- As we block and rescale, we hop in this space

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction
- As we block and rescale, we hop in this space
- Pirsa: 08100078 The transformation can have fixed points

0000

Flows in Parameter Space

Trajectories on the critical manifold flow into the fixed point

Pirsa: 08100078

0000

- Trajectories on the critical manifold flow into the fixed point
- The critical manifold is spanned by the irrelevant operators

- Trajectories on the critical manifold flow into the fixed point
- The critical manifold is spanned by the irrelevant operators
- Flows along the relevant directions leave the critical surface

Pirsa: 08100078

0000

Pirsa: 08100078

Page 32/262

- Trajectories on the critical manifold flow into the fixed point
- The critical manifold is spanned by the irrelevant operators
- Flows along the relevant directions leave the critical surface
- If there are n relevant directions, then we must tune n quantities to get on to the critical surface

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D} \Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D} \Phi e^{-S_{\Lambda}[\Phi]}$$

The bare scale

- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, A

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D}\Phi e^{-S_{\Lambda}[\Phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, A

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D}\Phi e^{-S_{\Lambda}[\Phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, A

Qualitative Aspects of the ERG

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D}\Phi e^{-S_{\Lambda}[\Phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D} \Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D} \Phi e^{-S_{\Lambda}[\Phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, A

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D} \Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D} \Phi e^{-S_{\Lambda}[\Phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, Λ
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves Wilsonian effective action

Qualitative Aspects of the ERG

0000

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D} \Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D} \Phi e^{-S_{\Lambda}[\Phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, A
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D} \Phi e^{-S_{\Lambda_0}[\Phi]} = \int_{\Lambda} \mathcal{D} \Phi e^{-S_{\Lambda}[\Phi]}$$

The bare scale

Qualitative Aspects of the ERG

0000

- High energy (short distance) scale
- Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, A
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

0000

Qualitative Aspects of the ERG

Pirsa: 08100078 Page 42/262

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!
- le X → X \(\text{full scaling dimension}\)
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ

0000

Qualitative Aspects of the ERG

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

0000

Qualitative Aspects of the ERG

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!
- le $X \to X \wedge \text{full scaling dimension}$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!
- le X → X \(\Lambda\) full scaling dimension
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

0000

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!
- le $X \to X \wedge \text{full scaling dimension}$
- \bullet $-\Lambda \partial_{\Lambda} \to \partial_{t}$, with $t = \ln \mu / \Lambda$

- Pirsa: 08100078

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!
- le X → X \(\Lambda\) full scaling dimension
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- ERG Equation: $\partial_t S = \mathcal{G}S$
- Pirsa: 08100078 Fixed points: $\partial_t S_t = 0$

Loop diagrams in quantum field theory yield UV divergences

Loop diagrams in quantum field theory yield UV divergences

Loop diagrams in quantum field theory yield UV divergences

Loop diagrams in quantum field theory yield UV divergences

 If all divergences can be absorbed into a finite number of couplings, the theory is renormalizable

Loop diagrams in quantum field theory yield UV divergences

- If all divergences can be absorbed into a finite number of couplings, the theory is renormalizable
- The ERG is a natural tool to study renormalizability

Loop diagrams in quantum field theory yield UV divergences

- If all divergences can be absorbed into a finite number of couplings, the theory is renormalizable
- The ERG is a natural tool to study renormalizability
 - It has a built in cutoff
 - It relates physics at different scales

Pirsa: 08100078 Page 60/262

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using A
- Only dimensionless variables appear
- Fixed points of the ERG correspond to continuum limits!

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed points of the ERG correspond to continuum limits!

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed points of the ERG correspond to continuum limits!

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

• S_{\star} is independent of all scales, including Λ_0

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\varphi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

- S_{\star} is independent of all scales, including Λ_0
- Pirsa: 08100078 ullet Trivially, we can send $\Lambda_0 o \infty$

Pirsa: 08100078 Page 69/262

0000

• Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$

- Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:

0000

Continuum Limits II

- \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed point

0000

Continuum Limits II

- Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed point
 - One part emanates out

Continuum Limits II

- \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed point
 - One part emanates out

Nonperturbatively renormalizable theories follow from fixed points

Pirsa: 08100078 Page 76/262

Nonperturbatively renormalizable theories follow from fixed points

Nonperturbatively renormalizable theories follow from fixed points

- Either directly
- Or from the renormalized trajectories emanating from them

Nonperturbatively renormalizable theories follow from fixed points

- Either directly
- Or from the renormalized trajectories emanating from them

Pirsa: 08100078 Page 80/262

Triviality

Asymptotic Freedom

Asymptotic Safety

GFP

no interacting relevant directions

massive,

Pirsa: 08100078

Page 81/262

Triviality

Asymptotic Freedom

Asymptotic Safety

GFP

no interacting relevant directions GFP

interacting relevant directions

massive,

Pirsa: 08100078

interacting, renormalizable theory

Page 82/262

Triviality

Asymptotic Freedom

GFP

Asymptotic Safety

GFP

no interacting relevant directions

interacting relevant directions

massive,

Pirsa: 08100078

interacting, renormalizable theory

Page 83/262

GFP

Asymptotic Freedom etc.

Triviality

no interacting relevant directions

massive,

Pirsa: 08100078

Asymptotic Freedom

GFP

interacting relevant directions

interacting, renormalizable theory

Asymptotic Safety

NT FP
renormalizablilty
determined
in UV

(GFP)

Theory appears non renormalizable in IR

Page 84/262

Pirsa: 08100078 Page 85/262 GFP

Asymptotic Freedom etc.

Triviality

no interacting relevant directions

massive,

Pirsa: 08100078

Asymptotic Freedom

GFP

interacting relevant directions

interacting, renormalizable theory

Asymptotic Safety

NT FP
renormalizablilty
determined
in UV

/:

Theory appears non renormalizable in IR.

(GFP)

Page 86/262

Pirsa: 08100078 Page 87/262

The Gaussian Fixed Point

- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

Other Fixed Points

The Gaussian Fixed Point

- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

Other Fixed Points

The Gaussian Fixed Point

- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

Other Fixed Points

The Gaussian Fixed Point

- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

The Gaussian Fixed Point

- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

Other Fixed Points

The Gaussian Fixed Point

- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

Other Fixed Points

- I will show that there are no other (physically acceptable) fixed points
- Therefore scalar field theory in D = 4 is trivial

The Gaussian Fixed Point

- The mass is relevant.
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant

Other Fixed Points

- I will show that there are no other (physically acceptable) fixed points
- Therefore scalar field theory in D = 4 is trivial

Implement an overall UV cutoff:

$$\Delta = \frac{1}{p^2} - \frac{C(p, \Lambda_0)}{p^2}$$

Introduce the effective cutoff, Λ

$$C(p, \Lambda_0) = C_{UV}(p, \Lambda) + C_{IR}(p, \Lambda, \Lambda_0)$$

Qualitative Aspects of the ERG

0000

Implement an overall UV cutoff:

$$\Delta = \frac{1}{p^2} \to \frac{C(p, \Lambda_0)}{p^2}$$

$$C(p, \Lambda_0) = C_{UV}(p, \Lambda) + C_{IR}(p, \Lambda, \Lambda_0)$$

Implement an overall UV cutoff:

$$\Delta = \frac{1}{p^2} \to \frac{C(p, \Lambda_0)}{p^2}$$

Introduce the effective cutoff, Λ

$$C(p, \Lambda_0) = C_{UV}(p, \Lambda) + C_{IR}(p, \Lambda, \Lambda_0)$$

Implement an overall UV cutoff:

$$\Delta = \frac{1}{p^2} \to \frac{C(p, \Lambda_0)}{p^2}$$

Introduce the effective cutoff, Λ

 Λ^2

$$C(p, \Lambda_0) = C_{UV}(p, \Lambda) + C_{IR}(p, \Lambda, \Lambda_0)$$

- UV cutoff for modes below A
- IR cutoff (and overall UV cutoff) for modes above A

Pirsa: 08100078

Page 98/262

Implement an overall UV cutoff:

$$\Delta = \frac{1}{p^2} \to \frac{C(p, \Lambda_0)}{p^2}$$

Introduce the effective cutoff, Λ

 Λ^2

$$C(p, \Lambda_0) = C_{UV}(p, \Lambda) + C_{IR}(p, \Lambda, \Lambda_0)$$

- UV cutoff for modes below Λ
- IR cutoff (and overall UV cutoff) for modes above A

Pirsa: 08100078

Page 99/262

Implement an overall UV cutoff:

$$\Delta = \frac{1}{p^2} \to \frac{C(p, \Lambda_0)}{p^2}$$

Introduce the effective cutoff, Λ

$$C(p, \Lambda_0) = C_{UV}(p, \Lambda) + C_{IR}(p, \Lambda, \Lambda_0)$$

- UV cutoff for modes below A
- IR cutoff (and overall UV cutoff) for modes above Λ

Qualitative Aspects of the ERG

0000

Pirsa: 08100078 Page 101/262

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

- Any mass term is contained in S_A^{int}
- $\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{c_{UV}}{\rho^2}$
- $f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$
- Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

- Any mass term is contained in S_A^{int}
- $\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{C_{UV}}{\rho^2}$
- $f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$
- Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\text{int}} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot C_{\mathrm{UV}}^{-1}(p,\Lambda) p^{2} \cdot \varphi$$

Any mass term is contained in S^{int}

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{c_{UV}}{p^2}$$

•
$$f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$$

• Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

- Any mass term is contained in $S_{\Lambda}^{\rm int}$
- $\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{c_{UV}}{\rho^2}$
- $f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$
- Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\text{int}} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot C_{\mathrm{UV}}^{-1}(p,\Lambda) p^{2} \cdot \varphi$$

Any mass term is contained in S^{int}

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{C_{UV}}{\rho^2}$$

•
$$f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$$

• Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

Any mass term is contained in S_A^{int}

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{c_{UV}}{p^2}$$

- $f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$
- Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

Any mass term is contained in S^{int}

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{c_{UV}}{p^2}$$

- $f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$
- Classical term, a₀[S, Σ]

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\underline{\Delta}} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\underline{\Delta}} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

Any mass term is contained in S^{int}_Λ

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{C_{\text{UV}}}{p^2}$$

- $f \cdot \Delta \cdot g = \int_{p} f(-p) \Delta(p) g(p)$
- Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\underline{\Delta}} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\underline{\Delta}} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

Any mass term is contained in S^{int}_Λ

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{C_{\text{UV}}}{p^2}$$

•
$$f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$$

• Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

Any mass term is contained in S^{int}

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{C_{\text{UV}}}{p^2}$$

•
$$f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$$

• Classical term, $a_0[S, \Sigma]$

An equation telling us how the Wilsonian effective action evolves

$$-\Lambda \partial_{\Lambda} S_{\Lambda}^{\rm int} = \frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi}$$

Interaction part of Wilsonian effective action

$$S_{\Lambda} = S_{\Lambda}^{\mathrm{int}} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

Any mass term is contained in S^{int}_Λ

•
$$\dot{\Delta} \equiv -\Lambda \partial_{\Lambda} \Delta = -\Lambda \partial_{\Lambda} \frac{C_{\text{UV}}}{p^2}$$

•
$$f \cdot \dot{\Delta} \cdot g = \int_{p} f(-p) \dot{\Delta}(p) g(p)$$

- Classical term, $a_0[S, \Sigma]$
- Quantum term, $a_1[\Sigma]$

• Define
$$\hat{S} \equiv \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

$$S = S_{\Lambda}^{\text{int}} + S$$

Now define
$$\Sigma \equiv S - 2\hat{S} = S_{\Lambda}^{\rm int} - \hat{S}$$

Pirsa: 08100078 Page 114/262

• Define
$$\hat{S} \equiv \frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

• $S = S_{\Lambda}^{\rm int} + \hat{S}$

•
$$S = S_{\Lambda}^{int} + \hat{S}$$

• Now define
$$\Sigma \equiv S - 2\hat{S} = S_{\Lambda}^{int} - \hat{S}$$

• Define
$$\hat{S} \equiv \frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

• $S = S_{\Lambda}^{\text{int}} + \hat{S}$

•
$$S = S_{\Lambda}^{int} + \hat{S}$$

• Now define
$$\Sigma \equiv S - 2\hat{S} = S_{\Lambda}^{int} - \hat{S}$$

Quantum Term

$$\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} = \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \text{vacuum term}$$

• Define
$$\hat{S} \equiv \frac{1}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

• $S = S_{\Lambda}^{\text{int}} + \hat{S}$

•
$$S = S_{\Lambda}^{int} + \hat{S}$$

• Now define
$$\Sigma \equiv S - 2\hat{S} = S_{\Lambda}^{int} - \hat{S}$$

Quantum Term

Since Ŝ is two-point,

$$\frac{1}{2}\frac{\delta}{\delta\varphi}\cdot\dot{\Delta}\cdot\frac{\delta S_{\Lambda}^{\rm int}}{\delta\varphi} = \frac{1}{2}\frac{\delta}{\delta\varphi}\cdot\dot{\Delta}\cdot\frac{\delta\Sigma}{\delta\varphi} + \text{vacuum term}$$

- Define $\hat{S} \equiv \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$
- $S = S^{\rm int}_{\Lambda} + \hat{S}$
- Now define $\Sigma \equiv S 2\hat{S} = S_{\Lambda}^{int} \hat{S}$

Classical Term

• Since $S\Sigma = (S_{\Lambda}^{\rm int} + \hat{S})(S_{\Lambda}^{\rm int} - \hat{S}) = S_{\Lambda}^{\rm int}S_{\Lambda}^{\rm int} - \hat{S}\hat{S}$

• Define
$$\hat{S} \equiv \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$$

$$S = S^{\rm int}_{\Lambda} + \hat{S}$$

• Now define
$$\Sigma \equiv S - 2\hat{S} = S_{\Lambda}^{int} - \hat{S}$$

Classical Term

• Since
$$S\Sigma = (S_{\Lambda}^{\rm int} + \hat{S})(S_{\Lambda}^{\rm int} - \hat{S}) = S_{\Lambda}^{\rm int}S_{\Lambda}^{\rm int} - \hat{S}\hat{S}$$

$$\frac{1}{2} \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \frac{\delta \hat{S}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \hat{S}}{\delta \varphi}$$

$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \dot{\Delta} \cdot \Delta^{-1} \cdot \varphi$$

$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi$$

- Define $\hat{S} \equiv \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$
- $S = S_{\Lambda}^{\rm int} + \hat{S}$
- Now define $\Sigma \equiv S 2\hat{S} = S_{\Lambda}^{int} \hat{S}$

Classical Term

Qualitative Aspects of the ERG

0000

• Since
$$S\Sigma = (S_{\Lambda}^{\rm int} + \hat{S})(S_{\Lambda}^{\rm int} - \hat{S}) = S_{\Lambda}^{\rm int}S_{\Lambda}^{\rm int} - \hat{S}\hat{S}$$

$$\frac{1}{2} \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\rm int}}{\delta \varphi} = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \frac{\delta \hat{S}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \hat{S}}{\delta \varphi}$$

$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \dot{\Delta} \cdot \Delta^{-1} \cdot \varphi$$

$$=$$
 $+\frac{1}{2}\varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi$

- Define $\hat{S} \equiv \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \varphi$
- $S = S_{\Lambda}^{\rm int} + \hat{S}$
- Now define $\Sigma \equiv S 2\hat{S} = S_{\Lambda}^{int} \hat{S}$

Classical Term

Qualitative Aspects of the ERG

0000

• Since
$$S\Sigma = (S_{\Lambda}^{\rm int} + \hat{S})(S_{\Lambda}^{\rm int} - \hat{S}) = S_{\Lambda}^{\rm int}S_{\Lambda}^{\rm int} - \hat{S}\hat{S}$$

$$\frac{1}{2} \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\text{int}}}{\delta \varphi} = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \frac{\delta \hat{S}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \hat{S}}{\delta \varphi}$$

$$= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Delta^{-1} \cdot \dot{\Delta} \cdot \Delta^{-1} \cdot \varphi$$

$$=$$
 $+\frac{1}{2}\varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi$

$$\begin{split} - \Lambda \partial_{\Lambda} \mathcal{S}^{\mathrm{int}}_{\Lambda} &= \frac{1}{2} \frac{\delta \mathcal{S}^{\mathrm{int}}_{\Lambda}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \mathcal{S}^{\mathrm{int}}_{\Lambda}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \mathcal{S}^{\mathrm{int}}_{\Lambda}}{\delta \varphi} \\ &= \frac{1}{2} \frac{\delta \mathcal{S}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} \end{split}$$

Up to a discarded vacuum energy term:

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

$$\begin{split} - \Lambda \partial_{\Lambda} S^{\mathrm{int}}_{\Lambda} &= \frac{1}{2} \frac{\delta S^{\mathrm{int}}_{\Lambda}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S^{\mathrm{int}}_{\Lambda}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S^{\mathrm{int}}_{\Lambda}}{\delta \varphi} \\ &= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} \end{split}$$

Up to a discarded vacuum energy term:

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

000000

$$\begin{split} - \Lambda \partial_{\Lambda} S^{\mathrm{int}}_{\Lambda} &= \frac{1}{2} \frac{\delta S^{\mathrm{int}}_{\Lambda}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S^{\mathrm{int}}_{\Lambda}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S^{\mathrm{int}}_{\Lambda}}{\delta \varphi} \\ &= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} \end{split}$$

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

$$\begin{split} - \Lambda \partial_{\Lambda} S_{\Lambda}^{\mathrm{int}} &= \frac{1}{2} \frac{\delta S_{\Lambda}^{\mathrm{int}}}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\mathrm{int}}}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta S_{\Lambda}^{\mathrm{int}}}{\delta \varphi} \\ &= \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} + \frac{1}{2} \varphi \cdot \Lambda \partial_{\Lambda} \Delta^{-1} \cdot \varphi - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} \end{split}$$

Up to a discarded vacuum energy term:

$$-\Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{x} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x}[\varphi] e^{-S[\varphi]} \right)$$

- partition function, $\int \mathcal{D}\varphi e^{-S[\varphi]}$, invariant under the flow
- defines our ERG

Flow Equation

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \varphi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \varphi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{x} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x}[\varphi] e^{-S[\varphi]} \right)$$

- partition function, $\int \mathcal{D}\varphi e^{-S[\varphi]}$, invariant under the flow
- defines our ERG

Flow Equation

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \varphi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \varphi(x)}$$

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{x} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x}[\varphi] e^{-S[\varphi]} \right)$$

- partition function, $\int \mathcal{D}\varphi e^{-S[\varphi]}$, invariant under the flow
- defines our ERG

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \varphi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \varphi(x)}$$

Formulation

Qualitative Aspects of the ERG

0000

$$-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{x} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x}[\varphi] e^{-S[\varphi]} \right)$$

- partition function, $\int \mathcal{D}\varphi e^{-S[\varphi]}$, invariant under the flow
- defines our ERG
 - parametrizes blocking procedure

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \varphi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \varphi(x)}$$

OC.

Very General ERGs

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{x} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x}[\varphi] e^{-S[\varphi]} \right)$$

- ullet partition function, $\int \mathcal{D}\varphi e^{-S[\varphi]}$, invariant under the flow
- defines our ERG
 - parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs

Flow Equation

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \varphi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \varphi(x)}$$

Formulation

Qualitative Aspects of the ERG

0000

$$-\Lambda \partial_{\Lambda} e^{-S[\varphi]} = \int_{x} \frac{\delta}{\delta \varphi(x)} \left(\Psi_{x}[\varphi] e^{-S[\varphi]} \right)$$

- partition function, $\int \mathcal{D}\varphi e^{-S[\varphi]}$, invariant under the flow
- defines our FRG
 - parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs

Flow Equation

$$-\Lambda \partial_{\Lambda} S = \int_{x} \frac{\delta S}{\delta \varphi(x)} \Psi_{x} - \int_{x} \frac{\delta \Psi_{x}}{\delta \varphi(x)}$$

Reproducing Polchinski's Equation

Qualitative Aspects of the ERG

0000

Choosing Ψ

Qualitative Aspects of the ERG

0000

• Take
$$\Psi_{\rm x} = \frac{1}{2}\dot{\Delta}(x,y)\frac{\delta\Sigma}{\delta\varphi(y)}$$

$$\bullet - \Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \omega} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \omega} - \frac{1}{2} \frac{\delta}{\delta \omega} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \omega}$$

Reproducing Polchinski's Equation

Choosing Ψ

• Take
$$\Psi_x = \frac{1}{2}\dot{\Delta}(x,y)\frac{\delta\Sigma}{\delta\varphi(y)}$$

$$\bullet - \Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \omega} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \omega} - \frac{1}{2} \frac{\delta}{\delta \omega} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \omega}$$

Reproducing Polchinski's Equation

Choosing **V**

• Take
$$\Psi_x = \frac{1}{2}\dot{\Delta}(x,y)\frac{\delta\Sigma}{\delta\varphi(y)}$$

$$- \Lambda \partial_{\Lambda} S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

- Qualitative Aspects of the ERG
- Renormalizability
 - Continuum Limits
- ERG Equations
- Triviality
 - Correlation Functions
 - Technicalities
 - Application to Fixed Points
- Conclusion

Definition

$$\bullet \ -\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\mathrm{int}}[\varphi]} \right]$$

Definition

Qualitative Aspects of the ERG

0000

Definition

Properties

 Using the Polchinski equation, the flow of the dual action vanishes

$$-\Lambda \partial_{\Lambda} \mathcal{D}[\varphi] = 0$$

• Its vertices, $\mathcal{D}^{(n)}$, are invariants of the ERG

Qualitative Aspects of the ERG

0000

Definition

Properties

 Using the Polchinski equation, the flow of the dual action vanishes

$$-\Lambda \partial_{\Lambda} \mathcal{D}[\varphi] = 0$$

• Its vertices, $\mathcal{D}^{(n)}$, are invariants of the ERG

Diagrammatics

Philosophy

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

Philosophy

I want to manipulate the expression

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

Renormalizability

Philosophy

I want to manipulate the expression

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

- I will expand the exponentials in the dual action

Philosophy

I want to manipulate the expression

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

- I will expand the exponentials in the dual action
- I will expand the Wilsonian effective action in powers of the field

Philosophy

I want to manipulate the expression

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

I will expand the exponentials in the dual action

Renormalizability

- I will expand the Wilsonian effective action in powers of the field
- Rather than performing algebraic manipulations, I will use diagrammatics

Philosophy

Pirsa: 08100078

I want to manipulate the expression

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

I will expand the exponentials in the dual action

Renormalizability

- I will expand the Wilsonian effective action in powers of the field
- Rather than performing algebraic manipulations, I will use diagrammatics
- None of the series are ever truncated
- Page 150/262

Philosophy

I want to manipulate the expression

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

I will expand the exponentials in the dual action

Renormalizability

000000

- I will expand the Wilsonian effective action in powers of the field
- Rather than performing algebraic manipulations, I will use diagrammatics
- None of the series are ever truncated
- No perturbative expansion of the Wilsonian effective action vertices is performed

Pirsa: 08100078

Page 151/262

Diagrammatics

Diagrammatics

Wilsonian Effective Action

$$S_{\Lambda}^{\text{int}}[\varphi] = \frac{1}{2} \left(S^{\text{I}} \right) \varphi^2 + \frac{1}{4!} \left(S^{\text{I}} \right) - \varphi^4 + \cdots$$

Wilsonian Effective Action

$$S_{\Lambda}^{\text{int}}[\varphi] = \frac{1}{2} \left(S^{\text{I}} \right) \varphi^2 + \frac{1}{4!} \left(S^{\text{I}} \right) - \varphi^4 + \cdots$$

Dual Action

$$\mathcal{D}^{(2)} = \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm$$

Qualitative Aspects of the ERG

n > 2-Point Correlation Functions

• Consider constructing n > 2-point connected correlation functions from the bare action

• Consider constructing n > 2-point connected correlation functions from the bare action

 Consider constructing n > 2-point connected correlation functions from the bare action

Example

$$G(p_1, p_2, p_3, p_4) = - G_{\text{bare}} + \cdots$$

•
$$G(p_1, p_2, p_3, p_4) = -\mathcal{D}_b^{(n)}(p_1, p_2, p_3, p_4) \prod_{i=1}^4 \Delta_b(p_i)$$

- $G(p_1, \dots, p_n) = -\mathcal{D}^{(n)}(p_1, \dots, p_n) \prod_{i=1}^n \Delta_b(p_i), \quad n > 2.$
- The n > 2-point dual action vertices are essentially the

 Consider constructing n > 2-point connected correlation functions from the bare action

Example

$$G(p_1, p_2, p_3, p_4) = - G_{bare} + \cdots$$

•
$$G(p_1, p_2, p_3, p_4) = -\mathcal{D}^{(n)}(p_1, p_2, p_3, p_4) \prod_{i=1}^4 \Delta_b(p_i)$$

- $G(p_1, ..., p_n) = -D^{(n)}(p_1, ..., p_n) \prod_{i=1}^n \Delta_b(p_i), \quad n > 2.$
- The n > 2-point dual action vertices are essentially the

 Consider constructing n > 2-point connected correlation functions from the bare action

Example

$$G(p_1, p_2, p_3, p_4) = - G_{bare} + \cdots$$

•
$$G(p_1, p_2, p_3, p_4) = -\mathcal{D}^{(n)}(p_1, p_2, p_3, p_4) \prod_{i=1}^4 \Delta_b(p_i)$$

•
$$G(p_1,\ldots,p_n) = -\mathcal{D}^{(n)}(p_1,\ldots,p_n) \prod_{i=1}^n \Delta_b(p_i), \qquad n>2.$$

The n > 2-point dual action vertices are essentially the

 Consider constructing n > 2-point connected correlation functions from the bare action

Example

$$G(p_1, p_2, p_3, p_4) = - G_{\text{bare}} + \cdots$$

•
$$G(p_1, p_2, p_3, p_4) = -\mathcal{D}^{(n)}(p_1, p_2, p_3, p_4) \prod_{i=1}^4 \Delta_b(p_i)$$

- $G(p_1,\ldots,p_n) = -\mathcal{D}^{(n)}(p_1,\ldots,p_n) \prod_{i=1}^n \Delta_b(p_i), \qquad n>2.$
- The n > 2-point dual action vertices are essentially the n-point connected correlation functions

- Consider constructing the 2-point connected correlation functions from the bare action
- The first contribution is Δ_b
- The full contribution is

$$G(p) = \Delta_b(p) \left[1 - \mathcal{D}_b^{(2)}(p) \Delta_b(p) \right]$$
$$= \Delta_b(p) \left[1 - \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$$

Pirsa: 08100078 Page 163/262

- Consider constructing the 2-point connected correlation functions from the bare action
- The first contribution is Δ_b
- The full contribution is

$$G(p) = \Delta_b(p) \left[1 - \mathcal{D}_b^{(2)}(p) \Delta_b(p) \right]$$
$$= \Delta_b(p) \left[1 - \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$$

Pirsa: 08100078 Page 164/262

- Consider constructing the 2-point connected correlation functions from the bare action
- The first contribution is Δ_b
- The full contribution is

$$G(p) = \Delta_b(p) \left[1 - \mathcal{D}_b^{(2)}(p) \Delta_b(p) \right]$$
$$= \Delta_b(p) \left[1 - \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$$

1PI Vertices

Pirsa: 08100078 Page 166/262

Notation

Define $\overline{\mathcal{D}}^{(n)}$ to be the 1PI pieces of $\mathcal{D}^{(n)}$

Example

1PI Vertices

Notation

ullet Define $\overline{\mathcal{D}}^{(n)}$ to be the 1PI pieces of $\mathcal{D}^{(n)}$

Example

0000

Qualitative Aspects of the ERG

Notation

ullet Define $\overline{\mathcal{D}}^{(n)}$ to be the 1PI pieces of $\mathcal{D}^{(n)}$

Example

•
$$\mathcal{D}^{(2)} = \bigcirc$$
 + ····

0000

Qualitative Aspects of the ERG

Notation

ullet Define $\overline{\mathcal{D}}^{(n)}$ to be the 1PI pieces of $\mathcal{D}^{(n)}$

Example

•
$$\mathcal{D}^{(2)} = \bigcirc$$
 + \cdots

0000

Qualitative Aspects of the ERG

Notation

• Define $\overline{\mathcal{D}}^{(n)}$ to be the 1PI pieces of $\mathcal{D}^{(n)}$

Example

•
$$\mathcal{D}^{(2)} = \bigcirc$$
 + \cdots

•
$$\mathcal{D}^{(2)}(p) = \frac{\overline{\mathcal{D}}^{(2)}(p)}{1 + \Delta(p)\overline{\mathcal{D}}^{(2)}(p)}$$

Dressed Effective Propagator

Definition

Interpretation

Definition

Qualitative Aspects of the ERG

Dressed Effective Propagator

Definition

$$\tilde{\Delta} = \frac{\Delta}{1 + \Delta \overline{\mathcal{D}}^{(2)}}$$

ERG Equations

Dressed Effective Propagator

Definition

Qualitative Aspects of the ERG

•
$$\tilde{\Delta} = \frac{\Delta}{1 + \Delta \overline{\mathcal{D}}^{(2)}} = \frac{1}{\Delta^{-1} + \overline{\mathcal{D}}^{(2)}} = \Delta \left[1 - \mathcal{D}^{(2)} \Delta \right]$$

Dressed Effective Propagator

Definition

Qualitative Aspects of the ERG

0000

•
$$\tilde{\Delta} = \frac{\Delta}{1 + \Delta \overline{\mathcal{D}}^{(2)}} = \frac{1}{\Delta^{-1} + \overline{\mathcal{D}}^{(2)}} = \Delta \left[1 - \mathcal{D}^{(2)} \Delta \right]$$

Interpretation

Definition

Qualitative Aspects of the ERG

0000

•
$$\tilde{\Delta} = \frac{\Delta}{1 + \Delta \overline{\mathcal{D}}^{(2)}} = \frac{1}{\Delta^{-1} + \overline{\mathcal{D}}^{(2)}} = \Delta \left[1 - \mathcal{D}^{(2)} \Delta \right]$$

Interpretation

- Recall $G(p) = \Delta_b(p) \left[1 \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$
- \tilde{\Delta} is the UV regularized two-point correlation function

Dressed Effective Propagator

Definition

•
$$\tilde{\Delta} = \frac{\Delta}{1 + \Delta \overline{\mathcal{D}}^{(2)}} = \frac{1}{\Delta^{-1} + \overline{\mathcal{D}}^{(2)}} = \Delta \left[1 - \mathcal{D}^{(2)} \Delta \right]$$

Interpretation

- Recall $G(p) = \Delta_b(p) \left[1 \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$
- ullet Δ is the UV regularized two-point correlation function

Rescalings

0000

Qualitative Aspects of the ERG

Pirsa: 08100078 Page 180/262

- We want to investigate fixed points
- It is convenient to rescale to dimensionless variables

$$\varphi \to \varphi \sqrt{Z} \Lambda^{(D-2)/2}$$
$$p \to p \Lambda$$

 But scaling out the anomalous dimension produces an annoying change to the Polchinski equation!

Pirsa: 08100078 Page 181/262

- We want to investigate fixed points
- It is convenient to rescale to dimensionless variables

$$\varphi \to \varphi \sqrt{Z} \Lambda^{(D-2)/2}$$

$$p \to p \Lambda$$

and to introduce the 'RG-time'

$$t \equiv \ln \mu / \Lambda$$

 But scaling out the anomalous dimension produces an annoying change to the Polchinski equation!

- We want to investigate fixed points
- It is convenient to rescale to dimensionless variables

$$\varphi \rightarrow \varphi \sqrt{Z} \Lambda^{(D-2)/2}$$
 $p \rightarrow p \Lambda$

and to introduce the 'RG-time'

$$t \equiv \ln \mu / \Lambda$$

 But scaling out the anomalous dimension produces an annoying change to the Polchinski equation!

0000

Qualitative Aspects of the ERG

- We want to investigate fixed points
- It is convenient to rescale to dimensionless variables

$$\varphi \to \varphi \sqrt{Z} \Lambda^{(D-2)/2}$$

$$p \to p \Lambda$$

and to introduce the 'RG-time'

$$t \equiv \ln \mu / \Lambda$$

 But scaling out the anomalous dimension produces an annoying change to the Polchinski equation!

$$\left(-\Lambda\partial_{\Lambda} + \frac{\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi}\right)S^{\mathrm{I}} = \frac{1}{2Z}\frac{\delta S^{\mathrm{I}}}{\delta\varphi} \cdot \dot{\Delta} \cdot \frac{\delta S^{\mathrm{I}}}{\delta\varphi} - \frac{1}{2Z}\frac{\delta}{\delta\varphi} \cdot \dot{\Delta} \cdot \frac{\delta S^{\mathrm{I}}}{\delta\varphi}$$

Pirsa: 08100078 Page 184/262

- We want to investigate fixed points
- It is convenient to rescale to dimensionless variables

$$\varphi \to \varphi \sqrt{Z} \Lambda^{(D-2)/2}$$

$$p \to p \Lambda$$

and to introduce the 'RG-time'

$$t \equiv \ln \mu / \Lambda$$

 But scaling out the anomalous dimension produces an annoying change to the Polchinski equation!

$$\left(-\Lambda\partial_{\Lambda}+\frac{\eta}{2}\varphi\cdot\frac{\delta}{\delta\varphi}\right)\mathcal{S}^{I}=\frac{1}{2Z}\frac{\delta\mathcal{S}^{I}}{\delta\varphi}\cdot\dot{\Delta}\cdot\frac{\delta\mathcal{S}^{I}}{\delta\varphi}-\frac{1}{2Z}\frac{\delta}{\delta\varphi}\cdot\dot{\Delta}\cdot\frac{\delta\mathcal{S}^{I}}{\delta\varphi}$$

Pirsa: 08100078

Page 185/262

This factor of Z also appears in the dual action

- We want to investigate fixed points
- It is convenient to rescale to dimensionless variables

$$\varphi \to \varphi \sqrt{Z} \Lambda^{(D-2)/2}$$

$$p \to p \Lambda$$

and to introduce the 'RG-time'

$$t \equiv \ln \mu / \Lambda$$

 But scaling out the anomalous dimension produces an annoying change to the Polchinski equation!

$$\left(-\Lambda\partial_{\Lambda}+\frac{\eta}{2}\varphi\cdot\frac{\delta}{\delta\varphi}\right)S^{\mathrm{I}}=\frac{1}{2Z}\frac{\delta S^{\mathrm{I}}}{\delta\varphi}\cdot\dot{\Delta}\cdot\frac{\delta S^{\mathrm{I}}}{\delta\varphi}-\frac{1}{2Z}\frac{\delta}{\delta\varphi}\cdot\dot{\Delta}\cdot\frac{\delta S^{\mathrm{I}}}{\delta\varphi}$$

Pirsa: 08100078

Page 186/262

This factor of Z also appears in the dual action

A More Convenient Flow Equation

A More Convenient Flow Equation

• After rescaling $\varphi \to \varphi \sqrt{Z}$ choose the blocking functional, Ψ , such that

$$\left(-\Lambda\partial_{\Lambda} + \frac{\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi}\right)S = \frac{1}{2}\frac{\delta S}{\delta\varphi} \cdot \dot{\Delta} \cdot \frac{\delta\Sigma}{\delta\varphi} - \frac{1}{2}\frac{\delta}{\delta\varphi} \cdot \dot{\Delta} \cdot \frac{\delta\Sigma}{\delta\varphi}$$

$$\eta = \Lambda \frac{d \ln Z}{d \Lambda}$$

- The dual action is defined as before
- But its flow is different

$$-\left(\Lambda\partial_{\Lambda}+rac{\eta}{2}arphi\cdotrac{\delta}{\deltaarphi}
ight)\mathcal{D}[arphi]=-rac{\eta}{2}arphi\cdot\Delta^{-1}\cdotarphi$$

Qualitative Aspects of the ERG

0000

• After rescaling $\varphi \to \varphi \sqrt{Z}$ choose the blocking functional, Ψ , such that

$$\left(-\Lambda \partial_{\Lambda} + \frac{\eta}{2} \varphi \cdot \frac{\delta}{\delta \varphi}\right) S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

•
$$\eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}$$

- The dual action is defined as before

$$-\left(\Lambda\partial_{\Lambda} + \frac{\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi}\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

A More Convenient Flow Equation

• After rescaling $\varphi \to \varphi \sqrt{Z}$ choose the blocking functional, Ψ , such that

$$\left(-\Lambda \partial_{\Lambda} + \frac{\eta}{2} \varphi \cdot \frac{\delta}{\delta \varphi}\right) S = \frac{1}{2} \frac{\delta S}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi} - \frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \dot{\Delta} \cdot \frac{\delta \Sigma}{\delta \varphi}$$

$$\eta \equiv \Lambda \frac{d \ln Z}{d \Lambda}$$

- The dual action is defined as before
- But its flow is different

$$-\left(\Lambda\partial_{\Lambda} + \frac{\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi}\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

Now scale out the canonical dimensions:

$$\varphi \to \varphi \Lambda^{(D-2)/2}$$
, $p \to p\Lambda$, $t \equiv \ln \mu / \Lambda$

$$\bullet \left(\partial_t + \frac{D-2-\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi} + \Delta_{\partial} - D\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

The 'derivative counting operator

$$\Delta_{\partial} \equiv D + \int \frac{d^{D}p}{(2\pi)^{D}} \varphi(p) p \cdot \frac{\partial}{\partial p} \frac{\delta}{\delta \varphi(p)}$$

The rescaled effective propagator is independent of t

$$\Delta(p) = \frac{c(p^2)}{p^2}$$

$$\partial_t S_* = 0.$$
 \Rightarrow $\partial_t D_* = 0$

Now scale out the canonical dimensions:

$$\varphi \to \varphi \Lambda^{(D-2)/2}$$
, $p \to p\Lambda$, $t \equiv \ln \mu / \Lambda$

$$\bullet \left(\partial_t + \frac{D-2-\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi} + \Delta_\partial - D\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

The 'derivative counting operator

$$\Delta_{\partial} \equiv D + \int \frac{d^{D}p}{(2\pi)^{D}} \varphi(p) p \cdot \frac{\partial}{\partial p} \frac{\delta}{\delta \varphi(p)}$$

The rescaled effective propagator is independent of t

$$\Delta(p) = \frac{c(p^2)}{p^2}$$

$$\partial_t S_* = 0.$$
 \Rightarrow $\partial_t D_* = 0$

Now scale out the canonical dimensions:

$$\varphi \to \varphi \Lambda^{(D-2)/2}$$
, $p \to p\Lambda$, $t \equiv \ln \mu / \Lambda$

The 'derivative counting operator'

$$\Delta_{\partial} \equiv D + \int \frac{d^{D}p}{(2\pi)^{D}} \varphi(p) p \cdot \frac{\partial}{\partial p} \frac{\delta}{\delta \varphi(p)}.$$

The rescaled effective propagator is independent of t

$$\Delta(p) = \frac{c(p^2)}{p^2}$$

$$\partial_t S_* = 0$$
, \Rightarrow $\partial_t D_* = 0$

Now scale out the canonical dimensions:

$$\varphi \to \varphi \Lambda^{(D-2)/2}, \qquad p \to p\Lambda, \qquad t \equiv \ln \mu / \Lambda$$

The 'derivative counting operator'

$$\Delta_{\partial} \equiv D + \int \frac{d^{D}p}{(2\pi)^{D}} \varphi(p) p \cdot \frac{\partial}{\partial p} \frac{\delta}{\delta \varphi(p)}.$$

The rescaled effective propagator is independent of t

$$\Delta(p) = \frac{c(p^2)}{p^2}$$

$$\partial_t S_* = 0.$$
 \Rightarrow $\partial_t D_* = 0$

Now scale out the canonical dimensions:

$$\varphi \to \varphi \Lambda^{(D-2)/2}$$
, $p \to p\Lambda$, $t \equiv \ln \mu / \Lambda$

The 'derivative counting operator'

$$\Delta_{\partial} \equiv D + \int \frac{d^{D}p}{(2\pi)^{D}} \varphi(p) p \cdot \frac{\partial}{\partial p} \frac{\delta}{\delta \varphi(p)}.$$

The rescaled effective propagator is independent of t

$$\Delta(p) = \frac{c(p^2)}{p^2}$$

$$\partial_t S_{\star} = 0, \qquad \Rightarrow \qquad \partial_t \mathcal{D}_{\star} = 0$$

The dual action is

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

- It essentially collects together the connected correlation functions
- It satisfies the simple, linear equation

$$\left(\partial_t + \frac{D-2-\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi} + \Delta_{\theta} - D\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

The dual action is

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

- It essentially collects together the connected correlation functions
- It satisfies the simple, linear equation

$$\left(\partial_t + \frac{D-2-\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi} + \Delta_{\partial} - D\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

The dual action is

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

- It essentially collects together the connected correlation functions
- It satisfies the simple, linear equation

$$\left(\partial_t + \frac{D-2-\eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi} + \Delta_{\partial} - D\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

The dual action is

$$-\mathcal{D}[\varphi] = \ln \left[\exp \left(\frac{1}{2} \frac{\delta}{\delta \varphi} \cdot \Delta \cdot \frac{\delta}{\delta \varphi} \right) e^{-S_{\Lambda}^{\rm int}[\varphi]} \right]$$

- It essentially collects together the connected correlation functions
- It satisfies the simple, linear equation

$$\left(\partial_t + \frac{D - 2 - \eta}{2}\varphi \cdot \frac{\delta}{\delta\varphi} + \Delta_{\partial} - D\right)\mathcal{D}[\varphi] = -\frac{\eta}{2}\varphi \cdot \Delta^{-1} \cdot \varphi$$

Qualitative Aspects of the ERG

0000

Page 202/262 Pirsa: 08100078

Qualitative Aspects of the ERG

0000

• Set
$$\partial_t \mathcal{D}_{\star}^{(2)}(p) = 0$$

•
$$\Rightarrow -\frac{2+\eta_*}{2}\mathcal{D}_*^{(2)}(p) + p^2 \frac{\partial \mathcal{D}_*^{(2)}(p)}{\partial p^2} = -\frac{\eta_*}{2}p^2 C_{\text{UV}}^{-1}(p^2)$$

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + (p^2 + \text{subleading}) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0 \end{cases}$$

Qualitative Aspects of the ERG

0000

• Set
$$\partial_t \mathcal{D}_{\star}^{(2)}(p) = 0$$

$$\Rightarrow -\frac{2+\eta_{\star}}{2}\mathcal{D}_{\star}^{(2)}(p) + p^{2}\frac{\partial\mathcal{D}_{\star}^{(2)}(p)}{\partial p^{2}} = -\frac{\eta_{\star}}{2}p^{2}C_{\text{UV}}^{-1}(p^{2})$$

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + (p^2 + \text{subleading}) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0 \end{cases}$$

• Set
$$\partial_t \mathcal{D}_{\star}^{(2)}(p) = 0$$

$$\Rightarrow -\frac{2+\eta_{\star}}{2}\mathcal{D}_{\star}^{(2)}(p) + p^{2}\frac{\partial\mathcal{D}_{\star}^{(2)}(p)}{\partial p^{2}} = -\frac{\eta_{\star}}{2}p^{2}C_{\text{UV}}^{-1}(p^{2})$$

• For small p^2 , the solution is:

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + (p^2 + \text{subleading}) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0. \end{cases}$$

Sanity Check

Qualitative Aspects of the ERG

0000

• Recall:
$$G(p) = \Delta_b(p) \left[1 - \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$$

Using

$$\mathcal{D}_{\star}^{(2)}(\rho) = \left\{ \begin{array}{ll} B \rho^{2(1+\eta_{\star}/2)} + \left(\rho^2 + \text{subleading}\right) & \eta_{\star} \neq 0 \\ (B+1) \rho^2 & \eta_{\star} = 0. \end{array} \right.$$

Gives the expected result at a critical fixed point

$$G(p) \sim \frac{1}{p^{2(1-\eta_{+}/2)}}$$

· Also,

$$\tilde{\Delta}_{\star} \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}, \qquad \overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$$

Sanity Check

• Recall:
$$G(p) = \Delta_b(p) \left[1 - \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$$

Using

$$\mathcal{D}_{\star}^{(2)}(\rho) = \left\{ egin{array}{ll} B
ho^{2(1+\eta_{\star}/2)} + \left(
ho^2 + ext{subleading}
ight) & \eta_{\star}
eq 0. \\ (B+1)
ho^2 & \eta_{\star} = 0. \end{array}
ight.$$

Gives the expected result at a critical fixed point

$$G(p) \sim \frac{1}{p^{2(1-\eta_{+}/2)}}$$

Also,

$$\tilde{\Delta}_{\star} \sim \frac{1}{p^{2(1-\eta_{+}/2)}}, \quad \overline{D}^{(2)}(p) \sim p^{2(1-\eta_{+}/2)}$$

Sanity Check

- Recall: $G(p) = \Delta_b(p) \left[1 \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$
- Using

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + \left(p^2 + \text{subleading}\right) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0. \end{cases}$$

$$G(p) \sim \frac{1}{p^{2(1-\eta_{+}/2)}}$$

$$\tilde{\Delta}_{\star} \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}, \quad \overline{D}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$$

0 v

Sanity Check

- Recall: $G(p) = \Delta_b(p) \left[1 \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$
- Using

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + (p^2 + \text{subleading}) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0. \end{cases}$$

Gives the expected result at a critical fixed point

$$G(p) \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}$$

$$\tilde{\Delta}_{\star} \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}, \qquad \overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$$

Sanity Check

- Recall: $G(p) = \Delta_b(p) \left[1 \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$
- Using

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + (p^2 + \text{subleading}) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0. \end{cases}$$

Gives the expected result at a critical fixed point

$$G(p) \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}$$

$$\tilde{\Delta}_{+} \sim \frac{1}{p^{2(1-\eta_{+}/2)}}, \qquad \overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{+}/2)}$$

Sanity Check

- Recall: $G(p) = \Delta_b(p) \left[1 \mathcal{D}^{(2)}(p) \Delta_b(p) \right]$
- Using

$$\mathcal{D}_{\star}^{(2)}(p) = \begin{cases} Bp^{2(1+\eta_{\star}/2)} + (p^2 + \text{subleading}) & \eta_{\star} \neq 0 \\ (B+1)p^2 & \eta_{\star} = 0. \end{cases}$$

Gives the expected result at a critical fixed point

$$G(p) \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}$$

Also,

$$\tilde{\Delta}_{\star} \sim \frac{1}{p^{2(1-\eta_{\star}/2)}}, \qquad \overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$$

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{\star}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(\rho) = \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{T} \end{array}\right) + \frac{1}{2} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) - \frac{1}{6} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) + \cdots$$

0000

Qualitative Aspects of the ERG

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{+}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(\rho) = \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) + \frac{1}{2} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) - \frac{1}{6} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) + \cdots$$

Analysis for small p

0000

Qualitative Aspects of the ERG

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{+}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(p) = \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) + \frac{1}{2} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) - \frac{1}{6} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) + \cdots$$

Analysis for small p

Assume that S has a derivative expansion

0000

Qualitative Aspects of the ERG

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{+}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(\rho) = \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \end{array}\right) + \frac{1}{2} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) - \frac{1}{6} \left(\begin{array}{c} \mathcal{S}^{\mathrm{I}} \\ \mathcal{S}^{\mathrm{I}} \end{array}\right) + \cdots$$

- Assume that S has a derivative expansion
- Non analytic behaviour of $\overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$ can only come from IR divergences in loop integrals

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{\star}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(p) = S^{I}$$

- Assume that S has a derivative expansion
- Non analytic behaviour of $\overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$ can only come from IR divergences in loop integrals

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{+}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(p) = + \frac{1}{2} \int_{S^{I}}^{S^{I}}$$

- Assume that S has a derivative expansion
- Non analytic behaviour of $\overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$ can only come from IR divergences in loop integrals

• We can resum classes of diagrams contributing to $\overline{\mathcal{D}}_{\star}^{(2)}$:

$$\overline{\mathcal{D}}_{\star}^{(2)}(p) =$$

$$-\frac{1}{6}$$
 S^{I} $+\cdots$

- Assume that S has a derivative expansion
- Non analytic behaviour of $\overline{\mathcal{D}}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$ can only come from IR divergences in loop integrals

$$X(p) \equiv \begin{cases} S^{I} \\ S^{I} \end{cases} \sim \int \frac{d^{D}I}{(2\pi)^{D}} \int \frac{d^{D}k}{(2\pi)^{D}} \frac{1}{[I^{2}(I+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

0000

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} l}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[l^{2}(l+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

0000

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} l}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[l^{2}(l+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

- Consider X(p) for small p
- Check for IR divergences
- Net power of momenta = $2D 6(1 \eta_{\star}/2)$
- Take $D=4+\epsilon, \eta_{\star}\geq 0$
- X(p) = a'' + ...

0000

$$X(p) \equiv \begin{cases} S^{I} \\ S^{I} \end{cases} \sim \int \frac{d^{D}I}{(2\pi)^{D}} \int \frac{d^{D}k}{(2\pi)^{D}} \frac{1}{[I^{2}(I+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

- Consider X(p) for small p
- Check for IR divergences

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} I}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[I^{2}(I+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

- Consider X(p) for small p
- Check for IR divergences
- Net power of momenta = $2D 6(1 \eta_{\star}/2) = 2 + 2\epsilon + 3\eta_{\star}$

0000

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} l}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[l^{2}(l+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

- Consider X(p) for small p
- Check for IR divergences
- Net power of momenta = $2D 6(1 \eta_{\star}/2) = 2 + 2\epsilon + 3\eta_{\star}$
- Take $D=4+\epsilon$, $\eta_{\star}\geq 0$

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} I}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[I^{2}(I+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

IR Power Counting

- Consider $\frac{dX}{dp^2}$ for small p
- Net power of momenta = $2D 6(1 \eta_{\star}/2) 2$
- Take $D=4+\epsilon, \eta_{\star}\geq 0$
- For $\epsilon=0$ and $\eta_{\star}>0$ OR $\epsilon>0$ and $\eta_{\star}\geq0$

 $X(p) = a'' + b''p^2 + \dots$

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^D I}{(2\pi)^D} \int \frac{d^D k}{(2\pi)^D} \frac{1}{[I^2(I+k)^2(k+p)^2]^{1-\eta_*/2}}$$

- Consider $\frac{dX}{dp^2}$ for small p
- Net power of momenta $=2D-6(1-\eta_{\star}/2)-2=2\epsilon+3\eta_{\star}$
- Take $D=4+\epsilon, \eta_{\star}\geq 0$
- For $\epsilon=0$ and $\eta_{\star}>0$ OR $\epsilon>0$ and $\eta_{\star}\geq0$

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^D I}{(2\pi)^D} \int \frac{d^D k}{(2\pi)^D} \frac{1}{[I^2(I+k)^2(k+p)^2]^{1-\eta_*/2}}$$

IR Power Counting

- Consider $\frac{dX}{dp^2}$ for small p
- Net power of momenta $=2D-6(1-\eta_{\star}/2)-2=2\epsilon+3\eta_{\star}$
- Take $D = 4 + \epsilon$, $\eta_{\star} \geq 0$
- For $\epsilon = 0$ and $\eta_{\star} > 0$ OR $\epsilon > 0$ and $\eta_{\star} \ge 0$

 $X(p) = a'' + b''p^2 + \dots$

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D}l}{(2\pi)^{D}} \int \frac{d^{D}k}{(2\pi)^{D}} \frac{1}{[l^{2}(l+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

IR Power Counting

- Power counting generalizes to all diagrams
- For $\epsilon = 0$ and $\eta_{\star} > 0$ OR $\epsilon > 0$ and $\eta_{\star} \ge 0$

But
$$\overline{D}^{(2)}(p) \sim p^{2(1-\eta_*/2)}$$

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} l}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[l^{2}(l+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

IR Power Counting

- Power counting generalizes to all diagrams
- For $\epsilon=0$ and $\eta_{\star}>0$ OR $\epsilon>0$ and $\eta_{\star}\geq0$

$$\overline{\mathcal{D}}_{\star}^{(2)}(p) = c + dp^2 + \dots$$

• But
$$\overline{\mathcal{D}}_{+}^{(2)}(p) \sim p^{2(1-\eta_{+}/2)}$$

Pirsa: 08100078

0000

$$X(p) \equiv \begin{cases} S^{\text{I}} \\ S^{\text{I}} \end{cases} \sim \int \frac{d^{D} l}{(2\pi)^{D}} \int \frac{d^{D} k}{(2\pi)^{D}} \frac{1}{[l^{2}(l+k)^{2}(k+p)^{2}]^{1-\eta_{*}/2}}$$

IR Power Counting

- Power counting generalizes to all diagrams
- For $\epsilon=0$ and $\eta_{\star}>0$ OR $\epsilon>0$ and $\eta_{\star}\geq0$

$$\overline{\mathcal{D}}_{\star}^{(2)}(p) = c + dp^2 + \dots$$

• But $\overline{\mathcal{D}}_{+}^{(2)}(p) \sim p^{2(1-\eta_{\star}/2)}$

Triviality in $D \ge 4$

Pirsa: 08100078 Page 233/262

Summary

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq 4$, we must take $\eta_{\star} = 0$

Completing the argument

Summary

Qualitative Aspects of the ERG

0000

- Consider $D = 4 + \epsilon$, η_{\star} non-negative

Summary

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \ge 4$, we must take $\eta_{\star} = 0$

Completing the argument

Summary

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq 4$, we must take $\eta_{\star} = 0$

Completing the argument

Summary

Qualitative Aspects of the ERG

0000

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq$ 4, we must take $\eta_{\star} = 0$

Completing the argument

Summary

Pirsa: 08100078

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq 4$, we must take $\eta_{\star} = 0$

Completing the argument

- Pohlmeyer's theorem implies that in $D=2,3,4,5,\ldots$ If $\eta_{\star}=0$ then the associated fixed point must be the Gaussian one
- By showing that $\eta_{\star} = 0$, triviality in D = 4 follows

Page 2

• Can be shown directly from the ERG for D=4 and D

Summary

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq 4$, we must take $\eta_{\star} = 0$

Completing the argument

- Pohlmeyer's theorem implies that in $D=2,3,4,5,\ldots$ If $\eta_\star=0$ then the associated fixed point must be the Gaussian one
- By showing that $\eta_* = 0$, triviality in D = 4 follows

Pirsa: 08100078

age 240/262

Summary

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq 4$, we must take $\eta_{\star} = 0$

Completing the argument

- Pohlmeyer's theorem implies that in $D=2,3,4,5,\ldots$ If $\eta_\star=0$ then the associated fixed point must be the Gaussian one
- By showing that $\eta_{\star} = 0$, triviality in D = 4 follows

Pirsa: 08100078

Page 241/262

Summary

- Consider $D=4+\epsilon$, η_{\star} non-negative
- For $\epsilon=0$ and $\eta_{\star}>0$, there is no non-zero solution for $\overline{\mathcal{D}}_{\star}^{(2)}$
- For $\epsilon > 0$ and $\eta_{\star} \geq 0$, we are forced to take $\eta_{\star} = 0$
- Combining these results:

For fixed points with non-negative η_{\star} in $D \geq 4$, we must take $\eta_{\star} = 0$

Completing the argument

- Pohlmeyer's theorem implies that in $D=2,3,4,5,\ldots$ If $\eta_{\star}=0$ then the associated fixed point must be the Gaussian one
- By showing that $\eta_{\star} = 0$, triviality in D = 4 follows

• Can be shown directly from the ERG for D=4 and D>4

Qualitative Aspects of the ERG	Renormalizability	ERG Equations	Triviality	Concli
0000	000000		0000000000000	
$\eta_{\star} < 0$				

Pirsa: 08100078 Page 243/262

Wegner's Fixed Points

- Fixed points with $\eta_{\star} < 0$ certainly exist
- Wegner found a family with

$$S_{\star} \sim rac{1}{2} arphi \cdot
ho^{2(1-\eta_{\star}/2)} \cdot arphi$$

with $\eta_{\star} = -2, -4, ...$

- Upon continuation to Minkowski space, these theories are non-unitary
- Aside: in condensed matter physics, they are not important either

Wegner's Fixed Points

- Fixed points with $\eta_{\star} < 0$ certainly exist
- Wegner found a family with

$$S_\star \sim rac{1}{2} arphi \cdot
ho^{2(1-\eta_\star/2)} \cdot arphi$$

with $\eta_{\star}=-2,-4,\dots$

- Upon continuation to Minkowski space, these theories are non-unitary
- Aside: in condensed matter physics, they are not important either

0000

Qualitative Aspects of the ERG

Wegner's Fixed Points

- Fixed points with $\eta_{\star} < 0$ certainly exist
- Wegner found a family with

$$S_{\star} \sim \frac{1}{2} \varphi \cdot p^{2(1-\eta_{\star}/2)} \cdot \varphi$$

with
$$\eta_{\star} = -2, -4, ...$$

- Upon continuation to Minkowski space, these theories are non-unitary
- Aside: in condensed matter physics, they are not important either

Wegner's Fixed Points

- Fixed points with $\eta_{\star} < 0$ certainly exist
- Wegner found a family with

$$S_{\star} \sim \frac{1}{2} \varphi \cdot p^{2(1-\eta_{\star}/2)} \cdot \varphi$$

with
$$\eta_{\star} = -2, -4, ...$$

- Upon continuation to Minkowski space, these theories are non-unitary

$\eta_{\star} < 0$

Wegner's Fixed Points

- Fixed points with $\eta_{\star} < 0$ certainly exist
- Wegner found a family with

$$S_{\star} \sim \frac{1}{2} \varphi \cdot p^{2(1-\eta_{\star}/2)} \cdot \varphi$$

with $\eta_{\star} = -2, -4, ...$

- Upon continuation to Minkowski space, these theories are non-unitary
- Aside: in condensed matter physics, they are not important either

Non-trivial Fixed Points

- I have not proven that such fixed points do not exist
- I have proven that, if they exist, they correspond to non-unitary theories

Non-trivial Fixed Points

- I have not proven that such fixed points do not exist
- I have proven that, if they exist, they correspond to non-unitary theories

Non-trivial Fixed Points

- I have not proven that such fixed points do not exist
- I have proven that, if they exist, they correspond to non-unitary theories

Scalar field theory in $D \ge 4$

Scalar field theory in $D \ge 4$

- No non-trivial fixed points exist (with a quasi-local action) with $\eta_{\star} \geq 0$

Scalar field theory in $D \ge 4$

- No non-trivial fixed points exist (with a quasi-local action) with $\eta_{\star} \geq 0$
- Any fixed points which exist with $\eta_{\star} < 0$ are non-unitary

Scalar field theory in $D \ge 4$

- No non-trivial fixed points exist (with a quasi-local action) with η_⋆ ≥ 0
- Any fixed points which exist with $\eta_{\star} < 0$ are non-unitary
- Therefore, the only physically acceptable, nonperturbatively renormalizable theories are trivial

Other Applications

ERG Equations

Conclusion

Scalar field theory in $D \ge 4$

- No non-trivial fixed points exist (with a quasi-local action) with $\eta_{\star} \geq 0$
- Any fixed points which exist with $\eta_{\star} < 0$ are non-unitary
- Therefore, the only physically acceptable, nonperturbatively renormalizable theories are trivial

Other Applications

Pirsa: 08100078 Page 257/262

Scalar field theory in $D \ge 4$

- No non-trivial fixed points exist (with a quasi-local action) with η_⋆ ≥ 0
- Any fixed points which exist with $\eta_{\star} < 0$ are non-unitary
- Therefore, the only physically acceptable, nonperturbatively renormalizable theories are trivial

Other Applications

- Pure Abelian gauge theory (non-compact formulation)
- Theories of a scalar chiral superfield ("Wess-Zumino model")

0000

Qualitative Aspects of the ERG

Scalar field theory in $D \geq 4$

- No non-trivial fixed points exist (with a quasi-local action) with $\eta_{\star} \geq 0$
- Any fixed points which exist with $\eta_{\star} < 0$ are non-unitary
- Therefore, the only physically acceptable, nonperturbatively renormalizable theories are trivial

Other Applications

- Pure Abelian gauge theory (non-compact formulation)
- Theories of a scalar chiral superfield ("Wess-Zumino model")

Pirsa: 08100078 Page 259/262

Thank you for listening

Qualitative Aspects of the ERG

0000

0000

Qualitative Aspects of the ERG

Scalar field theory in $D \ge 4$

- No non-trivial fixed points exist (with a quasi-local action) with η_⋆ ≥ 0
- Any fixed points which exist with $\eta_{\star} < 0$ are non-unitary
- Therefore, the only physically acceptable, nonperturbatively renormalizable theories are trivial

Other Applications

- Pure Abelian gauge theory (non-compact formulation)
- Theories of a scalar chiral superfield ("Wess-Zumino model")

0000

Qualitative Aspects of the ERG

Wegner's Fixed Points

- Fixed points with $\eta_{\star} < 0$ certainly exist
- Wegner found a family with

$$S_{\star} \sim \frac{1}{2} \varphi \cdot p^{2(1-\eta_{\star}/2)} \cdot \varphi$$

with $\eta_{\star} = -2, -4, ...$

- Upon continuation to Minkowski space, these theories are non-unitary
- Aside: in condensed matter physics, they are not important either