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Abstract: After reviewing Wilson\'s picture of renormalization, and the associated Exact Renormalization Group, | will show that no (physically
acceptable) non-trivial fixed points exist for scalar field theory in D>=4. Consequently, an asymptotic safety scenario is ruled out, and the triviality
of the theory is confirmed.
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Qutline of this Lecture

o Qualitative Aspects of the ERG
@ The Basic ldeas

© Renormalizability
@ Continuum Limits

€© ERG Equations

© Triviality
@ Correlation Functions

@ Technicalities
@ Application to Fixed Points
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Blocking: From Microscopic to Macroscopic

@ Consider a lattice of spins
@ To go from micro to macro, average over groups of spins
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Blocking: From Microscopic to Macroscopic
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Blocking: From Microscopic to Macroscopic

@ Consider a lattice of spins
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@ To go from micro to macro, average over groups of spins
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What is the effect of blocking?
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Flows in Parameter Space

What is the effect of blocking?

@ Suppose the microscopic spins interact only with their nearest
neighbours

@ The blocked spins will generically exhibit all possible
interactions

@ Each time we block, the strengths of the various interactions
will change

How can we visualize this?
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What is the effect of blocking?

@ Suppose the microscopic spins interact only with their nearest
neighbours

@ The blocked spins will generically exhibit all possible
Interactions

@ Each time we block, the strengths of the various interactions
will change

How can we visualize this?

@ Consider the space of all possible interactions

@ Each point in the space represents a strength for every
interaction
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What is the effect of blocking?

@ Suppose the microscopic spins interact only with their nearest
neighbours

@ The blocked spins will generically exhibit all possible
interactions

@ Each time we block, the strengths of the various interactions
will change

How can we visualize this?

@ Consider the space of all possible interactions

@ Each point in the space represents a strength for every
interaction

@ As we block and rescale, we hop in this space
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Flows in Parameter Space

What is the effect of blocking?

@ Suppose the microscopic spins interact only with their nearest
neighbours

@ The blocked spins will generically exhibit all possible
interactions

@ Each time we block, the strengths of the various interactions
will change

How can we visualize this?

@ Consider the space of all possible interactions

@ Each point in the space represents a strength for every
interaction

@ As we block and rescale, we hop in this space
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@ [ he critical manifold is spanned by the irrelevant operators
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\ Relevant Directions

Trajectories on the critical manifold flow into the fixed point
The critical manifold is spanned by the irrelevant operators

Flows along the relevant directions leave the critical surface
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If there are n relevant directions., then we must tune n
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The Wilsonian Effective Action

Start with the partition function
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Start with the partition function
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@ | he bare scale

@ High energy (short distance) scale
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The Wilsonian Effective Action

Start with the partition function
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JAq

@ | he bare scale

@ High energy (short distance) scale
@ Modes above this scale are cut off (regularized)

Pirsa: 08100078 Page 36/262



Qualitative Aspects of the ERG
slel To 200000

The Wilsonian Effective Action

Start with the partition function
Z = | Dbe l® —
JAq

@ | he bare scale

@ High energy (short distance) scale
@ Modes above this scale are cut off (regularized)

@ [ he bare (classical) action
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The Wilsonian Effective Action

Start with the partition function
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@ | he bare scale

@ High energy (short distance) scale
@ Modes above this scale are cut off (regularized)

@ The bare (classical) action

@ Integrate out modes between the bare scale and an
intermediate scale, A
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@ The bare (classical) action
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@ [ he partition function stays the same
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The Wilsonian Effective Action

Start with the partition function
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JAq JA

@ | he bare scale

@ High energy (short distance) scale
@ Modes above this scale are cut off (regularized)

@ The bare (classical) action

@ Integrate out modes between the bare scale and an
intermediate scale, A

@ [he partition function stays the same

@ | he effects of the high energy modes must be taken into

aCCcount
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The Wilsonian Effective Action

Start with the partition function
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JAg JA

@ | he bare scale

@ High energy (short distance) scale
@ Modes above this scale are cut off (regularized)

@ The bare (classical) action

@ Integrate out modes between the bare scale and an
intermediate scale, A

@ [he partition function stays the same

@ [ he effects of the high energy modes must be taken into
account

@ [he action evolves = Wilsonian effective action
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Ingredients of ERG Transformation
@ Blocking (coarse-graining)

@ Rescaling

Implementing Rescaling

@ Measure all dimensionful quantities in units of A

@ Remember to take account of anomalous dimensions!
alX— XAfu_ll scaling dimension
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—NIp — O, with t = Inu /A
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@ Loop diagrams in quantum field theory yield UV divergences
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@ Loop diagrams in quantum field theory yield UV divergences
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@ If all divergences can be absorbed into a finite number of
couplings, the theory is renormalizable
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UV Divergences in QFT

@ Loop diagrams in quantum field theory yield UV divergences

@ If all divergences can be absorbed into a finite number of
couplings, the theory is renormalizable

@ [he ERG is a natural tool to study renormalizability
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UV Divergences in QFT

@ Loop diagrams in quantum field theory yield UV divergences

.
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@ If all divergences can be absorbed into a finite number of
couplings, the theory is renormalizable

@ The ERG is a natural tool to study renormalizability

@ It has a built in cutoff
@ It relates physics at different scales
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The Simplest Answer

@ Rescale all quantities, using A
@ Only dimensionless variables appear

@ Fixed points of the ERG correspond to continuum limits!
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Are there effective actions Sp p,[¢] for which we can safely send
Ag — o’

The Simplest Answer

@ Rescale all quantities, using A
@ Only dimensionless variables appear

@ Fixed points of the ERG correspond to continuum limits!
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@ S, is independent of all scales, including Ag
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Are there effective actions Sp p,[¢] for which we can safely send
Ao — o’

The Simplest Answer

@ Rescale all quantities, using A
@ Only dimensionless variables appear

@ Fixed points of the ERG correspond to continuum limits!

f._'}rs*[..r:] =0

@ S, is independent of all scales, including Ag
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Critical Manifold

Fixed Point

Renormalized Trajectory

@ Tune the trajectory towards the critical surface, as Ag —
@ T he trajectory splits in two:

@ One part sinks into the fixed point
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Renormalized Trajectorv

@ Tune the trajectory towards the critical surface, as Ag — ¢
@ T he trajectory splits in two:

@ One part sinks into the fixed point
@ One part emanates out
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Renormalized Trajectory

@ Tune the trajectory towards the critical surface, as Ag —
@ T he trajectory splits in two:

@ One part sinks into the fixed point
@ One part emanates out
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The Key Point

Nonperturbatively renormalizable theories follow from fixed points

Pirsa: 08100078 Page 77/262



Renormalizzability
o0 200@00

The Key Point

Nonperturbatively renormalizable theories follow from fixed points

@ Either directly
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The Key Point

Nonperturbatively renormalizable theories follow from fixed points

@ Either directly

@ Or from the renormalized trajectories emanating from them
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Triviality Asymptotic Freedom Asymptotic Safety
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Scalar Field Theory in D =4

The Gaussian Fixed Point

@ [ he mass is relevant
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Scalar Field Theory

The Gaussian Fixed Point

@ [ he mass is relevant

@ T he four point coupling is marginally irrelevant
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The Gaussian Fixed Point

@ The mass is relevant
@ T he four point coupling is marginally irrelevant

@ All other couplings are irrelevant
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The Gaussian Fixed Point

@ The mass is relevant
@ T he four point coupling is marginally irrelevant

@ All other couplings are irrelevant

Other Fixed Points
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Renormalizzbility
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Scalar Field Theory in D =4

The Gaussian Fixed Point

@ T he mass is relevant
@ The four point coupling is marginally irrelevant

@ All other couplings are irrelevant

Other Fixed Points

@ | will show that there are no other (physically acceptable)
fixed points
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Renormalizzability

The Gaussian Fixed Point

@ The mass is relevant
@ T he four point coupling is marginally irrelevant

@ All other couplings are irrelevant

Other Fixed Points _

@ | will show that there are no other (physically acceptable)
fixed points

@ Therefore scalar field theory in D = 4 is trivial
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Implementing a Cutoff

irsa: 08100078 Page 95/262



ERG Egquations

Implementing a Cutoff
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ERG Eguartions
OO0

Implementing a Cutoff

@ Implement an overall UV cutoff:

1 C(p.Ng)

A= -
=

Pirsa: 08100078 i S Page 97/262
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Implementing a Cutoff

Q@ Implement an overall UV cutoff:

Q Introduce the effective cutoff, A

C(p.No) = Cuv(p.A) + Gr(p-A. No)
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Implementing a Cutoff

Q@ Implement an overall UV cutoff:

Q Introduce the effective cutoff, A

C(p.No) = Cuv(p.A) + Gr(p.A.Ao)

o UV cutoff for modes below A
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Implementing a Cutoff

@ Implement an overall UV cutoff:

Q Introduce the effective cutoff, A

C(p.No) = Guv(p.N) + Gr(p.A.No)

@ UV cutoff for modes below A
@ IR cutoff (and overall UV cutoff) for modes above A

irsa: 0810007
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ERG Eguations

Polchinski Equation
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Polchinski Equation

An equation telling us how the Wilsonian effective action evolves
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Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

155%* = ;;sglt 1 & & ;_is;m

2 [_"'I 7: ) 'J': 2 .r_'l '?': ) 'il':

AL Sﬁm =
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Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

. 1St | ot 1§ . ssint
—A(JASE“T — — ‘1‘ -&. q-ﬂ" il _&_ ﬂ"'n
2 0 €, 0 (0 . 7s ) %,
@ Interaction part of Wilsonian effective action
S —— Slﬂt N 1 == C—l( A) 2 e
A=A ¥ " Cov\P NP - ¢
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Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

1,1'5311* s ;_iS}iﬂt 1 & A ,is;m

—Ad S}\m =

2 0 &, 0 Vs 20 s 0 e

@ Interaction part of Wilsonian effective action

Sa = Sitt +

N | =
..i
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ERG Eguations

e

Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

= 1 f';S:U' _ [.;S;__'H 1 r_i . r‘;Si:""'
—Aﬂ}n S_T{‘T _ — \ AR q-ﬂ‘ iy o A
') f} 7: P ':I': 2 f_', ‘;-: A T:.

@ Interaction part of Wilsonian effective action

2 - Cov(p-N)p* - ¢

- 1
G — I » "
A A >’

Page 106/262
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An equation telling us how the Wilsonian effective action evolves

15SR . OSx* 16 . S

—AORS>E — : : E—
A=A 2 r_'\?: f'i_r: 2:_'! : r‘l_?_"

@ Interaction part of Wilsonian effective action

: 1
S:S‘IDI___,._&—]._;
A A 27-' ]

Pirsa: 08100078 Page 107/262



s Tala]

Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

- cint - cint = - cint
_A‘;_)nsiﬂt Ll l”sﬂ. ' : . "’Sf\ N l 0 ,A, 0 A
A 2 r_"; 7: Ii ‘r: 2 .r_i ‘r: ri ‘r:

@ Interaction part of Wilsonian effective action

: 1
S:SIHI___._&—]._;
A A 3 1

@ Any mass term is contained in S}Ft
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Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

155

2 r_"; ?: Jr';_r_‘," 2 ri ‘r: ) ‘r:

. ,_is?t 1 fishm

—A\dp Sint =

@ Interaction part of Wilsonian effective action

Sa = Sitt +

N | =
-.i

@ Any mass term is contained in S}\“t

Cov

p2

Qo A = — N\« f\& — —/\¢ '}-""t
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Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

- cint - cint = - cint
_A(J)nslﬂt s lt_'ish _ j. ' r_‘}Sn * l 0 _:.2\ 1 f_"tSA
A 2 r_i ?: ;'; ‘r: 2 .r_i ‘r: fi ‘r:

@ Interaction part of Wilsonian effective action

SA:S}\HI— -_&—1_;

+

N | =

@ Any mass term is contained in S}\“t

: . - Grv
@ A =-—-ANIp\A = —/\QJ\—TL;—
p

o f-A-g= [ f(—p)A(p)g(p)
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ERG Equations

my e

An equation telling us how the Wilsonian effective action evolves

) 1 5Sint = Sgint 1 5 . fisint
- t A A A
AR =55 A 25 e
< r 2 - 2 2

@ Interaction part of Wilsonian effective action

@ Any mass term is contained in S}{H

o A= —NIZNA = —AUA—C—L;E
p
o f-A-g = [ f(—p)A(p)g(p)

@ Classical term, 3g[S. X]
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e

Polchinski Equation

An equation telling us how the Wilsonian effective action evolves

IrFSi“‘ A r_iSR-”“ 1 4§ A ,iS__i{ﬂ'

2 [_i TT ,r';_r: 2 .-"I:__' O

@ Interaction part of Wilsonian effective action

: 1
S:Smt——“-ﬂ_l-;
A A 2‘1-' .

@ Any mass term is contained in Sﬁ“t

. _ - Giyr
3 = —NIp\A = —AU;\—L—;
p

o f-A-g = [ f(—p)A(p)g(p)
@ Classical term, ag[S. X]

Pirsa: 08100078 Page 112/262

@ Quantum term, a;[X]



irsa: 08100078 Page 113/262



= s
ERG Egquations

e

Recasting the Polchinski Equation |

@ Define S=—¢-A1.o

N | =
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ERG Equations
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Recasting the Polchinski Equation |

A 1
@ Define S = S A~
a S Slﬂt S
S

@ Now define X =S — 2S5 = Smt

Page 115/262
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Recasting the Polchinski Equation |

] n 1
@ Define S = = A1

oS—55*+5
@ Now define L =5 —-25=5_5§
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RG Eguations
000000

Recasting the Polchinski Equation |

@ Define S =

. = o
Er'ﬁ 3
a5 =515
@ Nowdefine L =5 —-25=5_5§

@ Since S is two-point,

Y 10
i

"i'*r: E} 2 (.i ¥,

. 0X
N -

fi.r:

209

-+ vacuum term

irsa: 08100078
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Recasting the Polchinski Equation |

@ Define S=—¢-A1.¢

2
aS—S"4S5
@ Nowdefine L =5 —-25=5_5§

Classical Term
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ERG Eguations

- sa s slels
% -

ski Equation |

n 1
@ Define S = P Ao

@ S=S"+5
@ Now define L =5 —-25=5_5§

Classical Term

@ Since SY = (S + 5)(Sixt — 5) = siptsint — 55
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ERG Eguations

e — o

Recasting the Polchinski Equation |

. 1
® Define S=_¢- X

e S=S5"+5
@ Now define ¥ =S — 25 — 5“H S

Classical Term

@ Since ST = (Siot + 5)(Sirt — 5) = Sirtsit — S5

1555 L oSpt 165 ; o 155 ; 45
2 Op dp 2 0p dp - 2@ dp
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ERG Eguations

e Tala]

n 1
@ Define S = 5¥ At.p

@ S=S+5
@ Now define L =S5 —-25=5_5§

Classical Term

@ Since ST = (Siot + 5)(Sirt — 5) = Sirtsit — S5

| 7 e W 1S ;. 6& 165 ; &5
P . P N N

|
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Recasting the Polchinski Equation ||
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ERG Eguations
SR AOBOO0

Recasting the Polchinski Equation ||

1nt it s cint
_ AOAS ol 1 15ﬁ ’Sft i l A ”SA
A o 1 [V, ti; 2;\; ﬁ;
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ERG Eguations
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RG Equations

—

my e

L& = d

|
!
|
g
<
b
I
=
-.{I
|
|
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ERG Equations
0000

Recasting the Polchinski Equation ||

' - { .
— A SIJ:Lt il IS5 ﬂﬂ'\ . ‘A A B = ‘ﬂ'\
=N 2 ¢ :\Tj 2()1: r‘l,}:
16S - 0L 1 . 16 - &Y
= —— A — +_—@-RpA - p———A-—
2 0Q ;1_}: 200 .r‘!_r_,

@ Up to a discarded vacuum energy term:

1S N2 1 & : OF
—AWS = —- tﬁ = —-A-—
2 0w 0P *, 0w s 102,
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Very General ERGs
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ERG Equations

Very General ERGs

Formulation

RSl 0 =S¢l
- /; do(x) (Wx[.,,]e )
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RG Equations

Formulation
5

—ANpe Sl — /x .i_-lil = (Wx[.,:]e_s[‘:])

. , . _eEF . . . )
@ partition function, [ Dye ¥l invariant under the flow
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Very General ERGs

Formulation

_AUAE-S[;]:[ J (w.‘_[;]e‘s[”)

J x ‘-i'T: (X )

@ partition function, [ Dyoe>l¥l invariant under the flow

@ defines our ERG
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Formulation

—Adpe 2l = / 8 (w*_;__-]e-S[;])

J x ‘-i*r:(x)
@ partition function, fD.,:e_s[*:], invariant under the flow
@ defines our ERG

@ parametrizes blocking procedure
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ERG Equations

e

Very General ERGs

_Aone=S — [P (e
Adpe /n T ( ole” )

@ partition function, ] 'D;e_sl*:], invariant under the flow
@ defines our ERG

@ parametrizes blocking procedure
@ huge freedom in DFFCISt: form—adapt to suit our needs
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ERG Equations

o~ — S—

Very General ERGs

 Aa —SEl _ 0 1.—Slel
e /x 5o(x) (Vslele=1)

@ partition function, [ Dye
@ defines our ERG

@ parametrizes blocking procedure
@ huge freedom in precise form—adapt to suit our needs

Flow Equation
b )
—AUAS:/_SWX—/_W’Y
Jx 0p(x) Jx 0¢(x)

Pirsa: 08100078 Page 133/262

_5[’:], invariant under the flow
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RG Equations

my e
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1. )

@ lTake UV, = —A(x.y)—
22 ’V)f-t;(y)
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ERG Eguations

— sa s slels

Reproducing Polchinski’'s Equation

@ Take ¥, = Eﬁ(x-y) -

do(y)
1S D3 Ed - 5
™~ ] —AL)AS — A —— e TAR =
. f\ ’, (4 [¥s, 20 ¥ (s 1%,
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Triviality

O Trivialiny
@ Correlation Functions

@ Technicalities
@ Application to Fixed Points
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Triviality

=T Tala]
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The Dual Action
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Triviality
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Triviality

]. ; f'i intf, -
@ —Dlp] =In [Exp (5(— - A - ,—) e A ["‘]}
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@ Using the Polchinski equation, the flow of the dual action
vanishes

—ANIz\D[g] =0
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Triviality

The Dual Action

]. i fi intf, -
@ —Dlg] =In |:e><p (5(— - A - ,—) e A ["‘]]

r"l; r‘lT:

@ Using the Polchinski equation, the flow of the dual action
vanishes

—ANIp\D[g] =0

@ Its vertices. P\ are invariants of the ERG
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Triviality

Diagrammatics
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Diagrammatics

Philosophy
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Triviality
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Diagrammatics

Philosophy

@ | want to manipulate the expression

1 r_'; i int[. .
0L ( ,}:
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Triviality
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Diagrammatics

Philosophy

@ | want to manipulate the expression

1 fi fs intf -
—Dlp] =In [exp (ET__ " ) e A [F]}

'T-'

@ | will expand the exponentials in the dual action
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Triviality
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( Q00 0eCO0000000000

Diagrammatics

Philosophy

@ | want to manipulate the expression

1 f.i f_i int[. .
42

@ | will expand the exponentials in the dual action

@ | will expand the Wilsonian effective action in powers of the
field
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Triviality
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Diagrammatics

Philosophy

@ | want to manipulate the expression

1 'r-i ".i intf. .

@ | will expand the exponentials in the dual action

@ | will expand the Wilsonian effective action in powers of the
field

@ Rather than performing algebraic manipulations, | will use
diagrammatics
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Diagrammatics

Philosophy

@ | want to manipulate the expression

1 r_'i fj int[. ..
D= o (18- ) ]

@ | will expand the exponentials in the dual action

@ | will expand the Wilsonian effective action in powers of the

field

@ Rather than performing algebraic manipulations, | will use
diagrammatics

@ None of the series are ever truncated
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Triviality

e —
sl _slals s slslelasalsals

e

Philosophy

@ | want to manipulate the expression

1 i'.;" f_i int|. .
—D[‘r:] =In [EXP (_2—75_: - A - ——) e_sﬁ [*’]}

=
= —

@ | will expand the exponentials in the dual action

@ | will expand the Wilsonian effective action in powers of the
field

@ Rather than performing algebraic manipulations, | will use
diagrammatics
@ None of the series are ever truncated

@ No perturbative expansion of the Wilsonian effective action
Uer-tices is performed Page 151/262
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Diagrammatics
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Diagrammatics

@ Wilsonian Effective Action

. 1 4
S}\nt[‘}:] — 5 ~ _'_E & =

B8]
i
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Diagrammatics

Diagrammatics

@ Wilsonian Effective Action

kIl =5 @ Pt -@- ot

@ Dual Action
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Triviality

my

n > 2-Point Correlation Functions
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Triviality

n > 2-Point Correlation Functions

@ Consider constructing n > 2-point connected correlation
functions from the bare action
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Triviality

e e e i e
L b LALLM UM U

n > 2-Point Correlation Functions

@ Consider constructing n > 2-point connected correlation
functions from the bare action

Example

G(p1.pP2-P3-Ps) = — @ -
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n > 2-Point Correlation Functions

@ Consider constructing n > 2-point connected correlation
functions from the bare action

Example

G(p1.p2.p3.pa) = — @ 4 -

® G(p1.p2. p3. pa) = —Dy”(p1. p2. p3. pa) [T, As(pi)
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n > 2-Point Correlation Functions

@ Consider constructing n > 2-point connected correlation
functions from the bare action

Example

G(p1.P2.-P3-Pa) = — @ i

o G(p1.p2.p3.pa) = —D)(py. py. p3. pa) [Ti_; As(pi)
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n > 2-Point Correlation Functions

@ Consider constructing n > 2-point connected correlation
functions from the bare action

Example

G(p1.pP2-P3.-Pa) = — @ L

® G(p1.p2.p3.pa) = —D)(p1. pa. p3. pa) [Tr_1 As(pi)
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n > 2-Point Correlation Functions

@ Consider constructing n > 2-point connected correlation
functions from the bare action

Example

G(p1.p2-P3.-Pa) = — @ =

® G(p1.p2.p3.pa) = —D)(p1. pa. p3. pa) [Tr_1 As(pi)

@ G(p1.....pn) = —DNpr.....pa) [1; Bs(pi). n>2.

@ The n > 2-point dual action vertices are essentially the
xomes p-point connected correlation functions o
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The 2-point Correlation Function
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Triviality
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The 2-point Correlation Function

@ Consider constructing the 2-point connected correlation
functions from the bare action

Pirsa: 08100078 Page 163/262



Triviality
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The 2-point Correlation Function

@ Consider constructing the 2-point connected correlation
functions from the bare action

@ [ he first contribution is Ay
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@ Consider constructing the 2-point connected correlation
functions from the bare action

@ [ he first contribution is Ay

@ | he full contribution is

G(p) = ABslp) :I_PE,E)(P)AFJ(P):

As(p) |1 — P(EJ(P)&b(P):
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1P| Vertices

Pirsa: 08100078 Page 166/262



e

Pirsa: 08100078 Page 167/262



= TaTala]

1Pl Vertices

@ Define f(n) to be the 1Pl pieces of D(n)
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1Pl Vertices

@ Define f{”) to be the 1Pl pieces of D)

irsa: 08100078 = : =t - _ ) _ _ = ——— _ == - . P:ﬁ 169/2_62_ =



=T Tala

1Pl Vertices

@ Define f(”) to be the 1Pl pieces of Din)
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@ Define f(n) to be the 1Pl pieces of Din)

D% (p)

e .

o D(p) =
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Dressed Effective Propagator
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Dressed Effective Propagator
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Dressed Effective Propagator

o A=

Interpretation
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Dressed Effective Propagator

o A=

A 1
el E a[1 T Dm.&]
1+AD? A1 DY

Interpretation

@ Recall G(p) = Ap(p) [1 — DP(p)As(p)]
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0 |: | = _i'_"

A 1

o A=

= A[l i P‘z)/’_\]

5~ A1 DD

1+&f‘

@ Recall G(p) = Au(p) [1 — D) (p)As(p)]
@ A is the UV regularized two-point correlation function
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Rescalings
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Rescalings

@ We want to investigate fixed points
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Triviality
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Rescalings

@ We want to investigate fixed points
@ It Is convenient to rescale to dimensionless variables

o — oVZAD-2)/2

p— PN
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Triviality
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Rescalings

@ We want to investigate fixed points
@ It Is convenient to rescale to dimensionless variables

2 — oVZND-2)/2
p— PN
and to introduce the ‘RG-time’

t=Inpu/A
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e e e e .rn. rlalaTaalale

Rescalings

@ We want to investigate fixed points
@ It Is convenient to rescale to dimensionless variables

o — oV ZNP—2)/2
p— pA
and to introduce the '‘RG-time’

t=Inpu/A

@ But scaling out the anomalous dimension produces an
annoying change to the Polchinski equation!
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Rescalings

@ We want to investigate fixed points
@ It Is convenient to rescale to dimensionless variables

» — Oy ?A(D—2) /2

p— pPA
and to introduce the ‘RG-time’

t=Inpu/A

@ But scaling out the anomalous dimension produces an
annoying change to the Polchinski equation!
| ; 5 148 - 48 1L & = &%
—AU;\——);" oF wal AR BEal ] 8 R VS
2 s 0o, 27 0O ¥z, s [0, 27 ¢ (s %,

T T T
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Rescalings

@ We want to investigate fixed points
@ It is convenient to rescale to dimensionless variables

7 —> @OV ?A(D—ﬂ /2

p— pPA
and to introduce the ‘RG-time’

t=Inpu/A

@ But scaling out the anomalous dimension produces an
annoying change to the Polchinski equation!

- - -1 -1 - scl

_ 1 0 I ]_ :\5 . r'}S ]_ O . HS
—AR + 2o - o P 1w A Row ks Y

( s e ) 27 55 bo 27 b 5

‘ -
O
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@ [ his factor of Z also appears in the dual action
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A More Convenient Flow Equation
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. & .a-_

@ After rescaling ¢ — ¢/ Z choose the blocking functional, W,
such that

(—At}ﬁ—-—%T 1)5___;"!5 &*r‘*‘):_lﬂn *&"}Z

2 s 10w, 4100, 2 '3 [ %o, ri.:

o
r
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eTaTals g P =t .__-.,__., e
o N o s W o o e S

A More Convenient Flow Equation

@ After rescaling ¢ — 2/ Z choose the blocking functional, W,

such that
_ ) 1S . &L 16 - 0%
(Afjﬁ—-—ﬂv )5——— A — — —— A —
2: rﬁ?,“ 2r'! " r'll,r: 2-’\1_: f'!.r:
din/Z
e n=A =

dA\
@ [ he dual action is defined as before
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@ After rescaling © — o/ Z choose the blocking functional, W,

such that
| 5 185 - & 16 - &
(Aaﬂ,\+ﬁ;_—) = N — .
0P 200 o0p 209 0P
dinZ
=N
o 7 d/\

@ [ he dual action is defined as before
@ But its flow is different
)
—(Aon+ 3¢ 55 ) Dl = —fo- A1

9 *: fi,_;
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Final Rescalings
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Triviality
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Final Rescalings

@ Now scale out the canonical dimensions:

o —> ;A(D—E)Q‘ p — pA. t=Inpu/A
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Triviality

R — —~ - P —— P —
cQ 200000 2000000090 0000Q0

Final Rescalings

@ Now scale out the canonical dimensions:

o —> ;A(D_E)'z. p — pA. t=Inu/A

B 5 '
- (Ur+ > LS ;*+ﬂa—D)‘D[; = p-At.p
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Final Rescalings

@ Now scale out the canonical dimensions:

— T:i\(D_z)'z. p — pPA. t=Inu/A

_ D2 )
o (a+ =5 Tp- 5o +80—D) Diel=—J¢-A7 -0

@ T he 'derivative counting operator’

Ay =D / AL (p)p .
s =D + 2(p)p - :
i J (2m)P 9p 5o(p)
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Final Rescalings

@ Now scale out the canonical dimensions:

0 —> ;A(D_z)'z. p — pA. t=Inpu/A
_ D—2— )
o (a+ =510 5 +8s—D)Dlel = —Fo- A7 ¢

@ The ‘derivative counting operator’

ﬂ‘f'j == } o /(2_)D T:(p)p ) -

@ T he rescaled effective propagator is independent of t
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Triviality

00000C00e000000

Final Rescalings

@ Now scale out the canonical dimensions:

O — ;A(D_z)'z. p — pA. t=Inu/A

_ D—2— )
° (";’r"‘ > ”;—-' ;'*H_'_A'r'_'f_D) Dle :_E"A—l'r‘

@ [ he ‘derivative counting operator’

dPp 9 o
Ap =D+ /(2'_‘_)9 o(p)p -

Ipoe(p)
@ [ he rescaled effective propagator is independent of t
<(p?)
Alp) =
=
@ At a fixed point
S, =0, = oD, =0
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Summary so far. . .
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Summary so far. . .

@ | he dual action is
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Summary so far. . .

@ | he dual action is
Dl — 5 8 O\ oSt
__D[?_,] _[n [EXP (E;i; & ﬁ _) e A ]

@ |t essentially collects together the connected correlation
functions
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o~ P e e e
Ll o L L L o AL ML) AL

16 5 i)
—D[g] = In [exp (EE - A - r *> e A [r]<‘

@ [t essentially collects together the connected correlation
functions
@ [t satishies the simple, linear equation

. D—z—f rj I
(fjr+ = ?T:-$H+&,_;—D)'D[;}=—i--&—1-;
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Triviality

Summary so far. . .

@ [ he dual action is

1o o ntf .
__D[,:_:]:[n exp (— : S e )E_S}"* []

2 0Q 8 [V,

@ [t essentially collects together the connected correlation
functions
@ It satisfies the simple, linear equation

#,

-
i

. 5 A N A
(m+ PN I D) Digd =— oAt

@ So far, diagrammatics have only been used to help with
interpretation
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The 2-point Vertex
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Triviality
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The 2-point Vertex

o Set 3, D% (p) =0
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The 2-point Vertex

o Set 3,D?(p) =0

2+ The ~(2) ‘
—_— — D* —+— D _ — ——
B = (p) +p 952 =
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The 2-point Vertex

@ Set f';fr'Pf,z}(p) =

I

_— .
0D (p) 21

2+ M .
222D (p) +p v(PY)

2 | opZ 2

9 =

2 . -
@ For small p~, the solution is:

(2) LY BPZ(H-”* %3 ¢ (p2 + subleading) 1. #
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Sanity Check
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The 2-point Vertex

Sanity Check

@ Reaall: G(p) = As(p) [1 — D@ (p)As(p)]
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The 2-point Vertex

Sanity Check

@ Reaall: G(p) = As(p) [1 —DP(p)As(p)]
@ Using

(2) Bp?(1+m/2) 4 (p? + subleading) 7, #0
o ("")‘{ (B +1)p? m = 0.
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The 2-point Vertex

@ Reaall: G(p) = As(p) [1 — D@ (p)As(p)]
@ Using

P(l)(p) o Bp?(1+m/2) 4 (p? + subleading) 7, #0
) (B +1)p? e = 0.

@ Gives the expected result at a critical fixed point

1
G(p) & p2(l—r;+,’2)
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The 2-point Vertex

Sanity Check

@ Reaall: G(p) = Ap(p) [1 — D@ (p)As(p)]
@ Using

1—,(2)(p) i Bp?(1+1/2) 4 (p? + subleading) 1, #0
) (B_]')p2 ”*:O-

@ Gives the expected result at a critical fixed point

1
G(p) v p2(l—n+_’2)
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The 2-point Vertex

Sanity Check

@ Reaall: G(p) = Asp(p) [1 — D@ (p)As(p)]
@ Using

D(Z)(p) 18 Bp*1+m-/2) + (p? + subleading) 17, #
i (B + 1)P2 . — O

@ Gives the expected result at a critical fixed point

1
G(p) i p2(l—r}+_’2)

@ Also,

—- 1 ={2) 21—, /2)
A, ~ Pz(l_nﬂ-g) ’ D (P) et :
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IR Finiteness
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Triviality
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Analysis for small p
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Triviality
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Analysis for small p

@ Assume that S has a derivative expansion
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Triviality

- P — — o .I_... ™~

N | -

Analysis for small p

@ Assume that S has a derivative expansion

@ Non analytic behaviour of ﬁ{z)(p) ~ p?1=/2) can only come
from IR divergences in loop integrals
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Analysis for small p

@ Assume that S has a derivative expansion

@ Non analytic behaviour of ﬁ{z)(p) ~ p?1=/2) can only come
from IR divergences in loop integrals
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Triviality

— — P—— o

N =

Analysis for small p

@ Assume that S has a derivative expansion

@ Non analytic behaviour of ﬁz)(p) ~ p?1=/2) can only come
from IR divergences in loop integrals
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Analysis for small p

@ Assume that S has a derivative expansion

@ Non analytic behaviour of ﬁ{z)(p) ~ p?1=/2) can only come
from IR divergences in loop integrals
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dP] /de 1
(2m)P ] (2m)P [12(1 + k)2(k + p)2]+—7-/2
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dP Kk 1
(2m)P [12(1 + k)2(k + p)?]+—7-/2

IR Power Counting
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IR Finiteness Cont. ..

dP k 1
(2m)P [12(] + k)2(k + p)2]*—7-/2

IR Power Counting

@ Consider X(p) for small p
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dP Kk 1
(27)° [I2(1 + k)>(k + p)]*—7-/2

IR Power Counting

@ Consider X(p) for small p

@ Check for IR divergences
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IR Finiteness Cont. ..

dP] dP k 1
X(p) i ./(27)D ./(27)D [12(] + k)%(k + p)] /2

IR Power Counting

@ Consider X(p) for small p

@ Check for IR divergences

@ Net power of momenta = 2D — 6(1 — 7. /2)
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sinlale

/ dP k 1
] 27)P [12(1 + k)2(k + p)2]—"-/2

IR Power Counting

@ Consider X(p) for small p
@ Check for IR divergences
@ Net power of momenta = 2D — 6(1 — 1. /2) = 2 + 2¢e + 31},

@ Take D=4+¢n.2>0
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dP Kk 1
(2m)P [12(1 + k)2(k + p)?]t—7-/2

IR Power Counting

_ dX
@ Consider — for small p
dp?

irsa: 08100078 Page 227/262
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d° /de 1
] 2m)P | (2m)P [12(1 + k)2(k + p)?]t—7-/2

IR Power Counting

, dX
@ Consider — for small p
dp?

@ Net power of momenta = 2D — 6(1 — 7. /2) — 2
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IR Finiteness Cont. ..

dPi /de 1
(2m)P J (2m)P [12(1 + k)2(k + p)2]+—7-/2

IR Power Counting

_ dX
@ Consider — for small p
dp?
@ Net power of momenta = 2D — 6(1 — 1. /2) — 2 = 2¢e + 31,

@ Fore=0and n. >0 OR e>0and 7, >0
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dP k 1
(27)° [12(1 + k)>(k + )=/

IR Power Counting

@ Power counting generalizes to all diagrams

irsa: 08100078 Page 230/262



=

/ dP k 1
J @7)P [12(1 + k)2(k + p)2|—7-/2

IR Power Counting

@ Power counting generalizes to all diagrams
@ Fore=0andn, >0 OR e>0andn, >0

— 7. _
DA (p)=c+dp? +...

irsa: 08100078 Page 231/262



dP Kk 1
(2m)P [I2(1 + k)2(k + p)?]t—7-/2

IR Power Counting

@ Power counting generalizes to all diagrams

@ Fore=0andn, >0 OR e>0andn, >0
—12 |
D2(p)=c+dp? +...

o But D (p) ~ p21—1+/2)
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Triviality in D > 4
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Trviality in D > 4

Summary
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Triviality
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Triviality in D > 4

= e e e e W L W W W S SR

Summary

@ Consider D = 4 + ¢, 1. non-negative
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S

riviality in D > 4

Summary

@ Consider D = 4 + ¢, 1. non-negative

: : 2
@ For ¢ =0 and 1. > 0, there is no non-zero solution for ﬁ )

Pirsa: 08100078 Page 236/262



Triviality
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Triviality in D > 4

Summary

@ Consider D = 4 + ¢, 1. non-negative

: : 2
@ For €e =0 and 1. > 0, there is no non-zero solution for —f’{* )

@ For € > 0 and 1, > 0, we are forced to take 7, = 0
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Triviality

Triviality in D > 4

@ Consider D = 4 + ¢, 1. non-negative

: . 2
@ For €e = 0 and 7. > 0, there is no non-zero solution for _ﬂ )

@ For € > 0 and 1, > 0, we are forced to take p, = 0
@ Combining these results:

For fixed points with non-negative 7, in D > 4, we must take
|r_'l_'_ — D
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Triviality in D > 4

@ Consider D = 4 + ¢, 1. non-negative

: : 2
@ For e =0 and 1. > 0, there is no non-zero solution for ﬂ )

@ For € > 0 and 1, > 0, we are forced to take 5, = 0
@ Combining these results:

1

fixed : witl -ne ive 772, | > 4y t tal
For fixed points with non-negative in D > 4, we must take
.':-'1r — O

Completing the argument
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Triviality in D > 4

Summary

@ Consider D = 4 + ¢, 1. non-negative

: : 2
@ For €e =0 and 1. > 0, there is no non-zero solution for ﬁr )

@ For € > 0 and 1, > 0, we are forced to take p, = 0

@ Combining these results:

FIx : witl -ne ' . | > 4y t tal
For fixed points with non-negative 7, in D > ve must take
. —1

Completing the argument

@ Pohlmeyer’'s theorem implies that in D =2.3.4.5. . ..

If 7. = O then the associated fixed point must be the
Gaussian one
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Triviality in D > 4

Summary

@ Consider D = 4 + ¢, 1. non-negative

: : 2
@ For e =0 and 7. > 0, there is no non-zero solution for T’{* )

@ For € > 0 and 71, > 0, we are forced to take 17, = 0

@ Combining these results:

For fixed points with non-negative 7, in D > 4, we must take

n. =0

Completing the argument

@ Pohlmeyer's theorem implies thatin D =2.3.4.5.. ..

If 7. = 0 then the associated fixed point must be the
Gaussian one

@ By showing that 7, = 0, triviality in D = 4 follows
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Triviality in D > 4

@ Consider D = 4 + ¢, 1. non-negative

e

-

@ For e =0 and 1. > 0, there is no non-zero solution for
@ For € > 0 and 1, > 0, we are forced to take 7, = 0
@ Combining these results:

For fixed points with non-negative 75, in D > 4, we must take
, — 0

Completing the argument

@ Pohlmeyer’'s theorem implies thatin D =2.3.4.5.. ..

If 7. = 0 then the associated fixed point must be the
Gaussian one

@ By showing that r, = 0, triviality in D = 4 follows
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@ Can be shown directly from the ERG for D =4 and D > 4
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Wegner's Fixed Points
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Wegner's Fixed Points

@ Fixed points with 7, < 0 certainly exist
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Wegner's Fixed Points

@ Fixed points with 7. < 0 certainly exist

@ Wegner found a family with
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Wegner's Fixed Points

@ Fixed points with 7, < 0 certainly exist

@ Wegner found a family with

with . = 2. —4....

@ Upon continuation to Minkowski space, these theories are
non-unitary
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Wegner's Fixed Points

@ Fixed points with 7. < 0 certainly exist

@ Wegner found a family with

With ”*:_ ._4....

@ Upon continuation to Minkowski space, these theories are
non-unitary

@ Aside: in condensed matter physics, they are not important
either
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Non-trivial Fixed Points
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Non-trivial Fixed Points

@ | have not proven that such fixed points do not exist
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Triviality
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Non-trivial Fixed Points

@ | have not proven that such fixed points do not exist

@ | have proven that, if they exist, they correspond to
non-unitary theories
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Conclusion

Pirsa: 08100078 Page 252/262



s Tala]

Conclusion

Scalar field theory in D > 4
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Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with ., > 0
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Conclusion

Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with ., > 0

@ Any fixed points which exist with 7. < 0 are non-unitary
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Conclusion

Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with ., > 0

@ Any fixed points which exist with 7. < 0 are non-unitary

@ T herefore, the only physically acceptable, nonperturbatively
renormalizable theories are trivial
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Conclusion

Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with ., > 0

@ Any fixed points which exist with 7. < 0 are non-unitary

@ Therefore, the only physically acceptable, nonperturbatively
renormalizable theories are trivial

Other Applications

Page 257/262

Pirsa: 08100078



Conclusion

Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with n, > 0

@ Any fixed points which exist with 7. < 0 are non-unitary

@ T herefore, the only physically acceptable, nonperturbatively
renormalizable theories are trivial

Other Applications

@ Pure Abelian gauge theory (non-compact formulation)
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Conclusion

Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with ., > 0

@ Any fixed points which exist with 7. < 0 are non-unitary

@ Therefore, the only physically acceptable, nonperturbatively
renormalizable theories are trivial

Other Applications

@ Pure Abelian gauge theory (non-compact formulation)

@ Theories of a scalar chiral superfield ( “Wess-Zumino model™)
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Scalar field theory in D > 4

@ No non-trivial fixed points exist (with a quasi-local action)
with ., > 0
@ Any fixed points which exist with 7. < 0 are non-unitary

@ Therefore, the only physically acceptable, nonperturbatively
renormalizable theories are trivial

Other Applications

@ Pure Abelian gauge theory (non-compact formulation)

@ Theories of a scalar chiral superfield ( “Wess-Zumino model” )
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Triviality

Wegner's Fixed Points

@ Fixed points with 7, < 0 certainly exist

@ Wegner found a family with

wthng ——2 —4,...

@ Upon continuation to Minkowski space, these theories are
non-unitary

@ Aside: in condensed matter physics, they are not important
either
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