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Abstract: As ameans of exactly derandomizing certain quantum information processing tasks, unitary designs have become an important concept in
guantum information theory. A unitary design is a collection of unitary matrices that approximates the entire unitary group, much like a spherical
design approximates the entire unit sphere. We use irreducible representations of the unitary group to find a general lower bound on the size of a
unitary t-design in U(d), for any d and t. The tightness of these bounds is then considered, where specific unitary 2-designs are introduced that are
analogous to SIC-POVMs and complete sets of MUBSs in the complex projective case. Additionally, we catalogue the known constructions of
unitary t-designs and give an upper bound on the size of the smallest weighted unitary t-design in U(d). This is joint work with Aidan Roy
(Cagary): 'Unitary designs and codes,\" arXiv:0809.3813.
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Unitary designs

e [he literature is so small we can list all the papers:
Dankert. MSc thesis (2005). [arXiv:quant-ph/0512217]

Dankert, Cleve, Emerson and Livine. Exact and approximate unitary 2-designs:
Constructions and applications. [arXiv:quant-ph/0606161]

Gross, Audenaert and Eisert. Evenly distributed unitaries: On the structure of
unitary designs. J Math Phys 48, 052104 (2007). [arXiv:quant-ph/0611002]

AJS. Optimizing quantum process tomography with unitary 2-designs. J Phys A
41, 055308 (2008). [arXiv:0711.1017]

Harrow and Low. Random quantum circuits are approximate 2-designs. [arXiv:
0802.1919]

Roy and AJS. Unitary designs and codes. [arXiv:0809.3813]
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Unitary designs

e Unitary designs are like spherical designs, except that members of the design are

elements of the unitary group U(d) rather than points on the sphere S9!

Let X C U(d) be finite. Then X is called a unitary 7-design if

1 . =
=== e T T :/ Ut @ Ut dU
X 2 U(d) |

e I — unit Haar measure.

e RHS can be evaluated explicitly in terms of the so-called Weingarten function
(see papers of Collins and Sniady for details); but this is complicated!

e [7 and e'?U/ are effectively the same point, ie. the current type of unitary design
might be better defined as a subset of PU(d); but we will follow tradition.
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Unitary designs

Let Hom(r, s) = Hom(U(d). r, s) denote the polynomials that are homogeneous
of degree r in the matrix entries of I/ and homogeneous of degree s in the
entries of [/.

Eg. f(U) = U11Uz3Us3 + 2(Uz2)?Us; < Hom (2, 1)

The traditional definition: X is a #-design if, for every f = Hom(7,7),

(U)dU
}(| Zf ﬁnmﬁ J

(former definition is just a compact way of expressing this in terms of monomials)

Note that if (tr(U'U)/d)f < Hom(t.t) then f € Hom(t —1,t —1).
And since tr(U'U)/d =1 on U(d),

Every 7-design is a (f — 1)-design
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Unitary designs

e Unitary designs are like spherical designs, except that members of the design are
elements of the unitary group U(d) rather than points on the sphere 59— !:

Let X C U(d) be finite. Then X is called a unitary 7-design if

1 — e e
e U @ U®* = [ Ut @ U2t dU

e I — unit Haar measure.

e RHS can be evaluated explicitly in terms of the so-called Weingarten function
(see papers of Collins and Sniady for details); but this is complicated!

e [ and €'?U are effectively the same point, ie. the current type of unitary design
might be better defined as a subset of PU(d); but we will follow tradition.
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Unitary designs

Let Hom(r, s) = Hom(U(d). r, s) denote the polynomials that are homogeneous
of degree r in the matrix entries of I and homogeneous of degree s in the
entries of [/,

Eg. f(U) = U11U33Uz3 + 2(U22)°Us; € Hom(2,1)

The traditional definition: X is a t-design if, for every f = Hom(?,7),

1
FU) :f F(U) AU
|"Y|E;' -E_T{d'!

(former definition is just a compact way of expressing this in terms of monomials)

Note that if (tr(U'U)/d)f <€ Hom(t.t) then f € Hom(t — 1,z —1).
And since tr( UTU)/d =1 on U(d),

Every t-design is a (t — 1)-design
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Unitary designs

e As 7 is increased, functions with an increasingly finer sieve (higher nonlinearity)
cannot distinguish unitaries drawn from X', from those drawn from U(d).

e Weighted unitary designs (ie. cubature formulas for U(d)) are a generalisation:

Let X  U(d) be finite and let w : X — R be a positive normalized weight
function. Then (X, w) is called a weighted unitary 7-design if

Z w(U) U @ U2t = / U*U® dU
uex e

e w > () so that it can be interpreted as a probability density on X.

X

e Every t-design is a weighted t-design with weight function w(U7) := 1/

risa: osmooortVe ighted 7-designs are generally much easier to find! Page 8137



Unitary designs

e T[esting whether a weighted set (X, w) forms a t-design can be difficult without
the following third characterization in terms of the inner product values:

Theorem

>

UveX

For any finite X C

U(d) and positive normalized weight function w on X,

(U

Jw(V')

with equality if and only if (X.w) is a weighted 7-design.

‘tlrf V) } _/ lte(T) [ AU
U(d)

e RHS can be evaluated explicitly: it is the number of permutations of (1..... t)
that have no increasing subsequence of length greater than d,

/ tr(U)[** dU =
U(d)

Pirsa: 08100071
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d =t —1, Diaconis and Shahshahani (1994)
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Unitary designs

e This theorem is analogous to one by Welch (1974) for complex vectors, and has
a simple proof:

Proof of Theorem:

Consider D := Z w(U) U @ U** —f Ut @ UP*dU . Then
U(d)

UeX

tr(D'D) = w(U)w(V) |t.1-(E-"TL=*)|2t_2 Z w(V) [txr(TTV \ dU
Uvex Uld) vcx

- f / [te(UTV)|* avav
U{d)

= Y wU)w it1{€'1]| / tr(U) | dU
U(d)

uveX

But tr( DT D) > 0 with equality if and only if D = 0, ie. (X, w) is a t-design.
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Why designs?

e Randomness is expensive. It is hard to fake classically and costly to share secretly.
At any point where we can reduce the randomness required for a task, we should.

e Designs allow U(d) to be replaced by a small set X, reducing the required
number of random bits to log | X |:

1-designs depolarize: } ;;_ w(U)Up Ul = fU{ »Up UtdU = I/d

2-designs twirl: >, w(U) UTE(UpUNU = J[ EWUpUNU AU

e [he hope is also that members of X will be easier to implement on a quantum
computer than arbitrary unitaries, which require exponentially many gates.

e In the context of state estimation, for example, designs reduce the optimal
covariant measurement to a simpler one:

C? t-designs realize optimal measurements for the Massar-Popescu state esti-
mation problem [Hayashi et al (2005)]

C*/U(d) 2-designs realize optimal measurements for state/process tomography
sz 0s1000fA JS (2006,2008), Roy and AJS (2007)] Page 11/37



How big does X' need to be?
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Outline

1. Unitary designs.
1.5. Primer: Complex projective designs.

2. Lower bounds.

3. Tight designs?

— SIC-POVMs for maximally entangled states?
— MUU(nitary )Bs?

4. Upper bounds.

5. Constructions.
— Designs from unitary representations of finite groups.

— U(2) designs — PR* designs.
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Primer: Complex projective designs

(Standard methods dating to Delsarte, Goethels and Seidel (1977), then genera-
lised by Neumaier (1981), Godsil (1986), and Levenshtein (1998), then debased

by me to make them understandable)

e A weighted complex projective t-design (X, w), X < C9, satisfies

E w(v)v 9t @ TP — v®* @ T dv
E:f

veEX
= .f = _.f = - _| _
or, reshaping the vector v * = 7 " into an outer product, for any r + s =7,
E w(v) |E " @ o) (v R A »| = |F_' T R Fr"s:._ .::l,.-lr‘ DT :si dov
cd
ve X c
e [he span of the vectors v " = 7 ¢ is therefore independent of whether v is

drawn from X or C7: it is the support of the above positive operator.

— | |X| must be bigger than the dimension of this support
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Primer: Complex projective designs

e The dimension of span{v~” © 7%} _ca is known in terms of its dual space,
Hom(C*, r. s), the space of polynomials that are homogeneous of degree r in
the matrix entries of v and homogeneous of degree s in the entries of 7

For any weighted t-design (X.w), and r + 5 =1,

ok d+r—1\[/d+s—1
| X| > dim(Hom(C¥%, r, s)) = ( i ) ( )

r s

The optimal choices, » = [7/2] and s = |t/2], recover the standard bound.

e An upper bound follows from convexity arguments (folklore?):

There is a weighted #-design (X, w) with

g W\
1 X| < dim(Hom(C%t.t)) = ({ +r )

@ Fo there is a weighted 2-design with d* < |X| < d*(d + 1)%/4.

Page 15/37



Lower bounds

e Use the same tricks: A weighted unitary t-design ( X, w) satisfies, for r +s =1,

Z w(U) U @ USH){U" @ U?| :/ U™ @ UR*WU®" @ U®°|dU =: B
UcX U(d)

where |A) = Vec(A) and (A| = Vec(A)T so that (A|B) :=tr(A'B).

T herefore,

| X| > rank(B) = dim(span{U”" @ U™ }ycuey) = dim(Hom(U(d),r, s))

e An easy rough bound: Let 6,.....5,, > 0 be the nonzero eigenvalues of 5.
B
dU - .j
T 33) 1 B )~ P
e W = DY cecki
n n n n Z (r ; ) n?
d2t
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Lower bounds

e A better bound from representation theory: Let /¥ take the U(d)-representation
U“" = U to its irreducible decomposition:

R(U*T @ U**)R" = P pu(U) @ I,
L

where each irrep p, : U(d) — U(V,) has dimension dimV,, = d,, and occurs
with multiplicity m,,. Now define R by the action R|A) = |RARF> and consider

/ }@pp I,?H,><€B;Jy ) ® L, | dU

o let E; — "o «:fej_,-‘| be the matrix component basis for End(V),), then by Schur
orthogonality of the matrix components of irreps,

. » . , " e - _ . 0,,0: 10 ;
/ £ |;} () (p, (U)|EY) AU = /':.E'ﬂﬁp(["HE?} (exlpn(U)ley) dU = —+£ ; it
d,
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Lower bounds

- - 7 " d L
This means /’|p 1 pp(U)|dU = ;; Z |E:;Ef; == {;# Id;}

where L2 is the df X df identity on End(V),).

e [he result is RBR' = EB =@ [ s,

from which we can read off the rank:

} rank(B) = > d,

e (Another formula also: [ |tr( (U AU = Tr(B?) = Tr((R ) =2, My )

e But how does /" = /¢ decompose? Luckily, this has already been worked out
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Lower bounds

e The irreps of U(d) are labeled by nonincreasing integer partitions of length d:

o= (1, --.,H1d), Hi = i1, p; € Z

e The dimension of the irrep (p,. V), ) is

e— B 03— ) .
d, —dmV, — H 2 g“? +.J (Weyl's dimension formula)

— 1
1<i<j<d J

e Let i1, be the subsequence of ;i of positive integers. Let || = > . u;.

eg. upu=(1,1,0,—1,-2), | = —1, e — (0 1), gy | =2

e Theorem [Stembridge (1987,1989), Benkart et al (1994)]: The irreducible repre-

sentations that occur in /™" = [V % are precisely those with

| =r — s and py| <r
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Lower bounds

e And finally, our lower bound:

Theorem

Let (X, w) be a weighted t-design for U(d). Then for any r + s =1,

2

|IX| > dim(Hom(U(d),r,s)) = Z d,>

lgsj=r—s=
|l |<r

where the sum is over nonincreasing, length-d integer sequences 1, and

i — s+ —12
G [ "t

—
1<i<j<d J
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Lower bounds

e [he best bounds come from the choices r = [/2] and s = [t/2]:

| X| > dim(Hom([t/2], [¢/2])) = X ,.d,.°

which, for small 7, are

t=1 Xl >d
t =2 X| > d*—2d*+2. - originally due to Gross, Audenaert, Eisert (200
E—3 X| >d(d"— 34> 1 6)/2,
615 d—2
pq= X4 ‘

2835, &
d2(d® — 8d® + 47d* — 8842 + 84)/12, d > 4

{ 5 d >
{56. d—

Pirsa: 08100071 Page 21/37



Lower bounds

e Another rough bound comes from the choices » = and s = (:

| X| > dim(Hom(U(d),%,0))

= dim( Hum(Cdz. t.0))

= & +1t—1
h t

from which the asymptotics easily follow:

| X| = Q(d*) for fixed ¢
X[ = QYY) for fixed d

(constructions meeting the second are known for U(2))

Pirsa: 08100071
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Tight designs?

e Are these lower bounds achievable? A design that meets a bound is called tight:

| X| = dim(Hom([t/2], [t/2])) =3 ,d,.°

e [hese are interesting because considerable structure is then enforced:
Let {|err) }rr=x be an orthonormal basis for C!**l and construct another:
#m_E: fwo(T) FH
| g \/“(E) ;_J |"LE
Ucx

where the polynomials j“ ) —f et |puT |Ejf form an orthonormal basis
for Hom([t/2], [t/2]), by Schur orthogonality. Thus {Hw} is an orthonormal

basis for CI-*!-

el = Y w@)EO) f[U) = f FEU) fa(U)AU = 6,065
U(d)

UeX

Pirsa: 08100071
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Tight designs?

e Now since {|j:}» is an orthonormal basis for C!-*!: Z US ”j | =T
b1
Or  duv =(evlev) =Y (evlf){fhlev)
2,744
= /w(U)w(V Zf (I AV
0.5
— Vo) w(V) Y du(€]pu(0)e) (], (V)]e")
i.j.p

= Vw(U)w(

— \/ w(U )w(

V) Z dytr|pu (b‘*)i—p“(ls’ )|
p

V) dutr[p.(UTV)
[

= Vw(U)w

V) ) duxu(U'V
L

where the characters \,, := trp, are known in terms of Schur polynomials.

Pirsa: 08100071
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Tight designs?

e Choosing U = V' we obtain 1 = w(U) Z d.xu(l) =w(U) Z {1’“2 =w(U)|X]|.
H &

ie. tight designs are necessarily unweighted: will) = 1/|X]

e [he other tightness conditions are: ‘ Z dx,(UV)=0, U#VeX
IT:

e [hese are in fact both necessary and sufficient conditions for any (X.w) to be
a t-design when | X| = Z‘udf.

e [ight 1-designs: The sum contains only the standard irrep 1 = (1.0.....0),

du:_l.l}.....m.\:1.0...,.03({’TTIT] —d tl‘{‘I.'T:'_ETT} - U -EV X

ie. tight 1-designs are unitary operator bases (and thus exist in every dimension).
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Tight designs?

e Tight 2-designs: The sum contains two irreps,

{ﬂﬂ“”ﬂ]\dl”Jﬂ{{f?Ir) + duLu_”u—¢|liLu“"n,—u{{rTL'}

— 1-1

ie. tight 2-designs are equiangular:

+ (@-1)-(|e@V)[ =1)

‘tr{[rfl'}

>

s

1

d?2 —1’

ULV e

X

e [ight unitary 2-designs, if they were to exist, would define “SIC-POVMs" that
are informationally complete on the (operator) subspace defined by taking convex
combinations of maximally entangled (mixed) states. Such POVMs would be
optimal for ancilla-assisted process tomography of unital channels [AJS (2008)].

e But it is proven that they do not exist for U(2), ie.

X

>d* 2"+ 210 fon
1 = 2, and computer searches suggest that they do not exist in general.

e Tight t-designs: ... complicated, but we think they don’t exist for > 1 anyway.

Pirsa: 08100071




Tight designs?

e |If we cannot achieve |X| = Zpdp_z, can we at least find a construction with
| X| = O(d*"), thus implying our bounds are asymptotically optimal.

e Asymptotically tight 2-designs:

So far, the most efficient construction of a unitary 2-design that we know of is
the projective Clifford group: | X| = |F5 x Sp(2.d)| = d°> — d° (d = p™).

But the bound is a factor of d lower: | X| > d* — 2d* + 2]

e Open problem: Find a family of unitary 2-designs with | X| = O(d*%).

e In the C? case the lower bound | X| > d” is saturated asymptotically by complete
sets of MUBs: | X| =d? + d (d = p").

e Do there exist complete sets of mutually unbiased unitary bases (MUUBs)?

—

Two bases {U;.} and {V}.} are mutually unbiased if |tr{_E-‘f1"}\.)| =1 for all j, k.
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Tight designs?

e [ight 2-designs: The sum contains two irreps,

f“; mw& .. |J|{{-TITI'F) _|_

— 1-1 4

ie. tight 2-designs are equiangular:

e Tight unitary 2-designs, if they were to exist, would define “SIC-POVMSs" that

du 1.0,....0,—1) ‘1'1 ... .06 —11

(d® —1) |n{1

: [TT 1,*)

i1

tr(UTV)|* =1 —

1

d?2 —1’

ULV c

X

are informationally complete on the (operator) subspace defined by taking convex
combinations of maximally entangled (mixed) states. Such POVMs would be
optimal for ancilla-assisted process tomography of unital channels [AJS (2008)].

e But it is proven that they do not exist for U(2), ie

— 2, and computer searches suggest that they do not exist in general.

Pirsa: 08100071
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Tight designs?

e |f we cannot achieve | X| = Zpdf, can we at least find a construction with
| X| = O(d**), thus implying our bounds are asymptotically optimal.

e Asymptotically tight 2-designs:

So far, the most efficient construction of a unitary 2-design that we know of is
the projective Clifford group: | X | = |F5 x Sp(2.d)| = d°> — d° (d = p™).

But the bound is a factor of d lower: | X| > d* — 2d* + 2]

e Open problem: Find a family of unitary 2-designs with | X| = O(d*%).

e In the C? case the lower bound | X| > d” is saturated asymptotically by complete
sets of MUBs: | X| =d? + d (d = p").

e Do there exist complete sets of mutually unbiased unitary bases (MUUBs)?

Two bases {U;.} and {V}.} are mutually unbiased if itr{ﬂfl'},j| — 1 for all j, k.
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Tight designs?

e There can be at most @° — 1 pairwise mutually unbiased bases in U(d):

Define the embedding 7 : U(d) — R4 —1)" by

=1
WU) = [UNU]| —I/d® = Y re)j®A, reRE Y
jk=1
where |U) (= (I 2 U ) 2 |k) and {AL} is a basis for traceless Hermitians.
A basis {UU.} then spec:ﬁes_ the_ vertices of a regular simplex in the (d% — 1)-
dimensional subspace of R(“"—1)" spanned:
d? < & . o 1 [ V=
tr[ U ) (UR)] = ——— (U | U} |* — — |
dz — 1 r| ( j) ( R)] dz_l|‘~_ J / d2 — 1 {lf((fgl) j:fx

Mutually unbiased bases, {[7;.} and {1} }, correspond to orthogonal subspaces:

te[(U;)9(Ve)] = {U;|Va) |2 — 1/d® = | tr(U;' V) |2 /d* —1/d% =0,

s 001003 which, there can be at most (dim R —17) /(d2 — 1) = d2 — 1 manye®



Tight designs?

e The union of @ — 1 MUUBs is an unweighted 2-design (of size | X| = d* — d?).
Use the inner-product test:

UveX

4 1 pa vy ok
_{ﬁuﬁ-—lﬁ[“f 1)d? - d* -

uF—lmF—fm#1]:9

o -

[-";V U.V from c-i\ﬁferent bases

e [hese are the unique minimal 2-designs that consist entirely of unitary bases:

Theorem: Suppose X C U(d) is the union of a family of m unitary operator
bases. If (X, w) is a weighted 2-design, where w is constant across members
of the same basis, then m > d? — 1 with equality only if X is the union of a
complete set of MUUBs and w(l7) = 1/|X|. [AJS (2008)]

e Do there exist complete sets of MUUBs? Yes! Well... at least in some dimensions:
They are known ford = 2. 3. 5.7, 11 as special subgroups of the projective Clifford
group that were discovered by Chau (2005).

e Open problem: Find more MUUBSs (if they exist).

Pirsa: 08100071 Page 31/37
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Upper bounds

e T[he general theorem of Seymour and Zaslavsky (1984) on averaging sets applies
to unitary designs:

For any ¢ and d, and all large enough n, there exists an unweighted unitary
t-design in U(d) of size | X| = n.

e Relaxing to weighted designs allows us to bound the size of the smallest:

Theorem

For any 7 and d, there exists a weighted 7-design in U(d) of size

X | < dim(Hom(U(d),%,t)) = O(d*)

Pirsa: 08100071 Page 32/37



Upper bounds

e Proof:

Let A := [U®* @ U®*dU. Then [ |U®* @ U%t — A)dU = 0 and thus

0e c-um-'{H_.*”-'f R U®Bt — A) }E‘EU{a‘}
By Carathéodory’s theorem, there exists a finite X — U(d) such that
0c c*um-'{|[7"’53f 2 US*t — A) }Uex
= Fw(U) >0 such that } ,_x w(0)|U®*@ U —A) =0
= (X, w) is a t-design

Again by Carathéodory’s theorem, X' can be chosen with size

1 X| < dimp (spa.nmﬂ[r:: U™ —A) }UEU (d}) il
= dim(Hom(t.t)) — 1+ 1
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Constructions

e Group designs (Gross et al, 2007): Let p be a unitary representation of a finite
group G. Since p(g)'p(h) = p(g—'h) we can test whether the image of p is a
t-design in terms of the character | := tr p alone:

Corollary ( “inner-product test” translated for group designs)

Let G be a finite group and p : G — U(d) a representation with character
. Then X = {p(g): g = G} is a unitary t-design if and only if

2t 21 -
tr( dU.
|G| 2 (9 /f' )

e X is a l-design iff p is irreducible: 3, m;, = M 2. lule = [|te(U))?dAU =

We can therefore restrict to irreducible representations, in which case p(g) x 7
for all g = Z(&), by Schur's lemma, and the size of the design can be reduced

to |G/Z((G)| by ignoring the | Z(G')| different phase factors.

pisa: oflooo¥Ve can now harvest unitary designs from the known character tables . rugesisr



d t lower bound X ] =] H=G/Z(G) G {x no.}
q = q’l = ._q;} +-2 ’13 = {}'3 [E'ﬁ x4 Sp(2. q)
2 | 2 10 12 e e LA, SL(2.3) {4}
z |3 2 24 | F2 xSp(2,2) = Sy GL(2,3) {4}
- & I 56 60 As SL(2.5) {2}
3 | 2 65 72 F3 % Hf, 2°3.13(2) {2}
-3 = 270 360 Ag 3.A6 {8]
4| 3 1712 2 520 A 6.A7 {10]
5 | 2 577 600 F: x Hps 5~1+2.2A4 {9}
& 2 1226 2 520 A; 6.A7 {31)
6 | 3 21 492 40 320 6.L3(4) .21 {49)
¥ | 2 2 305 2 352 Fz x Hp-
g2 3 970 20 160 4 1.13(4) {19}
g | 2 6 401 12 960 S e Hean
10 | 2 9 802 95 040 2.M12 {16}
x| 2 14 401 14 520 Fy, » Hfy,
1z | 3 1 462 320 | 448 345 497 600 6.Suz {153}
14 | 2 38 026 87 360 5z(8).3 {4}
18 | 3 16 849 620 50 232 960 3.13 {22}
7 | 2 193 601 9 196 830 720 3.U6(2) {47}
2% | 2 455 626 17 971 200 2F4(2) ' {2}
28 | 2 613 090 | 145 926 144 000 2.Ru {37}
35 | 2 4096 577 10 200 960 M23 {3}
342 | 2 | 13680343 370 | 460 815 505 920 3.0N {31}
1333 | 2 | 3.357. x 10" | 8.677.. x 16'” J4 {2}
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Constructions

e UU(2) t-designs: These are equivalent to PR* ¢-designs through the isomorphism

e'?U = f’qu -+ 94 T‘l*‘( - = f‘g}r -5 ?‘;32}. (Yo, T1.72,T3) € R*

e From the known constructions of real projective designs:

t standard lower bound known better bound construction
1 4 = 4
7. 10 11 Xk
3 20 21 23
4 35 37 43
5 56 60 60
6 g4 89

y 120 134 264
8 165 180

9 220 250 360
10 286 318

e [he optimal U(2) 2-design is necessarily weighted.

e Shamisiev (2006) has constructions with | X | = O(t?) for all £, which is optimal.
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Conclusions and open questions

e Unitary designs are new and there is still much to be discovered.

e [ he lower bound method of Delsarte, Goethels and Seidel has now been extended
to this case:

A. Roy and A. J. Scott, Unitary designs and codes, arXiv:0809.3813.
e But efficient constructions of unitary designs remain elusive.
e Have all examples of complete sets of MUUBs already been discovered?

e |s there a family of unitary 2-designs with sizes | X | = O(d*)?
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