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Abstract: The standard Hamiltonian formulation of (first order) gravity breaks manifest covariance both in its retention of the Lorentz group as a
local gauge group and in its discrepant treatment of spacelike and timelike diffeomorphisms. Here we promote more covariant aternatives for
canonical quantum gravity that address each of these problems, and discuss the implications for both the classical and the quantum theory of gravity.
By retaining the full local Lorentz group, one gains significant insight into the geometric and algebraic properties of the Hamiltonian dynamics. As
an example, we discuss the possibility of computing the internal spin angular momentum of asymptotically flat spacetimes, which may lead to
insight into the nature of spin in quantum gravity. By treating the spacelike and timelike diffeomorphisms on equal footing, using techniques from
geometric quantization we find a new representation of the quantum constraints where the total Hamiltonian is kinematical in the same vein as the
Gauss and diffeomorphism constraints. Finally, we discuss the possibility of a manifestly 4-dimensional symplectic form on the Lagrangian phase
Space.
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Covarniance and General Relativity

*The 3+1, canonical, Hamiltonian analysis of general
relativity breaks explicit covariance in two ways

* Global Covariance: General covariance broken by splitting
spacetime into space and time and treating two parts on
unequal footing

-Local Covariance: Local Lorentz group (in Einstein-Cartan
gravity) is broken to subgroup of rotations

-Classically this is usually not a problem
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*Global Covariance not manifest but regained when E-C
equations solved

-Local covariance doesn’t usually play a significant role in
classical theory

Page 2/56



Covaniance and General Relativity

*The 3+1, canonical, Hamiltonian analysis of general
relativity breaks explicit covariance in two ways

* Global Covariance: General covariance broken by splitting
spacetime into space and time and treating two parts on
unequal footing

-Local Covariance: Local Lorentz group (in Einstein-Cartan
gravity) is broken to subgroup of rotations

-Classically this is usually not a problem

irsa: 08100051

*Global Covariance not manifest but regained when E-C
equations solved

-Local covariance doesn’t usually play a significant role in
classical theory

Page 3/56



Quantum Problems

Local gauge group plays major role in quantum theory
*In LQG local Spin(3,1) broken to SU(2)
*Discrete areas and volumes are representations of SU(2)

Some indication that discreteness may not hold in
covariant treatment
-Discreteness related to compactness of gauge group
*Not true in covariant treatment of 2+1 gravity
*Does not appear to hold in covariant 3+1 LQG
Known only at kinematical level, dynamics not understood

*Splitting of spacetime manifest in problem of time
In QM constraint and gauge orbit factoring occur in one
step: “frozen time”
Hamiltonian constraint implements dynamics and
invariance under timelike diffeomorphisms
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The Approach

Faced with problems of time and local covariance one
can take different routes
- Take problem at face value and explore consequences
Guess we are doing something wrong or missing
something

We want to adopt radically conservative view
*Retain as much of canonical theory as possible (symplectic
form, constraints, commutator)
*Re-work theory to address these issues

Do canonical analysis but focus on Lagrangian phase
space with Hamiltonian phase space as submanifold

*Problem of covariance has consequences for both
classical and quantum gravity
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A Simple Example

«Start with simple non-relativistic single particle action:

=T
= / (smzxr-xr—V(x))dt
. 3G

*Arbitrary variation splits into bulk and boundary piece
0S5 = mz-0r| — / mr +VV)-dxdt.

v v

¥ | 6
*Think of § as exterior derivative on phase space

J :Symplectic one-form 0 :Lagrangian one-form

2= —-90J =0z A d(mx) :Symplectic form

r
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...A Simple Example

Focus on the Lagrangian one-form:

=0 — mi=-VV BukEOM

-Exterior derivative also gives symplectic form:
005 =0J +00=0— $0=-6J=0

Consider the time translation vector field:
5 (1) = / — (mx+VV) - xdt

o .
= s ¥ ==
O = = — (émr: -+ V('-r)) = —H

Hamilton’s equations impose that the Lagrangian one-
form is time independent:

L;0=(60)(t) +0(6(t)) =0 — Q(t, ) =0H
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Apply to Ditt-invariant field theory

*Wish to apply method to generally covariant field theories
*ldeas apply readily
*Apply to Einstein-Cartan gravity

Full manifold is m~
Embed three manifold: ¥ - M~
-Dynamical arena is three o M-
manifold and everything in \ N\
past of three manifold: ov = £ \

B Se=a G oy - r_:_lf
F_ .

M
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General Relatvity (Einstein-Cartan)

-Dynamical vanables:

-Spin(3,1) connection coefficients: = = ;v vy =7/
*Tetrad, Frame Field, veirbein: e = i~y gl
-Einstein-Cartan Action: )
S = [J x€ € R * = —IY5 internal dual
*Bulk equations of motion: |
oy D (xEE) = .~ (Vanishing torsion)
0c: xR —xR_==0 | (Einstein equations)

Boundary variables

g =g & W =0 o
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[Lagrangian and Symplectic forms
-Symplectlc: two-form:

o g / b A B(ee) Degenerate!

-Lagrangian one-form

9:/ B e o i e BB
M

-Define Noether vector: 6(W) boundary functional
*Three relevant Noether vectors:

€] 5 A< spin(3.1)

= - e 2 .
L g+ Lye 5 N :spacelike (tangent to boundary)

f:/ Lim 2 + Lie " { :timelike 4-vector
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Constraints
*Noether vectors define constraints if symmetry is to hold

*Gauge (Gauss) Constraint:

Co(A) = —0(A) = / —DyA xee

v

«3-diffeomorphism constraint
CD(;J) = —B(N) = /L{_(D *x €€

*Time translation, Hamiltonian constraint

Cros(t. 1) = —0(F) = C(t) +Co(A)
ror (1. 1) B =Cal)+CcM) 5 e

Cylt) = / —x t.e|Rg rze(f“_):%‘*{;r"
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Hamilton’s equations for EC-gravity
*As before guess the form of Hamilton's equations to be:
L 0=0 — 22, ) = 0C;:(E A)

Exterior derivative is on full Lagrangian phase space:
Q. ) :SC;-,_,IZ}-.I 5+ Chl 8!)——C(;':8;'L}

*|/dentifying Components:
HAM1: Crur{}‘--” :CH{_I.:]"'_C(;[L}\.} —=f)
HAM2: 0T, )= 6Ceilt:N)|; 5

*Since symplectic form is degenerate HAMZ2 also
constrains phase space:
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Constrained phase space

*Spacelike embedding

induces projection of . My
Lagrangian to Hamiltonian :

phase space

Physical submanifold is intersection of two submanifolds
-Submanifold where HAM1 holds: [,
Submanifold where HAMZ2 holds: 1;
*Physical submanifold T, =1, ~ T},
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Equivalence with Einstein equations

‘HAM1 gives spatial components of Einstein-equations:
Cy(0t) =C5(0A) =0
O (Dgx€€e) =0
G (*Rg€ —€ xRg) =0

‘HAMZ2 gives time components of Einstein-equations:
L1, ) = 0 A72) s
G (i7(Dg*€€)) =0
6" (i;(*xRg€ — € xRg)) =0
*Together this is the full set of Einstein equations on
spacelike hypersurface

Pirsa: 08100051 Page 14/56



Constraint Mweb ra

-Let f; and t; be two different choices for time evolution
vector field:

t1,2 = [M L of 5o + L5 500 Ciot(t1.2. A1.2) = —0(1,2)
-Considef the commutator:
[t1,t2] = /Ir Cines+Lin®
-Define a tﬁéfa-bracket:
{Ciot(t1, A1), Crot(ta. A2)}o = —0([t1,t2])
*Relation with Poisson bracket:

‘1'1. “1r|.1_].' ‘11: b J -_)
{C tot * C tot }9 - {C tot ° o tot }Puiamn o *'t_gﬁflg — Lg) Et_-__)g
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Local Covariance

(Retention of local Lorentz Group)
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Relaton with (A)dS algebra
*The theta bracket is closed, for GR it gives:

*Only Hamiltonian constraint is changed
Explicit computation of constraint algebra yields:

{C{_}[}\,l | = C(}‘(}L:)} = C¢l }L]:’Lj )
{C(,[;'L) . CH{I}} — CH{ }t.f )

[y . - = +
{Cu(t)).Cu(r)} = —3Cq([1-1]) —Co(C([f1.52]))

Weyl tensor

-Constraint algebra is deformation of de Sitter, anti-de
Sitter, or Poincare algebra depending on sign of c.c.
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Asymptotically flat spacetimes
*Restrict configurations to asymptotically flat or (A)dS

spacetimes
Boundary term must be added to action

I
5:—/ t:“f’}?.:—%ff}——/ X EETT
k Jar k Jon

-Each constraint picks up boundary term
*Total Hamiltonian becomes true Hamiltonian

L . W |
H(t) = /?—w_r.f__:;ﬁ; ~ Jee)+; /W*_f_f_,.-

. & I &
C: A) = — A D AEEY === * A € E
k /\ A k ./d}_: f

*On constraint manifold, boundary term is ADM energy-

momentum 1 -
pl.— = Ej.m';_ el LKL
ik Jox
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Spin angular momentum operator

‘What happens when a spinor falls into a blackhole?

Where does the (intermal) spin go?
«Can the spin be encoded in the gravitational field alone?

-Boundary term of Gauss constraint, interpreted as spin
generator FYTIIE " AR

gl = — e’ pr e’ er

1k JoX

*On constraint subspace, algebra of boundary terms is
precisely (A)dS/Poincare algebra

{o.0} ~ 0
{oc.P} ~ P
{P, P} ~ %r:r
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Spin Invariant

-Poincare algebra has two Casimirs:

ADM Mass Quartic Casimir (spin invariant)
C, = PP ~ M? Co=WW!I~ M25(s+ 1)
Wi = geraxr P g1 =580+l
*Only spin angular momentum contributes to invariant
Cy, =C "5, 77 =LipymLipyny o

[ = [
Jr = G — P PulP: P
«Gives zero for Schwarzschild and Kerr

*Works because torsion couples to axial current of spinor

*Covariance necessary since momentum is not fixed
*Gauge fixing kills physical degrees of freedom!
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Spin angular momentum operator

What happens when a spinor falls into a blackhole?

Where does the (intemal) spin go?
«Can the spin be encoded in the gravitational field alone?

Boundary term of Gauss constraint, interpreted as spin
generator RIS [ LR K I
oL

F = e €  “gf S
lﬁ‘ . i.-'.x

*On constraint subspace, algebra of boundary terms is
precisely (A)dS/Poincare algebra
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Asymptotically flat spacetimes
*Restrict configurations to asymptotically flat or (A)dS

spacetimes
Boundary term must be added to action

1 ¥ 1
5:—/ * :T-._R-:—%:”:T:——/ *
K Jas K Jam

-Each constraint picks up boundary term
*Total Hamiltonian becomes true Hamiltonian

I 1y

—_—
S

(n

L f o 1 |
HT] =i— / — % t.e| (R, — '.}f,f.'-- - / *x(t.e|w
r{1. Jx L ] ; :11 Jas L ]
1 & 1
:- r’\ — ‘I,\ A F E ] - — - !\ F F
‘ k /; Sulee] k ./;41: a
*On constraint manifold, boundary term is ADM energy-
1 ,
momentum pl o s il BT

= 3% L
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Spin angular momentum operator

What happens when a spinor falls into a blackhole?

Where does the (intemal) spin go?
«Can the spin be encoded in the gravitational field alone?

Boundary term of Gauss constraint, interpreted as spin
generator YIS Y L

o) = £ h’j_f‘-hFL

Ik [y

*On constraint subspace, algebra of boundary terms is
precisely (A)dS/Poincare algebra

{o.0} ~ 0o
{oc.P} ~ P
P, P} ~ %rr
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Spin Invariant

*Poincare algebra has two Casimirs:

ADM Mass Quartic Casimir (spin invariant)
C, = PP ~ M? Co=WiW! ~ M25(s+1)
W = %FI.IE\'I_-IJHPL JT = g O
*Only spin angular momentum contributes to invariant
C, = C,5175, ¢ =LipymLtipyn o7

! 3 | [
Lt 8 — PP/ P P
Gives zero for Schwarzschild and Kerr

*Works because torsion couples to axial current of spinor

*Covariance necessary since momentum is not fixed
*Gauge fixing kills physical degrees of freedom!
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Spin angular momentum operator

‘What happens when a spinor falls into a blackhole?
Where does the (intemal) spin go?
«Can the spin be encoded in the gravitational field alone?

*Boundary term of Gauss constraint, interpreted as spin
generator s L[

K A
!r'T — e
1}' J oY

€ " KpLe e
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Spin Invariant

-Poincare algebra has two Casimirs:

ADM Mass Quartic Casimir (spin invariant)
C, = PP! ~ M? Co=WW! ~ M?2s(s+ 1)
Wi= getggr " Pr  J =gl vell
*Only spin angular momentum contributes to invariant
C, = C15175, 7 =LipyuLipyn o7

Lt raz= 0% — PP/ P: P

*Gives zero for Schwarzschild and Kerr
*Works because torsion couples to axial current of spinor

*Covariance necessary since momentum is not fixed
*Gauge fixing kills physical degrees of freedom!
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Spin 1in Quantum Theory
*Spin operator generates large gauge transformations:

r ace: IJ 1 .
Gt'\" jo T e} c ggU

-Projection of gauge group induced  Spin(3.1) = SU, p(2)
by (timelike) momentum: fol g(P) =P}

-Compactify hypersurface by including point at infinity:
g . >+ {X} — SETP-(L}}

5 = 5
-Configurations characterized by L
homotopy class of map: m3(97) = 4

*In quantum theory states are eigenvalues of map
suggesting that spin is quantized
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Global Covariance
(Spacelike and Timelike Diffeomorphisms)
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Spin in Quantum Theory

*Spin operator generates large gauge transformations:

r IJ 1 .
et,\ [jo " .e;} = g gU

-Projection of gauge group induced  Spin(3.1) = SU, p(2)

by (timelike) momentum: (| g(P) = P}

Compactify hypersurface by including point at infinity:
g:X+{oc}t — SUp(2)

5 = B8
-Configurations characterized by L
homotopy class of map: m3(97) = 4

*In quantum theory states are eigenvalues of map
suggesting that spin is quantized
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Spin Invariant

*Poincare algebra has two Casimirs:

ADM Mass Quartic Casimir (spin invariant)
C. = PP’ ~ M? Cy = WiWw! ~ M2 s(s + 1)
Wi= gerpmn " P* J =gl il
*Only spin angular momentum contributes to invariant
Cy, =C0"5;; " =LipLipyy o

[ - [ [
Lerin= 9y — PEPylP : P
*Gives zero for Schwarzschild and Kerr

*Works because torsion couples to axial current of spinor

*Covariance necessary since momentum is not fixed
*Gauge fixing kills physical degrees of freedom!
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Spin angular momentum operator

What happens when a spinor falls into a blackhole?
Where does the (intemal) spin go?
«Can the spin be encoded in the gravitational field alone?

*Boundary term of Gauss constraint, interpreted as spin

generator v_ L [ 1 kL

g~ = — Kl E
1}“ : i__.*x

*On constraint subspace, algebra of boundary terms is
precisely (A)dS/Poincare algebra

{o.0} ~ 0
{a, P} = P
{P,P} ~ —;‘rr
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Spin Invariant

-Poincare algebra has two Casimirs:

ADM Mass Quartic Casimir (spin invariant)
C, = PP ~ M? Cy = WiW! ~ M25(s+ 1)
Wi = SerskrdVKPE g1 = i old,
*Only spin angular momentum contributes to invariant
Cy =C 75 ¢ =LipymLtipyy o

| el [
1 ,=6—PP;/P- P

*Gives zero for Schwarzschild and Kerr
*Works because torsion couples to axial current of spinor

«Covariance necessary since momentum is not fixed
*Gauge fixing kills physical degrees of freedom!
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Spin 1in Quantum Theory

*Spin operator generates large gauge transformations:

rj\ Bas IJ‘ 1 -
e\ MI7 % e G/Gg

-Projection of gauge group induced  Spin(3.1) = SU p(2)

f

by (timelike) momentum: tg| g(P) = P}

Compactify hypersurface by including point at infinity:
g:X+{oc} — SUp(2)
B u B°

-Configurations characterized by L
homotopy class of map: m3(97) = 4

*In quantum theory states are eigenvalues of map
suggesting that spin is quantized
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Global Covariance
(Spacelike and Timelike Diffeomorphisms)
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Geometric Quantzation

*Adopt basic idea of geometric quantization

*Focus on, Lagrangian as opposed to symplectic one-form

Wave function will be functional of Lagrangian vanables

*Recall basic idea of geometric quantization:
*Introduce complex line bundle over Hamiltonian phase space
*Pre-quantum wave-function is section of bundle
-Symplectic one-form becomes U(1) connection

Following along these lines
-Introduce complex line bundle over Lagrangian phase space
-Pre-quantum wave function is section of bundle
-Lagrangian one-form becomes U(1) connection
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The pre-quantum theory

-Consider a symplectomorphism generated by X:
0 — 0+ L % §2

LzN=600(X,)=0 — QX,)=6X
-Under same transformation one-forms change by:
J—>J+Lxd=J-éo or 0 —-0+Lg0=0+60
o= (J(X) - X) o' =(0(Y)-Y)

|nterpret this as U(1) transformation of connection
defined as follows:

Dy=0—1J or DQI(S—'—EQ

’DJrDJ:fQ DQIDE}:?‘Q
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Transtormation of wavetunction

*Pre-quantum wavefunction is functional of all phase
variables:

¥ =Vw, e or ¥ = ¥|w, €|

Under the same transformation, wavefunction is
“covariantly Lle-dragged :

l_L"___,.F} = F[(_ﬁ)qj i _f‘ ll,,.: f: s— .frj lIJ ! :_ .
:llf—g(}llf EX\IJ —@—FKJ\I’ [_‘.Yll‘[
E‘L‘—-—JO(X..\)‘I’ E‘I’*?O!\Y.}J‘D

*Pre-quantum operators are Hermitian generators of U(1)
transformation of pre-quantum wavefunction

O)(¥Y.Y)=iigD;—Y Op(X.X) =iigDg—X
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Pre*quanmm Operators

*Pre-quantum operators reflect associated Lie and
Poisson algebras:

:OJ(_?.Y). OJ(FI.Y{’)_ :E)B(_X-X) ! OG(XF-XIJ-

—iO)([Y.¥].{V.Y'}) — iOp([X.X'].{X.X'})
Example: Gauss constraint
i,:.[—pmxsﬁ-m*jx.ejg; ho— [ —Dord~hed
Co(h) = [ Dok vee Co(\) = [ —d(Dgh =e¢)
Jx JM

Os(As.Cq) = iiy,8 Oo(Ae.Cq) = iiz,8
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Transtormation of wavetunction

*Pre-quantum wavefunction is functional of all phase
variables:

¥ = VYw. e or ¥ = ¥(w, ¢
Under the same transformation, wavefunction is
“covariantly Lie-dragged”:

Ulw, e] — W[, €] V[w, €] — € ¥, €]
=0 —ioU+ LU =V — 0¥+ Ly
=¥ +i0(X.X) ¥ =¥ +iO(Y.Y) ¥

*Pre-quantum operators are Hermitian generators of U(1)
transformation of pre-quantum wavefunction

O)(¥Y.Y)=iigD;—Y Oo(X.X) =iigDg—X
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Pre-—quanmm Operators

*Pre-quantum operators reflect associated Lie and
Poisson algebras:

(05(Y.Y). Oy(Y.Y")] (Ge(X,X), Og(X . X")]
= iOy([Y.¥].{r.Y'}) — i0p([X.X'].{X.X"})
Example: Gauss constraint
Aj= | —Dohgy+[helg i.e:‘ ”—Dmaa%—jx.ejg;
Co(A) = | —DpA xee Co(A) = | —d(Dgh x€€)
JE JM

Or(As.Cg) = fqus Os(Xe.CG) = ff;;es
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Kinematcal Operators

*This is example of kinematical constraint (in both reps):
*Pre-quantum constraint implements kinematical

symmetry
OACo)¥Y=iL;¥=0 — ¥ isgauge invariant
-Same is true of diffeomorphism constraint

Kinematical operator before polarizations are kinematical
after quantization

*Kinematical Hilbert space gives generic features of
quantum geometry apart from complicated dynamics

Example: Loop Quantum Gravity
«Kinematical Hilbert space is rigorous and unique
*Discreteness of geometry is new quantum feature
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Total Hamiltonian constraint

*Total Hamiltonian traditionally both implements dynamics
and invariance under timelike diffeomorphisms

*Pre-quantum operator:
i = lLfms%— Lieg
Qi) ) = 8C..,
Os(t5.Cror) = 13,8 —1Cr (1)

v

Not kinematical
(as expected)
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Total Hamiltonian constraint

*Total Hamiltonian traditionally both implements dynamics
and invariance under timelike diffeomorphisms

*Pre-quantum operator:

"W PV T =T (P, -
tj__LL{(DS_UJ__L!ga_E te—._?;}Mer&U LIEBE

Q(EJ’ ) - SC‘“” Q(fﬁa ) = &‘IUI
Os(11.Cor) = ii5,8—3Cu(t) |  Op(fa.Cror) = i izyd

¥ A J

Not kinematical Kinematical!
(as expected) (because C,,, = —0(tg))
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Problem of time

\What happened?
In J-rep all dynamical information that holds for all time is
imposed onto wave functional of one spatial slice
In theta-rep only limited set of information is imposed,

namely boundary information, the bulk carries remaining
dynamical information

Advantage: can separate kinematics from dynamics
-Problem of time is no worse than problem of space (?)
«Kinematical Hilbert space might contain generic properties
of quantum spacetime geometry apart from complicated
dynamics

‘Disadvantage: have to find another way to impose

dynamics
*Will be imposed by conditions on the bulk wave functional

Page 44/56
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Intrinsically 4D Symplectic Formalism

Symplectic form previously defined on full Lagrangian
phase space, but has support only on Hamiltonian phase
space

-Can symplectic form be smoothly extended to Lagrangian
phase space? Possibly.

-Consider the split: By = / e B e
7

9=6_+8.

*Varnation gives exact two-form on M:

56. :—/ b= D_8(= =) z/ i I Bee +/ wlitect A B
J M JaM J M
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4D (pre)-Symplectic form

Define the 4D pre-symplectic form (ignoring boundary):

Q= / *x0(cs) NOR_
M

*Pull-back of (pre)-symplectic form to solution submanifold
IS iIdentically zero

0" =0 QW, )=0 YW eTTY

-Define constraints corresponding to 4-diffs and
Spin(3,1)-gauge t-forms:

¥ Lom— +Lpe . )
/ V== TV 68e 024V, y=aCp(V)
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Gauge algebra
*The constraints vanish on solution to Einstein-equations:

Cis(V) = / Forlenll, —wlt. el = / Loz(Dwxzz) = 0

(--Ttr':rll'ti F— / _,\_f: 1_';?',? o '}?':—_ - / _D',T"\' D*f z *t- ”

-Constraint algebra is a realization of gauge symmetry

algebra {Cc(A1).C(A2)} = Ca([Ar. A2])

{Cp(V).Cg(A)} =Ce(LgA) Lie (SO(3.1) x Dif f4)
{Cp (V7). Cp(Vs Y= D _I_F; . T_'_g_' )

*Pre-quantum operators are kinematical
OlCc(A).A|=—iLy  OCH(V).V]=—iLy

*Problems with model come from degeneracy of pre-
symplectic form
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4D (pre)-Symplectic form

*Define the 4D pre-symplectic form (ignoring boundary):

ﬁ :/ *0(cz) NOR_
M

*Pull-back of (pre)-symplectic form to solution submanifold
IS iIdentically zero

0" =0 QW,)=0 YW 1T

-Define constraints corresponding to 4-diffs and
Spin(3,1)-gauge t-forms:

~—

%4 o B e s i .
.,/_',;le_ E_ 1_'5 !2(1"? ):5(_'“;1'i

X — /" o ;‘: 2 “; Q(X, ) =8Cc(N)
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Gauge algebra
*The constraints vanish on solution to Einstein-equations:

oV :/ CorlenBy — %Rt :/ Lo=(Dxz2) £ 0
/ A. 2| (2 * -:—TR-—:' —_/ —D AD* =z x ()

*Constraint algebra IS a realization of gauge symmetry

algebra {C_r{_ ,\ ) . (( \ } — C,:_ A ;\_1_]

*f( j__]ilt . _{_;: A 1( = (_,‘1.{,1',-\] Lie (S50(3. 1) » Dr"lf'_f;:'
{Cp(V1).Cp(V2)} = Cp([V1. V2))
*Pre-quantum operators are kinematical

*Problems with model come from degeneracy of pre-
symplectic form
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Conclusions

*Alot can be done at a fundamental level to confront
problems of global and local covariance

-Addressing these problems in a satisfactory way will yield
iInsight into both classical and quantum theory

*One does not have to give up canonical theory to
address these issues

*One does not have to throw away time
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Gauge algebra
*The constraints vanish on solution to Einstein-equations:
Cis (7)) = / Coelealy —wllo ) = / Loz=(Dxzz) £ 0

-

Co(A) = /

«Constraint algebra IS a realization of gauge symmetry
algebra

\‘ :_"I?': _'R':f — / _irjl-:)k Dx=:z= x [.J
LI KT
'{C_'{_; )\'_ | . C'.{_; . x\-_‘: } — (__',:_;! _,‘\ I - ,-\:: ]

{Cpl V).Ce(A } = Ce(LyA) Lie(SO(3. 1) % Dif f4)
{Cp(V1).Cp(Va)} = Cp([V1.V3])

*Pre-quantum operators are kinematical

@;C.'G:"\'-; = _'*’-Ej C-T_(_'_'y V ‘} = —!;}:L'r

|
-

*Problems with model come from degeneracy of pre-
symplectic form
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4D (pre)-Symplectic form

Define the 4D pre-symplectic form (ignoring boundary):

ﬁ:/ x0(c2) AR
M

*Pull-back of (pre)-symplectic form to solution submanifold
IS iIdentically zero

0" =0 QW,)=0 YW 1T

-Define constraints corresponding to 4-diffs and
Spin(3,1)-gauge t-forms:

—

1% o B oy g 19 5 ’
../_*.;Li - E _L." _' E Q(V ) p— 5(_'”:_1'5

b= [ -palapal Q(X, ) = 6Cc(A)
Jar o= (13
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Intrinsically 4D Symplectic Formalism

Symplectic form previously defined on full Lagrangian
phase space, but has support only on Hamiltonian phase
space

-Can symplectic form be smoothly extended to Lagrangian
phase space? Possibly.

Consider the split: B, = / B e
%

0=6_+86.

«Varation gives exact two-form on M:

00. = —/ x0w D_0(cc) = / x0w N O(ee) + / x0(zz) N OR~
J M /oM -
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Problem of time

\What happened?
In J-rep all dynamical information that holds for all time is
imposed onto wave functional of one spatial slice
In theta-rep only limited set of information is imposed,

namely boundary information, the bulk carries remaining
dynamical information

-Advantage: can separate kinematics from dynamics
Problem of time is no worse than problem of space (?)
«Kinematical Hilbert space might contain generic properties
of quantum spacetime geometry apart from complicated
dynamics

-Disadvantage: have to find another way to impose

dynamics
*Will be imposed by conditions on the bulk wave functional
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4D (pre)-Symplectic form
*Define the 4D pre-symplectic form (ignoring boundary):

ﬁ :/ *x0(sz) NOR
M

-

Pull-back of (pre)-symplectic form to solution submanifold
IS iIdentically zero

0" =0 QW, )=0 YW eTTY
-Define constraints corresponding to 4-diffs and
Spin(3,1)-gauge t-forms:

vV T g s (o] o )
../_‘.fLi “ 8z TV 8¢ Q(V, ) =0Cp(V)

A= / ~D_\ 6% + (A2l ;_ Q2(A, ) =0Cc(A)
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Intrinsically 4D Symplectic Formalism

Symplectic form previously defined on full Lagrangian
phase space, but has support only on Hamiltonian phase
space

-Can symplectic form be smoothly extended to Lagrangian
phase space? Possibly.

*Consider the spilit: 9 _ / Bl e

- \I
9=6_-8. «.
9:‘:/ 65:5*}?:_"[?:5}
J M

*Vanation gives exact two-form on M:

00_ — —/ x0zw D_0(¢c =) :/ *xOw A dee +/ x0(zz) N R~
Jum JoM i
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