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Abstract: The general boundary state formulation is a key tool for extracting the semiclassical limit of nonpertubative theories of quantum gravity.
In this talk | will discuss how this formalism works in the context of four-dimensional quantum Regge calculus with a general triangulation. A
Gaussian boundary state selects a classical interna solution and peaks the path integral on it. As a result boundary observables, in particular the
two-point function, can be computed order by order in a semiclassical asymptotic expansion. When the same methods are applied to a modified
Regge theory that substitutes the exponentia of the action by its cosine at each simplex in the triangulation, as conjectured from the semiclassical

limit of spin foam models, the contributions from the sign-reversed terms are suppressed and the results match those of conventional Regge
calculus. Thistalk is based on the results published in arXiv:0808.1107 [gr-qc].
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A general question for background-independent approaches to

quantum gravity:

How can a semiclassical limit making connection with

perturbative theory around a background classical spacetime
be recovered?’

A possible answer: General Boundary Formulation (Oeckl, Rovelli)

O(7))g = Z / Dy O(7) ¥,(1 J/ Dg ™!
g L r-}r]'_'-

with boundary state W, peaked on classical 3-geometry ¢.
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In spin foams, this has been used to compute the graviton propagator:

1) == E Oy Oz ¥, [s| Wis|,
l!: 5

Wisi= Y  [[4:B]]AF]]A(F).

F.oF—=s §

Lots of results for Barrett-Crane, and driving force behind new models.
But so far, calculations mostly done with a single simplex.

Does it work for a general tnangulation, with nontrivial
summation over nonperturbative internal variables?

Related question: is the “cosine problem™ of the semiclassical limit of

SFs solved for many simplices as it is for one?
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Use Regge Calculus as testing ground for this question

@, = Zlq /‘H-iLJ- H'”n pll, L;) O W,(L;) exp (;%5{3,3. L;}T)

where S(I,.L;) = =5 _ A,(l,.L;) 0,(l,. L;) is the Regge action for

Riemannian 4d simplicial gravity, O is a boundary geometry

observable, and u(l,,.L;) is a suitable measure.
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Construction of the boundary state

Given a classical solution (I}). L), the associated semiclassical
boundary state is

; 1 <l
V,.(L;) =C exp o a;; (Li — L;) (L; —J:i;-l

:
< eXD ——h‘-ltf_;—ff_'ll
.E II;_—' I [

where a;; has positive-definite real part, and A’} is the extrinsic
boundary curvature of the classical solution:

: as
KY—  ——
2 OL; | L.=L;

i.—1T

W, is a Gaussian peaked both in intrinsic and extrinsic boundary

. . - - . W Fir
geometry, with relative dispersion scaling as *—

L
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Use Regge Calculus as testing ground for this question

]

A, :Z% /H-L[,- [ dln 1ln- Ls) © W, (L;) e:-:p(?ﬁ'[f_.rl,f

n

where S(I,.L;) = =Y _ A,(l..L;)0.(l,. L;) is the Regge action for
Riemannian 4d simpilicial gravity, O is a boundary geometry

observable, and u(l,,. L;) is a suitable measure.
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Construction of the boundary state

Given a classical solution (3. L} ), the associated semiclassical
boundary state is

- ]- . 0 Oy |
W,(L;) =C exp . = a;; (L: — L; ) (L; —L_;-]

X exp —% K; (L;— L)

where a;; has positive-definite real part, and A’} is the extrinsic

boundary curvature of the classical solution:

as

R —
, oL |L
I

W, is a Gaussian peaked both in intrinsic and extrinsic boundary

F =

geometry, with relative dispersion scaling as

M
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Use Regge Calculus as testing ground for this question

where S([,,.L;) = f 2o Aalln. L;i) ©q(l,. L;) is the Regge action for

Riemannian 4d simplicial gravity, O is a boundary geometry

observable, and u(l,,.L;) is a suitable measure.
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Construction of the boundary state

Given a classical solution (I. LY ), the associated semiclassical
boundary state is

: 1 0
Uy(L:) = C exp | —5—aij (Li — L3) (L; — Lj)

X exp —% h::—l {L; — Lrl )

where a;; has positive-definite real part, and A’} is the extrinsic

boundary curvature of the classical solution:

aS

W, is a Gaussian peaked both in intrinsic and extrinsic boundary
i

geometry, with relative dispersion scaling as

(41|
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Semiclassical evaluation of observables

i) — Zi/ deﬁ- dL; u(l,, L;) exp(;—.‘j'ffﬂ.ﬁg]) O(L;)
e .1 =

\ /

1 ] i ) | " -] [I--_
X eXp ——Clull;—f.f][_}:j—l;_] exp —E 1;11.;—):;_]

2hK

We use a stationary phase approximation for integrals of the form
F(A) = [I1,dx* f(x) e 2= with complex Q. The domain is

r = (I, L;) (restricted by i) and the large parameter is A = A~ '. The
expansion formula is:

N

2:‘79 g P anlHGRE)| oy & = A
B — (_\) V]detH,; (z) ARE) (3 aud™ +o(a))

rnn—A})
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We have:

Qs Ta) — Sl By b o (B 18) (B 19— K2 (B: 1)
=h ) )

The expansion coefficients a,, are obtained from ), f and their

derivatives evaluated at the pont rp that simultaneously minimizes

Im|Q)| and extremizes Re|Q|. If there is no such point the integral is

supressed.

Minimum of Im[Q(z)] = L; = L

Extremum of Re[Q(z)] = {

— [,, = [}, , unique solution if no flat patches.
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Semiclassical evaluation of observables

O(L:))y — Z,ij [ dtn dL; pr(Zn, Ls) exp (%5:'3,1.L51) O(L:)

4

I 1 ) LI | I r ! rr_
X exXp —ﬁau[ﬁg—fﬁtﬂj—l;] exp —% ' (L; — L)

We use a stationary phase approximation for integrals of the form
F()) = | [1:d=* f(z) e Q=) with complex Q. The domain is

T = (I,. L;) (restricted by p) and the large parameter is A = A~ '. The
expansion formula is:

3 t;—r'tmI H;;|(x) N

_ 5. 5 T IAO(2 . n :
F(A) = (_\) V |detH;; (T) g (Z“”’\ +o(A \J)

rn—i{})
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We have:

Q(in, Li) = S(ln, Li) + 5—aij (L — L?) (L; — L%) — K? (L; — L?)
b ' )

The expansion coefficients a,, are obtained from ), f and their

derivatives evaluated at the pont rg that simultaneously minimizes

Im|@Q| and extremizes Re|Q)|. If there is no such point the integral is

supressed.

Minimum of Im|[Q(z)]

Extremum of Re[Q(x)] = {

dL,

“

—> [, = [, . unique solution if no flat patches.
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Semiclassical evaluation of observables

L:"{L;:I.g — Zi/ de.} =i_.{.,','_£{ir,~,.L;'} -:‘Kp(%bl:fzf.f]) u:}[_I._;}
e r.i T i

I 1 Ll L | I ] | rl'_
X exp —ﬁaulﬁg—l;uﬂ_,-—lj] eXp —% : (L; — L)

We use a stationary phase approximation for integrals of the form
F(A) = [II,dx* f(x) e*2®) with complex Q. The domain is

t = (I,. L;) (restricted by i) and the large parameter is A = A~ '. The
expansion formula is:

7

N\ 2 —imd|lH;;|(Z) - N
Fr_..‘u:(\'i—{:) eI AQ(@@) (3 and— +o(x~))

ri—A}

V |detH;;(T)
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We have:

— ~y H E [ | L | i)
i’:j{fnlrj — .':!H',,l.[.;} —+ _)—f_'if'l; {_[.J —_E.r;I! {I. — I._;] = Ill-'r f.[.; —I., )
L5 ) i

The expansion coefficients a,, are obtained from ), f and their
derivatives evaluated at the pont rp that simultaneously minimizes
Im|Q| and extremizes Re|Q|. If there is no such point the integral is
supressed.

Minimum of Im[Q(z)] =— L; = L;

1 as(i..L%)

ol

Extremum of Re[Q(z)] = {

25(1,..L;)
!-;_r_l

\

— [,, = [}, , unique solution if no flat patches.
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Examples of observables:

One-point function: (L;), = L? + O(h)

Connected two-point function:
L.-'Lj q Lr,,' q f._,‘ g — th H 1-U- —!"_}{ar‘i]

. TR
a5

oL.0l.

s s
LM, o 4'}4'-_..
H is invertible (if no flat patches). The boundary state breakes
conformal invariance by selecting the physical scale of the
“background” solution.

To the first order, all dependence on the nonperturbative measure u

cancels out.
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The connected two-point function can be rewritten as

<5 0 .
— (L) + —a;;
-I;| H

Compare with expression from perturbative theory around [2:

S s N
Crf,-m'_,-';sﬁ(—u IE)
J .f._l,i

ool

If the boundary state is defined by integrating out the external
variables, we obtain consistently a;; = |[—i H**" +— €;;, and recover
perturbative expression. Important because perturbative Regge
calculus recovers the correct graviton propagator in continuum limit!
(Rocek & Williams).
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Expansion parameter

We have arrived at our expressions with a “small A" stationary phase
approximation. But what is the physical expansion parameter?
Comparing the expectation value of a boundary observable to its

classical value, we obtain:

O(L))q —O(L?) hx
O(LY) K

F—

where A is the typical lengthscale of the classical solution, which is in
turn given by the typical lengthscale Lg of the boundary state.

The physical expansion parameter is the ratio of the Planck
scale to the boundary scale.
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Flat space

When the “background” classical geometry includes flat regions, there
is no unique solution for the internal edge lengths due to translational
symmetries of the action. However, we can integrate by stationary
phase over variables “orthogonal” to the flat hypersurface and then
average the result over the translational variables.

. 4 1(_} I.” I“{ n)-YUn
/ H dy, — { - U Z,ﬁ"” (L3, 22 (n)- U
ZFE n—1 "-].{?T H { I.I;] . 'r.".l' ':,,yr; )s YUn .l

To the lowest order, the result of the first integrals is independent of
the redundant variables and the last integrations are trivial. The
connected two-point function is unchanged:

\ B Li; b — L; ,:-,_Lj'.?:fﬁ

(’ {:}15H {L‘;} 2

fif,,'aﬂj
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Incidentally, this proves triangulation independence for flat

configurations is valid to the lowest order.

If we consider two classical solutions representing the same physical
geometry, with different triangulations that are related via Pachner
moves within flat patches, then first-order semiclassical boundary

correlations are the same on both.

Relevant for “triangulation dependence’ problem in spin foam

models.__7?

ot
b
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Spin Foam models

For the Barrett-Crane vertex amplitude we have:

]

—_]-l'[jf' E:._:] e I 0S5 . _r’.-"‘ _EJ _Dr_-. jf —+ O30

This suggests the following ansatz for the semiclassical regime of

boundary observables:

_ 1 + s - o o
Oy = Z/ H{E dL; (L. L;) H P, (%, L?)

g ) :
> OC0DS _‘*-:"r,_ -IFI‘T. 4 T T "Jr'r Iﬂ—t n-ll O q d
(ﬁ (=, L) J“) D,(12,L?)| O ®,(L;)

(Modifed Regge path integral with cosine structure at each simplex.)
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Expand the product over simplices as a sum over sign assignments:

Al AL il Li) 3 (I[P;[ISZ.L?})

. ; - \ - I 1 0
off | il B 'l) 2 exp|— o5 (e — LS )Y UL

2hs

Now we may apply again the stationary phase approximation to each

term.
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The minimum of Im[Q] again gives L; = L!, and the extremum

equations for Re[()] are:

9 S (1 I2VN=—8
e T = T2 .I I
F.-}.':” : I

5,

— 9 (... L)
5L ellny Li)

L L, — LT

The system is overdetermined and has no solutions except for the term

with € = -1 at each simplex.

Contributions from non-Regge terms are suppressed and the
semiclassical evaluation of observables matches that of
conventional Regge calculus.

15
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The minimum of Im[Q] again gives L; = L!, and the extremum

equations for Re[(Q)] are:

The system is overdetermined and has no solutions except for the term

with € = -1 at each simplex.

Contributions from non-Regge terms are suppressed and the
semiclassical evaluation of observables matches that of
conventional Regge calculus.

15
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Summary of results

e [he boundary state formalism can be successfuly applied to

extract a semiclassical regime from nonperturbative Regge
calculus with an arbitrary triangulation. Results from the

conventional perturbative formulation can be recovered.

The flat space degeneracy does not affect the results because the
boundary state peaks us in the desired internal geometry. Results

are triangulation-independent to the first order.

The cosine ansatz for the semiclassical regime of spin foam models
gives the same results as ordinary Regge calculus. The
sign-reversed and degenerate contributions are suppressed by the
boundary state.

16
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To do:

e Finish establishing the relation betwen the perturbative and the
boundary state formulations, fully recover scaling with distance.

(Some open questions left.)
e Apply to spin foam models. LF & FC path integral formulation?

e Understand better how triangulation refinements work.
Connections to the renormalization group? Effective field theory...?

Sketching of “piecewise limit’ research programme:

Full LQG/SFs —— Semiclassical boundary state LQG/SFs —
Boundary state Regge Calculus —— Perturbative Regge calculus —
Perturbative Continuum Quantum Gravity (including EFT
corrections?)

=t

Pirsa: 08100041 Page 28/36



To do:

e Finish establishing the relation betwen the perturbative and the
boundary state formulations, fully recover scaling with distance.

(Some open questions left.)
e Apply to spin foam models. LF & FC path integral formulation?

e Understand better how triangulation refinements work.

Connections to the renormalization group? Effective field theory...?

Sketching of “piecewise limit" research programme:

Full LQG/SFs —— Semiclassical boundary state LQG/SFs —
Boundary state Regge Calculus —— Perturbative Regge calculus ——
Perturbative Continuum Quantum Gravity (including EFT
corrections?)

Pirsa: 08100041 Page 29/36

A’



To do:

e Finish establishing the relation betwen the perturbative and the
boundary state formulations, fully recover scaling with distance.

(Some open questions left.)
e Apply to spin foam models. LF & FC path integral formulation?

e Understand better how triangulation refinements work.

Connections to the renormalization group? Effective field theory...?

Sketching of “piecewise limit’ research programme:

Full LQG/SFs —— Semiclassical boundary state LQG/SFs —
Boundary state Regge Calculus —— Perturbative Regge calculus ——
Perturbative Continuum Quantum Gravity (including EFT
corrections?)

Pirsa: 08100041 Li Page 30/36



Pirsa: 08100041

Summary of results
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The minimum of Im[Q] again gives L; = LY, and the extremum

equations for Re|()| are:

"¢ = [
i = —=
.fl_.}fr” el - [ I!‘."1- Llr” l _J

)

L. -~ R1 = a4
dlibfif'l"‘[i]f__i I‘-—,

The system is overdetermined and has no solutions except for the term

with € = +1 at each simplex.

Contributions from non-Regge terms are suppressed and the
semiclassical evaluation of observables matches that of
conventional Regge calculus.

[
]
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Expand the product over simplices as a sum over sign assignments:

1 g . [ ( oo To
O _Z/ H'U-;‘lf-rnﬂ{fu-'[-f-l Z (UP‘_ |.f.';-‘Lr j)

re.r

. T TET T - J' u u
< exp ( f N Gk 'ﬁ) O exp |— a;j (Li — L;) (L; — L)

7 Ak

ir

< exp —% f{:-'l I'_[f' — jr_-.,.]

Now we may apply again the stationary phase approximation to each

term.

[S.]
T
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The minimum of Im[Q] again gives L; = LY, and the extremum

equations for Re[Q)] are:

The system is overdetermined and has no solutions except for the term

with € = -1 at each simplex.

Contributions from non-Regge terms are suppressed and the
semiclassical evaluation of observables matches that of
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15
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Spin Foam models

For the Barrett-Crane vertex amplitude we have:

As(Ff, 2e) ~ Py cos (_

n Jr r

T his suggests the following ansatz for the semiclassical regime of
boundary observables:

), = %/‘I[.N.,JL;}H”.L—J 1) | za )

L. r T

1 T -
= DS —:‘:*1,-, * LT+ — = = o i Pt O\ i r'.
ﬁ(f (15, L7) + T ) + Do (i5, L7) | O ¥,(Ls)

1

(Modifed Regge path integral with cosine structure at each simplex. )
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