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Abstract: In this talk | will discuss gravitational wave production by early universe sources. | will focus on the gravitational waves produced by a
network of cosmic strings and the bounds that can be placed on cosmic string model parameters using current and future experiments. | will also talk
about recent work on gravitational waves produced by sources in the early universe when the expansion of the universe cannot be neglected. As an
example of such aprocess| will consider the preheating epoch that may follow inflation.
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Summary

e Cosmic strings:
~ Brief intro
~ Detectability of bursts by LIGO

~ Detectability of stochastic background by LIGO, LISA,
and other experiments

= Bursts in LISA

* Preheating



Cosmic strings

Two kinds of strings. Field-theoretic strings (old-school), and new
cosmic superstrings

Kibble (1976) realized that in theories with phase transitions defect
formation is generic

The most simple phase transition that leads

to string formation
n
U(l) -1

Strings form with mass per unit length ft ~ 732

2
Characterize strings using dimensionless quantity Gp, — ( 'l )
irsa: 08100029 ,ml Page $/46
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Cosmic string evolution

e Cosmic strings do not lead to cosmological disasters (unlike
monopoles and domain walls)

* Network evolves into a scaling solution where the energy density in
strings Is a small fraction of the matter or radiation energy density.

e Scaling occurs because network
produces loops which decay
gravitationally

Long strings
(yellow)

Loops (red) —
How big are they?
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Cosmic string evolution

e Cosmic strings do not lead to cosmological disasters (unlike
monopoles and domain walls)

e Network evolves into a scaling solution where the energy density in
strings Is a small fraction of the matter or radiation energy density.

e Scaling occurs because network
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Recent interest in cosmic strings

e Angular spectrum of CMB rules out values of the tension at the GUT

scale
Gu < 10~

e But for these and lighter strings [Damour & Vilenkin 00,01,05] bursts from
cusps could be detectable by LIGO, VIRGO, and LISA

e | ater it was realised [Sarangi & Tye, 02] that string theory inspired
inflation models would also lead to cosmic string production and

thus have consequences observable in the near future. [Sarangi, Tye.
Polchinksi, Jones, Jackson, Copeland, Myers, Dvali, Vilenkin, Wyman, Leblond,
Shlaer, Firouzjahi, Brandenberger,...]
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Size of cosmic string loops

Loops decay gravitationally according to

If the size of loops at formation is [; = at; then loops decay in a time

Lty = = -1 )¢,
I'Gu

Loops are long-lived when a« > I'G u, short- and long-lived loops lead
to very different loop populations

There is disagreement on the value of &

Shellard, Martins, Avgoustidis, Polchinski. Rocha. Dubath

Dlum, Vanchurin, Vilenkin : ;
Ringeval, Sakellariadou, Bouchet
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Cosmic strings vs. cosmic superstrings

e Same signal, different interpretation of results.
e [wo differences:

+ More than one type of string can form (complicated
interactions--nasty problem)

+ Re-connection probability
1072 <p<1

e Fffect Is to iIncrease the density of string

irsa: 08100029 p (X p




The gravitational signal produced by a cusp

Cusps are regions of string that
instantaneously acquire huge Lorentz boosts

Metric perturbation is computed using
linearized Einstein Eqgs.

Waveform is generic: All cusps are the same

og(h( f)) |

h(f) = Af~20(fn — NHNO(f — 1)

» High frequency cutoff fh depends on cusp direction

log( 1)

» Low frequency cutoff fg iIs cosmological, in practice
depends on instrument
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Computing the gravitational burst rate

e Burst rate calculation starts from the loop distribution; number density of loops with
lengths in interval dl at time

n(l, t)dl
» Each loop oscillates in time [ / 2 and has (on average) C cusps per oscillation

2
Tcn(zg t)dl

 Write all guantities in the rate as cosmology dependent functions of the redshift
t = Hy '¢4(2) r=Hy '¢6.(2) dV(z) = Hy v (z)dz

« Aloop of some length [ at some redshift z produces a burst of amplitude A(l, z)
Can write the rate of bursts as a function of the amplitude dR/dA and integrate the
rate above some amplitude deemed detectable

A dR

( ) Amin d A Page 13/46
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Computing the gravitational burst rate

e Burst rate calculation starts from the loop distribution; number density of loops with
lengths in interval dl at time

n(l, t)dl
» Each loop oscillates in time [ / 2 and has (on average) C cusps per oscillation

2
TCn(zg t)dl

 Write all guantities in the rate as cosmology dependent functions of the redshift
t = Hy '¢(2) r=Hgy '¢.(2) dV(z) = Hy v (2)dz

« Aloop of some length [ at some redshift z produces a burst of amplitude A(l, z)
Can write the rate of bursts as a function of the amplitude dR/dA and integrate the
rate above some amplitude deemed detectable

i dR
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The gravitational signal produced by a cusp

Cusps are regions of string that
instantaneously acquire huge Lorentz boosts

Metric perturbation is computed using
linearized Einstein Eqgs.

Waveform is generic: All cusps are the same

og(h(f)) |

h(f) = AF 30 (fa — O — fi)

» High frequency cutoff fh depends on cusp direction

» Low frequency cutoff fl iIs cosmological, in practice
depends on instrument

G;LLE/B'
:
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Computing the gravitational burst rate

e Burst rate calculation starts from the loop distribution; number density of loops with
lengths in interval dl at time £

n(l, t)dl
» Each loop oscillates in time [ / 2 and has (on average) C cusps per oscillation

2
Tcn(zg t)dl

 Write all guantities in the rate as cosmology dependent functions of the redshift
t = H;'¢4(z) r=Hy '¢.(2) dV(z) = Hy ¢y (2)dz

« Aloop of some length [ at some redshift z produces a burst of amplitude A(l, z)
Can write the rate of bursts as a function of the amplitude dR/dA and integrate the
rate above some amplitude deemed detectable

&i dR
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Detectability of cosmic string bursts by LIGO

For “small” loops
(short-lived loops)

n(l,t) < d(l — at)

Resulis are less
optimistic than
Damour and Vilenkin.
But superstrings could
still be detected.

“Large” loops are not
so interesting (we’ll
see)
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Stochastic background of a cosmic string network

For “small” loops (short-lived loops) n(l,t) ox (I — at)/p, a =cI'Gu

p=10_3
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Stochastic background of a cosmic string network

For “large” loops (long-lived loops) vary p, Gu set a = 0.1
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Stochastic background of a cosmic string network

For “small” loops (short-lived loops) n(l,t) oc 6(I — at)/p, a =cI'Gpu

p=10_3
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Stochastic background of a cosmic string network

For “large” loops (long-lived loops) vary p, Gu set a = 0.1

10 2 T 1 Ty 10~ 10° 10~ 10°
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LISA
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Detectability of cosmic string bursts by LISA

_ p=10"
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e | [SA is so sensitive, for LISA estimates we just compute the noise
added to the instrument by the network of cosmic strings
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LISA and bursts from small loops
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LISA and bursts from small loops
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Gravitational waves from cosmic (super)strings

 For small loops current most constraining results are from pulsar
timing and BBN, but LIGO will explore an area of parameter space
complementary to these

» |f loops are large stochastic searches are more effective than burst
searches. Severe constraints on superstrings.

» Of all gravitational wave detectors LISA has the best chance of
detecting a cosmic string generated signal (stochastic and burst)

* A combined LISA burst and stochastic detection could help pin

down properties of cosmic strings: string tension, reconnection
probability,...
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Gravitational waves from preheating [w/. Larry Price]

* Read interesting paper by Easther and Lim on gravitational waves
from preheating [JCAP 0604:010,2006. e-Print: astro-ph/0601617]

* Easther and Lim used LATTICEEASY [Felder & Tkachev], a code that evolve
scalar fields in a background (say, expanding) self consistently:

1 A
L= 000"+ ap_xa#x i —g%

* They then used formula by Weinberg to estimate gravitational wave
production (stochastic background):

ﬂ'w
= 72 E / dw wz‘TTT W, ‘
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Gravitational waves from preheating [w/. Larry Price]

* Read interesting paper by Easther and Lim on gravitational waves
from preheating [JCAP 0604:010,2006. e-Print: astro-ph/0601617]

* Easther and Lim used LATTICEEASY [Felder & Tkachev], a code that evolve
scalar fields in a background (say, expanding) self consistently:

L. . > W
Ezi PO O + 8;;)(3“)(—1@ —_92‘5@5

* They then used formula by Weinberg to estimate gravitational wave
production (stochastic background):

G‘W
= 72 E / dw wz‘TTT W, ‘
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Previous work

» Khlebnikov & Tkachev: Flat space approximation.

* Dufaux, Bergman, Felder, Kofman & Uzan: Approximate Green’s

function.

e Easther, Giblin & Lim: Evolve TT gauge metric perturbation.

» Garcia-Bellido, Figueroa & Sastre: Evolve metric then take TT part.

® Larry Price & XS: Exact Green’s function.
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Theoretical framework

» Background space-time  ds® = a*(n)(—dn* + dz? + dy? + dz*

" el . _ |
* Perturbations R 13 (”)hg};f Wk — G
a(n)
# Assume expansion a(n) = an”

First tried Green’s functions in configuration space [R. Caldwell, Phys. Rev.
D 48, 4688 - 4692 (1993)]. Pretty ugly. Matter era Green’s functions have

suppRort inside light-cone. LB AR




Theoretical framework

} 9 .

e Spatial Fourier transform hfg =2 —hEE + kzhzg — lﬁﬁT(%T
n

1 !/

e \/ery easy solution h % dn’ . sin|k(n — n")]TTT
- n
Tl

- 15;& s f}' =, s ¥i
(hIF = /} T+ K2nm) sinliy — /)] + k(n — o) cosliln — )] TR

Generally, for a(fr)) = a:n”, solutions are spherical Bessel functions.
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Theoretical framework (analytic)

(Rashi®)

32mwa?(n)

*» From the energy density in GWs  pow =

» Can derive a formula for the energy
per unit solid angle which, for
radiation era expansion, Is

9,
(’-)_MT;.ET (E.u‘, k)

iEﬂ‘w 1671‘2 i _
d;Z h a?n® Z/ dw [Sm(u«’??) — W COS(w'r;)]
ig o o=

2

* Weinberg’s formula

dE., oy 2
N N I 5 .




Theoretical framework (computational)

(s )

* From the energy density in GWSs ==

» Can also derive a formula for the energy per unit log frequency
interval

dng ol kg 1 /dQ Zh ( k)il* ( k)
dink _ 327a2(n) V i Rl el
* And on a computer use

dpgw E 1
dlnk 8a2(n)V

N hap(n, kkp)hiy(n, kkp)
a.b

and average over several directions. s



Computational framework

* Publicly available

Source evolution with LATTICEEASY:

[Felder & Tkachev] = B

» Many pre-packaged modeils

To compute GWs wrote a code that
piggybacks on LATTICEEASY and

e UseFFTW.
e Threading with OpenMP.

e Detailed optimization.

On a 4 core 3GHz machine 2563 box
takes 18 hours! (standard simulation)

Dufaux, Bergman, Felder, Kofman & Uzan (200
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Results

e Ran a standard
simulation

e GUT scale
inflation

A=—10"
g>=12x 1071

Pirsa: 08100029
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Results
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Future work

e More fields coupled to the inflaton (with John “Tom” Giblin,

Larry Price)

e Second order phase transitions (with John “Tom” Giblin, Larry

Price)

e Electroweak scale physics (LISA)

e Got a model?
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Results
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Future work

e More fields coupled to the inflaton (with John “Tom” Giblin,
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