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Abstract: We study the possibility of a self-correcting quantum memory based on stabilizer codes with geometrically-local stabilizer generators. We
prove that the distance of such stabilizer codesin D dimensions is bounded by O(L{ D-1}) where L isthe linear size of the D-dimensional lattice. In
addition, we prove that in D=1 and D=2, the energy barrier separating different logical statesis upper-bounded by a constant independent of L. This
shows that in such systems there is no natural energy dissipation mechanism which prevents errors from accumulating. Our results are in contrast
with the existence of aclassical 2D self-correcting memory, the 2D Ising ferromagnet.
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Passive or Active Error Correction

e Active Error-Correction:

» Local Interactions plus Non-Local Reliable
Classical Processing.

» System Dynamics are Non-Equilibrium

e Passive EC or Self-Correction:

» Built from Geometrically Local Interactions

» System Dynamics Towards Thermal Equilibrium
» Hardware Solution For Fault-Tolerance
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® Advantages of Passive EC or Self-Correction:

» Fault-tolerant Aardware, lesser need for
classical control, overhead, concatenation...
> No noise thresholds to beat... "Just’ go to

low enough temperature.
» Question of fundamental interest.

e Disadvantages of Passive EC:
» Need dynamical operations (gates), hence control

for computation anyway...
» Does not use the advantage of bootstrapping QC

from reliable classical computing! (but measurements are
slow)

Consider only Self-Correcting Quantum Memory:

» Need to write/read unknown states to the

guantum memory fault-tolerantly.
» Is it even possible in 3D or fewer space dimensions?

Page 4/61
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Classical Self-Correction in 1D

Consider 1D Ising ferromagnet. Let 1 =1 and | =0.

Ground-state is twice-degenerate: 11...1 or 00..0.
Ground-states are code words for the repetition code.

Energy of single spin flip excitation 000100..00 is the
same as that of multi-spin flip like 011111..10.

— 1D Ising ferromagnet is not stable against thermal
fluctuations. It has a phase-transition at zero temperature
to a disordered phase. Entropy dominates over energy.

— There is no self-correcting mechanism.
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Classical Self-Correction in 2D

For the 2D Ising ferromagnet the energy of a domain of
flipped spins scales with the boundary of the domain
which depends on the size of

the domain. Hence, X
high-weight errors are ‘>0
energetically disfavored.

TR
Note: Ising model not stable " "

against local magnetic
fields.

Phase diagram for the Ising model as a function of temperature
{ T) and magnetic field (i) dark portion of # = 0 axis represents

two-phase region: 7, denotes cnnical pomnt
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Example I: surface codes

n qubits on edges. Here n=85, L=/.

logical Z

logical X

Z

ZDZ

e L x L lattice. Number of qubits is L? + (L — 1)2.

e N(S)\S =< Zyiine, Xhiine >, one encoded qubit

Pirsa: 081000
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Constant energy barrier for 2D surface
codes

1. A Z error occurs. This costs energy O(1). “Two defects are created”

2

. More Z errors along the line happen. This costs no additional energy.
“Defects travel in opposite direction without force holding them together™

3. Line of Z errors reaches boundary: a logical error is created. “Defects
annihilate”

4. Thus a logical error can be created with constant energy cost, not scaling
with L. At nonzero temperature topological order is lost.

Note that there is a gap against the occurrence of (error) excitations. hence
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at low enough temperature and small lattice size. errors are suppressed.




Classical Self-Correction in 2D

For the 2D Ising ferromagnet the energy of a domain of
flipped spins scales with the boundary of the domain
which depends on the size of

the domain. Hence, A
high-weight errors are ‘>0
energetically disfavored.

Note: Ising model not stable ) "

against local magnetic
fields.

Phase diagram for the Ising model as a function of temperature
{ T') and magnetic field (i), dark portion of # = 0 axis represents

two-phase region: I, denotes cnnical pomnt
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Example: 2D Bacon-Shor Codes

n qubits on vertices, here n=49

logical X

7 4
|2

)? (commutes with G and is i— X X

logical Z

———yne AN ¥ jane. Zplane cCOMmut

generato —
of S

perators are in G and thus ©
— 7T —_—

e L x L lattice. The gauge group 15 ¥ =< A jA; jy1. 454415 >-

e S is generated by vertical and horizontal double line operators. Generators
of & are nonlocal.

e N(G)\G =< Xijine. Ziine >. Distance of code is L.

o sl model has XX, YY. ZZ gauge operators in X, v, zZ directions . .



Example: 2D Bacon-Shor Codes

n qubits on vertices, here n=49

%Ingicalx -
logical Z
X X
generators
of S

e L x L lattice. The gauge group is ¢ =< X; ; X; j11.2; jZit15 >.

e S is generated by vertical and horizontal double line operators. Generators
of & are nonlocal.

e N(G)\G =< Xijine. Ziine >. Distance of code is L.

o sl model has XX, YY. ZZ gauge operators In X. y, z directions e



Example: 2D Bacon-Shor Codes

n qubits on vertices, here n=49

|
I

- 'E' x L I.El.tti[‘E. The gauge group i5 g =< frl,_;ftl.]-l“‘z'l._]zl'?|.j >

e S is generated by vertical and horizontal double line operators. Generators
of § are nonlocal.

o N(G)\G =< Xjpe. Ziine >. Distance of code is L.
® 3D model has XX. YY. ZZ gauge operators in x. v. z directions
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Emerging Picture and Its Extension to
Quantum Memory

e Ground-space of a Hamiltonian is a code-space of a
quantum error-correcting code.

e Code has macroscopic distance, scaling with system
size. (Topological Order)

Example: Ising ferromagnet as quantum stabilizer code.
H=233q 4 4, Stabilizer =< £, Z, >.

Logical X has distance n, the number of spins. Logical Z
has distance 1 — distance is 1.

e In order to do a logical operator by a sequence of
local errors one needs to traverse a macroscopic energy
barrier (self-correction)
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Quantum Memory Hamiltonians

Take stabilizer codes with geometrically-local generators.
Let P be the Pauli group on n qubits. Stabilizer § is an Abelian subgroup of
P, generated by geometrically local {S;}™ ;.

L x L lattice, qubits on vertices

Codespace is {|v)| Vi, S;|v) = |¢¥)} |

Take H =—) . S;. | 7 —H\

suppt
boun

by rx
° Codespace 1S ground—space of H. H can encﬂde box
one or several logical qubits.

e H is gapped. Ground-state energy is —m.

e The logical operators of the code are elements which commute with S but

which are not in S: N(S)\S.

Necessary conditions for H to be a self-correcting memory:

e The distance of the code S scales with system size. The distance
d = minpe(s)\ s | P| where |P| is the weight of Pauli operator P.
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Quantum Memory Hamiltonians

Take stabilizer codes with geometrically-local generators.
Let P be the Pauli group on n qubits. Stabilizer S is an Abelian subgroup of
P, generated by geometrically local {S;}™ ;.

L x L lattice, qubits on vertices

Codespace is {|v)| V1, S;|v) = |¢)} |

———

Take H = —) . S;. //" \
supp
boun
by rx

e Codespace is ground-space of H. H can encod oox

one or several logical qubits.

e H is gapped. Ground-state energy is —m.

e The logical operators of the code are elements which commute with & but

which are not in S: N(S)\S.

Necessary conditions for H to be a self-correcting memory:

e The distance of the code S scales with system size. The distance
d = minpec(s)\ s | P| where |P| is the weight of Pauli operator P.
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Example I: surface codes

n qubits on edges. Here n=85, L=7.

logical Z

logical X

--------- —

Z

ZDZ

e L x L lattice. Number of qubits is L? + (L — 1)2.

e N(S)\S =< Zyiine, Xhiine >, one encoded qubit

Pirsa: 081000
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Constant energy barrier for 2D surface
codes

1. A Z error occurs. This costs energy O(1). “Two defects are created”

(R

. More Z errors along the line happen. This costs no additional energy.
“Defects travel in opposite direction without force holding them together™

3. Line of Z errors reaches boundary: a logical error is created. “Defects
annihilate”

4. Thus a logical error can be created with constant energy cost, not scaling
with L. At nonzero temperature topological order is lost.

Note that there is a gap against the occurrence of (error) excitations. hence
100024 Page 21/61
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Example: Heisenberg Model

et B — Z(i.j)EL J.X: X; + 1L,Y,Y; + J.Z;Z; where L is a 2-dimensional
ttice of qubits, n qubits in total.

auge group ¢ =< X; X;,Y;Y;,Z;Z; >.
That is in S = GNN(G)? (commutes with G and is in G)

nly plane operators Xpjane and Ypjane, £plane cOmmute with G, are in N(G)

n is even: the plane operators are in G and thus in §. N(S) = G. No
logical qubits: N(G)\G = I.

n is odd. Plane operators anti-commute = cannot be in S. § = I and so
N (S) is the Pauli group. N(G)\G =< X janes Zplane >, one logical qubit.
What is the distance of this code? d = minpca/(s)/g |P|- Multiply Xpjane
by X;X; to get a weight 1 operator, thus distance is 1 = not good for a

quantum memory.
irsa: 081@9522!2008 Page 22/61
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Example: Heisenberg Model
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Example: Heisenberg Model

Let H=3, o J: X.X; + J,Y.Y; + J.Z,Z; where L is a 2-dimensional
lattice of qubits. n qubits in total.

Gauge group ¢ =< X, X, . YY;. Z. Z; >.

What isin S = GNN(G)? (commutes with G and is in G)

Only plane operators X jane and Yjjane, Zpiane commute with G, are in N(G)

. n is even: the plane operators are in € and thus in §. N(S) = ¢. No
logical qubits: N(G)\G = I.

. n is odd. Plane operators anti-commute = cannot be in §. § = I and so
N(S) is the Pauli group. N(G)\G =< X, jane: Zpiane >- one logical qubit.
What is the distance of this code? d = minpc v (s)/¢ |P|- Multiply X jane
by X, X, to get a weight 1 operator. thus distance is 1 = not good for a
quantum memory.
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Example: Heisenberg Model

Let H = Z{H]EL J. X X + LYY, + J.Z, Z; where L is a 2-dimensional
lattice of qubits. n qubits in total.

Gauge group ¢ =< X, X, . YY;. Z. Z; >.

What is in &S = GNN(G)? (commutes with G and is in G)

Only plane operators X jane and Yjjane. Zpiane commute with G, are in N(G)

. n is even: the plane operators are in G and thus in S. N(S) = G. No
logical qubits: N(G)\G = L.

. n is odd. Plane operators anti-commute = cannot be in §. § = I and so
N(S) is the Pauli group. N(G)\G =< X, jane: Zpiane >. one logical qubit.
What is the distance of this code? d = minpc - (s)/¢ |P|- Multiply X jane
by X, X, to get a weight 1 operator, thus distance is 1 = not good for a
quantum memory.

10/22/2008

> Click to add notes ~

!' -
e

l'[} Mushapes~— . W [ O E = 28 S-Jd-A-==80@§g .
Pirsa: OB%ZEER Defauit Desi Engish Q1.5.) (55 4 Page 25/61




EHAH SaY i BERT o-=- EHEa =fa= 1R 5 - [2] _ : @ snegit = Window =T
 Tahoms -24-1!11[3%22}515 A & == A - doesogn Thewside _

He Eit View Dsert Formet Toos ShideShow Window  Help  Texfont Tvpe = qaestorr for he

fine

v [y Aubnshepes— S\ WO EHA 22l 2-Z-A-==E8w

Stabilizer Codes

Dennis et al. observed that 2D surface codes do not have the property of
self-correction. They proposed a 4D surface code (O(L*) qubits) which has dis-
ance scaling with L? and d* scaling with L.

So...can we prove some general no-go results on the distance d and ¢*7 YES
Theorem I: Stabilizer codes on a D-dimensional lattice have distance O( LP? ).

Theorem [7: Pick a set of logical “system™ qubits from a stabilizer code on
a D-dimensional lattice and treat the other logical qubits as irrelevant gauge
qubits. The distance for these system qubits is O(L?1).

Theorem II: The energy barrier for any stabilizer code defined on a 1 or
2-dimensional lattice is O(1). No self-correction in 2D!

Conjecture: distance for stabilizer codes on a D-dimensional lattice is O( L. P/2!)

Even 3D self-correcting stabilizer-based quantum memories may not exist.

10/22 /2008
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Energy Barrier, more formally

Consider system described by a stabilizer Hamiltonian H interacting with a
bath. A complete set of energy eigenstates of the system is given by { Pluy)}
where |vy) is any state in the code-space and P is a Pauli operator.

The energy cost of an operator P. ¢( P) is determined by (yo|P" HP|wy) =
—m +¢( P).

Energy cost ¢( P) equals (two times) the number of stabilizer elements that
P anticommutes with.

Assume: environment makes single qubit errors. Creates a path from [ to
logical error P.

Energy barrier d*: least energy that environment needs to expend to imple-
ment any logical P bv a sequence of single Pauli error steps.

In formula: @ = mingc v (s)\ s MIN, cyw(r E) €max(7) Where €,,.(7) is max

:%4_[ "_"'I | Click to add notes = 3 |
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Energy Barrier, more formally

Consider system described by a stabilizer Hamiltonian H interacting with a
bath. A complete set of energy eigenstates of the system is given by {Plyy)}
where |y ) is any state in the code-space and P is a Pauli operator.

The energy cost of an operator P. ¢( P) is determined by (yo|P"HPlyy) =
—m + ¢( P).

Energy cost ¢( P) equals (two times) the number of stabilizer elements that
P anticommutes with.

Assume: environment makes single qubit errors. Creates a path from [ to
logical error P.

Energy barrier d*: least energy that environment needs to expend to imple-
ment anyv logical P bv a sequence of single Pauli error steps.

In formula: &* = mingey(s) s Ml cw(r E) max(7) Where €na.(y) is max
energy cost along the path.
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Energy Barrier, more formally

Consider system described by a stabilizer Hamiltonian H interacting with a
bath. A complete set of energy eigenstates of the system is given by {P|vg)}
where |1g) is any state in the code-space and P is a Pauli operator.

The energy cost of an operator P, ¢(P) is determined by (| PTHP|vg) =
—m + €(P).

Energy cost €( P) equals (two times) the number of stabilizer elements that
P anticommutes with.

Assume: environment makes single qubit errors. Creates a path from I to
logical error P.

Energy barrier d*: least energy that environment needs to expend to imple-
ment any logical P by a sequence of single Pauli error steps.

In formula: d&* = MiNgeA/(S)\ S My cW (I E) €max(Y) Where €max(y) is max
erpergpozost along the path. Page 20/61



Constant energy barrier for 2D surface
codes

1. A Z error occurs. This costs energy O(1). “Two defects are created”

(V)

. More Z errors along the line happen. This costs no additional energy.
“Defects travel in opposite direction without force holding them together”

3. Line of Z errors reaches boundary: a logical error is created. “Defects
annihilate”

4. Thus a logical error can be created with constant energy cost, not scaling
with L. At nonzero temperature topological order is lost.

Note that there is a gap against the occurrence of (error) excitations. hence
100024 Page 31/61
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Example: Heisenberg Model

et H = Z(i.j)EL J.X: X; + L,Y,Y; + J.Z;Z; where L is a 2-dimensional
ttice of qubits, n qubits in total.

auge group G =< X; X, Y;Y;,Z;Z; >.
’hat isin S = GNN(G)? (commutes with G and is in G)

nly plane operators Xpjane and Ypjane, £plane cOmmute with G, are in N(G)

n is even: the plane operators are in G and thus in S. N(S) = G. No
logical qubits: N(G)\G = I.

n is odd. Plane operators anti-commute = cannot be in S. § = I and so
N (S) is the Pauli group. N(G)\G =< Xjjane; Zplane >, one logical qubit.
What is the distance of this code? d = minpca/(s)/g |P|- Multiply Xpjane
by X;X; to get a weight 1 operator, thus distance is 1 = not good for a

quantum memory.
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Energy Barrier, more formally

Consider system described by a stabilizer Hamiltonian H interacting with a
bath. A complete set of energy eigenstates of the system is given by {P|¢yg)}
where |¢g) is any state in the code-space and P is a Pauli operator.

The energy cost of an operator P. ¢(P) is determined by (| PTHP|vg) =
—m + ¢(P).

Energy cost €( P) equals (two times) the number of stabilizer elements that
P anticommutes with.

Assume: environment makes single qubit errors. Creates a path from I to
logical error P.

Energy barrier d*: least energy that environment needs to expend to imple-
ment any logical P by a sequence of single Pauli error steps.

In formula: d* = Minge A/(S)\ S ML, e (I, E) €max(y) Where €max(7y) is max
errergyozost along the path. Page 33/61



Stabilizer Codes

Dennis et al. observed that 2D surface codes do not have the property of
[f-correction. They proposed a 4D surface code (O(L*) qubits) which has dis-
nce scaling with L? and d* scaling with L.

So...can we prove some general no-go results on the distance d and d*? YES
Theorem I: Stabilizer codes on a D-dimensional lattice have distance O(LP 1)

Theorem I7: Pick a set of logical “system” qubits from a stabilizer code on
D-dimensional lattice and treat the other logical qubits as irrelevant gauge
bits. The distance for these system qubits is O(LP~1).

Theorem II: The energy barrier for any stabilizer code defined on a 1 or
dimensional lattice is O(1). No self-correction in 2D!

Conjecture: distance for stabilizer codes on a D-dimensional lattice is O( LLP/?
Even 3D self-correcting stabilizer-based quantum memories may not exist.
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Hamiltonians and Subsystem Codes

Hamiltonians which are sums of commuting operators seem a bit restrictive
(advantage: there is a gap). Take H = ) . J;G; with geometrically-local Pauli
sperators G; and O(1) couplings J;.

Subsystem Codes:

e let 6=—Xx<G;,-.., G,, > the ‘gauge’ group.

e Consider the center of G: S = GNN(G). S is an Abelian subgroup of the
Pauli group. a stabilizer!

e So N(S)\S has logical operators of qubits encoded by S. Some of these
are the true ‘logical’ qubits and some other gauge qubits. What is the
relation with G?

e Now N (G)\G has the logical operations on the logical qubits and N (S) =
N(G)-G. G acts only on the gauge qubits. Distance d = minpc s\ g | Pl-

e Subsystem code formalism expresses symmetries of the Hamiltonian: k&
logical qubits <+ 2¥-degenerate eigenlevels. H block-diagonal with sectors
labeled by syndromes of S. In each sector we have a code-space for k-

Pz epesrical qubits and a spectrum of gauge-qubit excitations. Page 35/61



Example: Heisenberg Model

ok B — Z(i,jJEL J. X X; + L,Y,Y; + J.Z;Z; where L is a 2-dimensional
ttice of qubits, n qubits in total.

auge group ¢ =< X; X;,Y;Y;,Z;Z; >.
hat isin S = GNN(G)? (commutes with G and is in G)

nly plane operators X jane and Ypjane, Zplane commute with G. are in N (G)

n is even: the plane operators are in G and thus in S. N(S) = G. No
logical qubits: N (G)\G = I.

n is odd. Plane operators anti-commute = cannot be in §. & = I and so
N (S) is the Pauli group. N(G)\G =< Xpjanes Zplane >, one logical qubit.
What is the distance of this code? d = minpca/(s)/g |P|- Multiply Xpjane
by X;X; to get a weight 1 operator, thus distance is 1 = not good for a
quantum memory.
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Example: 2D Bacon-Shor Codes

n qubits on vertices, here n=49

%logicaix -
logical Z
X X
generators
of S

e L x L lattice. The gauge group is ¢ =< X; ; X; j11,4; jZit1; >-

e S is generated by vertical and horizontal double line operators. Generators
of S are nonlocal.

e N(G)\G =< Xijine. Ziine >. Distance of code is L.

?..allanodel has XX, YY, ZZ gauge operators In X, ¥, z directions e
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Example: 2D Bacon-Shor Codes

n qubits on vertices. here n=49

logical X

“logical Z

e L x L lattice. The gauge group is G =< X, ; X, ;1. 2, ;Z:01; >-

e S is generated by vertical and horizontal double line operators. Generators
of § are nomnlocal.

- -VH}]\._(} =< Xjine- Ziine ~>- Distance of code is L.
e 3D model has XX. YY. ZZ gauge operators in x. v. z directions
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Example: 2D Bacon-Shor Codes

n qubits on vertices, here n=49

%Iugicalx -
logical Z
X X
generators
of S

e L x L lattice. The gauge group is 6 =< X; ; X; j11.2; jZit1 5 >.

e S is generated by vertical and horizontal double line operators. Generators
of & are nonlocal.

e N(G)\G =< Xijine. Ziine >. Distance of code is L.

o sl model has XX, YY. ZZ gauge operators in X. v, zZ directions ]



Bounding the distance: stabilizer codes

Cleaning Lemma for Reducing Support of Logical Operators
Region M: Sy is restriction of S on M. S(M) contains only stabilizers wi

support in M. Thus S(M) C Sy

Consider what a logical operator P € N(S) does on a region M, wi
|M| < d. Call this Pyy.

Imagine Py € N(Su), it commutes inside region M already. Then Py,
N(S) but Py cannot be in N(S)\S since |[M| < d. Thus Py € S(M).
multiply with elements in S(M) to clean out P inside M.

We argued that N (Sy) N P(M) < S(M) for regions | M| < d.

Thus what commutes with S(M), i.e. N(S(M)) = Sy for such regions.
Py € N(S(M)) thus Py € S)s. Extend elements of S); beyond M a

clean out P!
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Bounding the distance: stabilizer codes

Cleaning Lemma for Reducing Support of Logical Operators
Region M: Sy, is restriction of S on M. S( M) contains only stabilizers with
support in M. Thus S(M) C Sy.

Consider what a logical operator P € N(S) does on a region M. with
“.ﬂ < d. Call this P};.

Imagine Py € N(Sy). it commutes inside region M already. Then Py €
N(S) but Py cannot be in N(S)\S since |M| < d. Thus Py € S(M). So
multiply with elements in S(M) to clean out P inside M.

We argued that N (Sy) N P(M) x S(M) for regions | M| < d.

Thus what commutes with S(M). i.e. N(S(M)) = Sy for such regions.
Py € N(S(M)) thus Py € Sxy. Extend elements of Sy bevond M and

clean out P!

! Click ta add notes 3
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Hamiltonians and Subsystem Codes

Not all properties of H are determined by subsystem code formalism. e.g.
are there gaps between different stabilizer-sectors?

Question of energy barrer scaling is more involved. depends on more details
of spectrum of H.

However. it is possible to define the energy cost of Pauli error E and upper-
bound it by twice the number of terms in H = - }_, G; with which E anti-
colmmiutes.

We can prove that 2D Bacon-Shor code is not a good quantum memory and
that d¢* = O(d). First bound the distance...

Theorem III: Subsystem codes on a D-dimensional lattice have distance
OE"—%).
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Hamiltonians and Subsystem Codes

Not all properties of H are determined by subsystem code formalism. e.g.
are there gaps between different stabilizer-sectors?

Question of energy barrier scaling is more involved, depends on more details
of spectrum of H.

However. it 1s possible to define the energy cost of Pauli error E and upper-
bound it by twice the number of terms in H = — ) . G; with which E anti-

commutes.

We can prove that 2D Bacon-Shor code is not a good quantum memory and
that d* = O(d). First bound the distance...

Theorem III: Subsystem codes on a D-dimensional lattice have distance
1 L |
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Bounding the distance: stabilizer codes

Cleaning Lemma for Reducing Support of Logical Operators
Region M: Sy is restriction of S on M. S(M) contains only stabilizers wi

support in M. Thus S(M) C Sy

Consider what a logical operator P € N(S) does on a region M, wi
|M| < d. Call this Pyy.

Imagine Py € N(Su), it commutes inside region M already. Then Py
N(S) but Py cannot be in N(S)\S since |[M| < d. Thus Py € S(M).
multiply with elements in S(M) to clean out P inside M.

We argued that N (Sys) N P(M) < S(M) for regions | M| < d.

Thus what commutes with S(M), i.e. N(S(M)) = Sy for such regions.

Py € N(S(M)) thus Py € Sy;. Extend elements of Sy; beyond M a

clean out P!
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Cleaning Lemma

Given a logical operator P for a stabilizer code with distance d. One c:
san out the support of this operator on any region M with |M| < d.
The cleaning procedure gives P’ = PS where S € § and S acts only insi

" and the boundary of M and P’ is clean (is I) on M.

We can clean many times! Make holes and see what is left...
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Cleaning Lemma

Given a logical operator P for a stabilizer code with distance d. One c:
san out the support of this operator on any region M with | M| < d.
The cleaning procedure gives P’ = PS where S € S and S acts only insi

" and the boundary of M and P’ is clean (is I) on M.

We can clean many times! Make holes and see what is left...
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Application of cleaning lemma: bounding
the distance

- @ e J' = > @ - =g > (= s =
» ] '. a ir
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1. Assume for 2D stabilizer codes. the distance d > ¢L.

2. Take logical P and clean out non-adjacent strips of size ¢L. We get P’ =
P, P5..P;. on remaining strips. If strips are thick enough. cleaning one strip
does not interfere with cleaning another one.

3. Strips are thick enough, so that no stabilizer generator has support on 2
strips. Thus P; € N(S), but there must exist P; € N(S)\S (otherwise all
P e S8).

4. Hey, such P; is a logical operator with weight at most the size of a strip,
that 1s ¢L. A contradiction!
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Sketch: Bounding The Energy Barrier

e Take logical op. P of min weight d. Has connected support.
e Let I=Cc d, boxes of size | x | and P has support on O(1) boxes
e Separate out interior of boxes. Remaining skeleton can be
covered with O(1) energy effort. | |
e Hollow out interior of boxes
(see below) .

@ | ® —
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Bounding The Distance: Subsystem Codes

Trouble: stabilizer group does not have local generators!
Cleaning Lemma for Subsystem Codes:

Let d be the distance of a subsystem code with locally-generated
gauge group G and let M be a region with (M| < d.

For any logical operator P € N(G)\G one can choose an

element S € S such that PS is clean (is ) on M.

Note that we cannot repeat cleaning since S may be very nonlocal!

Another lemma is needed:

Restriction Lemma:
Take subsystem code with gauge group G and distance d.
Consider any subset M. Consider code G),. Either

(1) Gas has no logical qubits or

(2yet;, > d—[9M]



Application

1D subsystem code with gauge group G and distance d. Prove d = O(1).
1. Let M be the smallest contiguous region such that G;; has a qubit.
2. Restriction Lemma implies that d' =dg,, > d — O(1).

3. Assume that d’ > ¢ for some constant ¢ and get a contradiction =

4. Thus d’ < ¢ and hence d < O(1).

L. Ed > e then |M| > e Find smallest blue region M with qubit

and so if ¢ i1s large enough. we can

\

clean out an inner-region of M. Clean out red region

We get logical operator P’ = Pieg Pright
\ 4

2. P, € N(G) individually Logical qubit on either Left or Right (or both)

and it cannot be that both P, € G

Left Right
3. = region smaller than M with a logical qubit.

Contradiction! = d' < c.
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Lots of 7+ Open Problems

e Prove that distance scales as O(L) for 3D
stabilizer codes or show counterexamples.

e Prove that the energy barrier is O(1) for 2D
subsystem codes (or show counterexamples)

e Bound energy barrier for bestlogical qubit for
2D stabilizer codes.

e Give evidence/proof for self-correction
properties of 3D subsystem codes. What are
sufficient conditions for self-correction?

e Can we compute with such subsystem
codes...? (like doing Clifford gates on surface
codes by moving holes)
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