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Abstract: In an asymptotically anti-de Sitter space, three-dimensional topologically massive gravity has some remarkable properties, which suggest
interesting applications to quantum gravity. Unfortunately, though, the theory appears to be unstable, even at the specia \'chiral\' value of the
coupling. I will discuss recent work, and recent controversies, in thisfield.
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OF-....

A Eulogy for
Topologically Massive AdS Gravity

(probably)



Why Three-Dimensional Gravity?

e Classically exactly soluble
e Finite number of degrees of freedom
e Good model for concepiual issues (observables, “problem of time,” etc.)

e Interesting black holes

e Interesting playground for AdS/CFT correspondence
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Why Not Three-Dimensional Gravity?

e Classically exactly soluble
e Finite number of degrees of freedom

e Problems with sum over topologies and AdS/CFT correspondence

Cosmological constant A = —1 /£2

Sum over all asymptotically AdS manifolds with fixed boundary data

Witten, Maloney, Manschot: Result doesn’t look like a GFT partition function
(unless you sum over two chiral sectors separately—but why?)
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Topologically Massive AdS Gravity
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Field equations:
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where Cuy = €(,”7 V| 5G4 is the Cotton tensor.

— Third-order equations of motion
— Solutions include all “pure gravity” solutions, including BTZ black hole

— But also local propagating modes
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Danger sign:

Gnewion > 0 => propagating modes have negative energy

— With no cosmological constant, just take G < 0:
no propagating modes in Einstein gravity, so this is OK (probably...)
— With A < 0, taking G < 0 = BTZ black holes have negative mass

Li, Song, and Strominger: problem may go away at “chiral” coupling € = +1

At this coupling, asymptotic Virasoro algebra is chiral, cancellations appear.. ..
Does this work?
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Why chiral coupling might be nice

1. Asymptotic symmeiries:
Asymptotic symmeiries in AdS3 consist of two Virasoro algebras

Kraus and Larsen, Solodhukin: ceniral charges are

3£ 1
= oy (1 = E)
= at uf = +1, a larger group of diffeos extends to infinity

2. Perturbation theory:
Then the weak field equations (in harmonic gauge) are
(DD D™R),,.,, =0
—at pf = +1, DM = D=; “massive graviton” disappears

Grumiller and Johannson: new mode with (D7)%h = 0but DTh # 0
But asymptotically ~ In z: AdS but not Fefferman-Graham
Giribet, Kleban, Porrati: descendants of new mode can be Fefferman-Graham
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Constraint Analysis

Constraints are complicated—third derivatives, second class constraints, etc.
—but can reveal physical degrees of freedom

First-order form: e® = e®ydz#, wq = %fabﬂwbcpd:n“

1 | 1 | | 1
Icy = e / e® A (dwﬂ - Eeabcwb A\ mc) = Ee—zeabceﬂ A e A e°

1 | a 1 b c) |
IG,S: lm/ w A dwa—}—éﬁﬂbﬂw N\ w J

1 a b c|
IWG:IE_HﬁL;—LIGSij.S A {de&—{—eabﬂw N\ e”|

- |
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New connection A% = w® + ue?®

1 r |
Irvue = ;ICS{A] + f s (DAEG, — pegpee’ A ec) — cegpee®ele’|

with a = é (u2 — E]f?)
Diagonalizes Poisson brackets:
L
{AﬂieAbj} = Eﬂabfije {E“ieﬁb;‘} = 0%,

Primary constraints:

2 i B b
Jﬂ. — —;EEJ (Fﬂij % Eeabﬂ_ﬁ ,_:E.Cj)
Ba = —e¥ (Diga-j — Zﬂﬁabcabiecj = 3aeabcebiecj)
Ty = —e?? (Dieaj — peﬂbcebiecj)

Secondary constraint:
A =" 3e;:;
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Degrees of freedom

Six first class constraints: J2, B

Four second class constraints: T2, A

= 18 — 2 X 6 — 4 = 2 phase space degrees of freedom
(independent of couplings)

J2, B? generate local Lorentz transformations, diffeomorphisms
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Asymptotic symmeiries

Near AdS boundary

ds® ~ £2dp® + e*P(£*dy? — dit?)
Asymptotic diffeos parametrized by functions f(¢ + t/£), f(¢ — t/£)
Diagonalize commutators of constraints:

Lolel = Blel + (n £ ) i

Find pair of Virasoro algebras with central charges

3¢ (l-l_— 1)
c+ = =
=" 2@ pl

and classical conformal weights

s : ! L
Qule] = (1 + ;E) Q5]

Chiral coupling u€ = =1 is interesting, but no jump in degrees of freedom
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Perturbative Analysis

Background AdS, units £ = 1; Poincareé coordinate patch

1 i
L gy — 2
ds —22(24:1;1: dx +d.z)
ds® = ds*® + hyydxtdz”

Various gauge choices:
light front: A, =0
Fefferman-Graham: Ay, = 0

Light front: one independent degree of freedom ¢ = z2h_ . with action
1 ——tiF 1
I = = fdgmv"—g g'" 8,p8up + m?p with m? = (up +2)% — 1

Single scalar field!
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Gauge-Invariant description:

Let

Huv = |Gur — guv| Fr—

[ | 3\ | 1
20, 0_ + 33 — 2 (Mpu2 + Z) (E

Find

“scalar” fields with a mass depending on chirality:

component mass?

Hiy (r—2)% -1
Hi- (p—1)%—1
H+—1sz “2 —1
o (1) =1
H—  (r+2)2-1

Pirsa: 08100023

H“y) — 0

Page 17/23



p = +1 = one of these masses is m? = —1:
Breitenlohner-Freedman bound, allowed for a scalar.

What about curvature asymptotics?

component asympioticsnearz =0 p = 1 case

o zh—1 z2
H_;_z zH Z
Hy ,H-- zH+1 z2
H zH+2 23
j 5 zH+3 z4

But additional boundary at z — oc
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Wave packets

Denote h, , = h.
Inner product

(hi, ho) = —ié dxdz 33(h1§th;)

Orthonormal modes A, b7,

=

w1

h tkx—EL

Jyui2(wz)e with E = x,—*fu.:r2 + k2

= I VarEz
h= [ dwdk [a(w, k) + a”(o, WAL

(h,h) = [dwdk :a(m, k)? — a*(w, k)2:
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; .
' /dwdmjkz + w?la(w, k)[2
G

16

2~ S

Start with arbitrary local initial data for h, with finite energy and compact support.
Data propagates like scalar field, reaches AdS boundary in finite time.

=> instability.

Next possible loophole: light front gauge is nonlocal;
maybe other componenis of h are bad.

To see, look at Fefferman-Graham gauge.
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Let

22289.8_ + (28, +2)2| X =0

hyy = —28%(28; +2)X
h, =28,8_(z8,+2)X
h = —28%(z8; —2)X

h+r =hz; =0

Then these h,, satisfy the linearized field equations
for topologically massive AdS gravity with . = 1.

{Y(:z:, z), Y (2, z"')} = —4AThGzé(xz — z')é(z — 2')
with ¥ = 28:(28: + 2)*X

Note: X = ;—319 where ¢ is an AdS scalar with m2 = —1
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Start with initial data for X with compact support
Finite (negative) energy — nothing to diverge

1
22
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Greens function calculation (preliminary): at boundary, generically h___ ~



Open questions/loopholes

— How does chiral boundary show up in bulk?
At boundary, T'__ = 0: bulk calculation is hard. ..
Deser and Tekin: background Killing vector € — £* + ﬁe“p"ﬁ'p&g
gives chiral structure for p = £+1

— “Outside in”: Fefferman-Graham expansion near boundary
Solodhukin: lowest order equation for @-h__ disappears at chiral coupling
Higher order equations of motion?

— Last chance for theory:
Linearization instability? (May need to look at next order: hard!)
Lower bound on energy?

— What about A = 07 Topological instability?
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