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Abstract: The underlying motivation for rejecting Everett\'s many-worlds interpretation of quantum mechanics and instead exploring single-world
interpretations is to make physical theory concordant with human experience. From this perspective, the wave function collapse and Bohm-de
Broglie interpretations are anthropocentric in origin. But this does not lessen their importance. Indeed accounting for our human experience of the
physical world is a key element of any physical theory. Thisis no less true for the theory of time where accounting for the anthropocentric notion of
a unidirectional flow of time is a challenge. In this talk we examine a peculiar time asymmetry that may shed some light on this problem.The
matter-antimatter arrow of time, which is associated with the weak force in neutral Kaon decay, has been an enigma for 40 years. While other
arrows (cosmological, electromagnetic, thermodynamic and psychological) have been linked together, the matter-antimatter arrow stands alone. It is
often regarded as having a negligible effect on time in our daily lives. The main reason for this view appears to be the relatively small violation of
the Charge-Parity conjugation invariance (CP) involved. However the smallness of the violation is not necessarily an obstacle to the manifestation
of macroscopic effects. For example, a small difference in a quantum-state fidelity for a single particle leads to a difference which grows
exponentially with the number of particles. So provided sufficient numbers of particles are involved such a violation could yield significant
effects.We examine the effect of the violation of CP invariance on the dynamics of alarge system such as the universe. Provided the CPT theorem
holds, the CP violation is equivalent to a violation of time reversal invariance (T). We impose the constraint that the violation should equivalent in
both directions of time (past and future) with respect to the present. Thisimpliesthat if H is the Hamiltonian for one direction of time, then THT the
Hamiltonian for the opposite direction. We will see that any given quantum state a> that represents the present of our part of the universeis closer to
its evolved state a+> in the future compared to its retro evolved state a-> in the past. In other words, our present state is more likely to be extended
(slightly) into the future than the past. We will see that the end result is a never-ending extension of the present into the future. Moreover for a
collection of amillion neutral kaons, the fidelity between the present state and a slightly future-evolved state is a billion times larger than the fidelity
between the present and an equivaent retro-evolved state. In this context, the seemingly insignificant kaons appear to be responsible for our
anthropocentric view of moving through time.
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Framework for a Physical Theory

| ® needs to be free of anthropocentricism — Huw Price

= but it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa osogepflitary evolution orthogonal worlds remain orthogonal). page 7/120




[[is] Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

= put it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum world

= The "present time” is like "a single world” in Everett's Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa oot itary evolution orthogonal worlds remain orthogonal). Page 8/120




sl Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  put it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa oot itary evolution orthogonal worlds remain orthogonal). Page 9/120




[[is] Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

= hut it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa oot itary evolution orthogonal worlds remain orthogonal). Page 10/120




sl Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  hut it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa osogepfiitary evolution orthogonal worlds remain orthogonal). Page 11/120




[[is] Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  hut it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa osogebftitary evolution orthogonal worlds remain orthogonal). Page 12/120




[[is] Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  hut it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa ool itary evolution orthogonal worlds remain orthogonal). Page 13/120




[} Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  but it must also give an explanation of our human experience (of a
single gquantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single worild” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa ool itary evolution orthogonal worlds remain orthogonal). Page 14/120




[l Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  but it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa oot itary evolution orthogonal worlds remain orthogonal). Page 15/120




[l Tinvariance Violation Past, Present & Future States Mesons

Framework for a Physical Theory

= needs to be free of anthropocentricism — Huw Price

=  hut it must also give an explanation of our human experience (of a
single quantum world, of our perception of time ...)

Subjectivity of perception of time

= The "present” in time is like “here” is space.
“here” and "now” are not special in Physics
they are anthropocentric concepts

Compare with the illusion of a single quantum worid

= The "present time” is like "a single world” in Everett’'s Many
Worlds. Both are subjective.

= The illusion of a single world is predicted in Many Worlds (under
rrsa ool itary evolution orthogonal worlds remain orthogonal). Page 16/120




sl Tinvariance Violation Past, Present & Future States Mesons

Bohmian mechanics

=  Realistic explanation of a single quantum worid
i.e. this gives Bohmian mechanics an anthropocentric basis

C

there’s nothing wrong with dying Bohmian
mechanics (& no need to meet out the back...)

- this is my justification for studying the physical origin
of perception of time i.e. the illusion that

past < present < future

Is a continuous (connected) sequence
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Arrows of time
=  Emerge from phenomenological time asymmetric dynamics

past _ future
big bang logical | %;i]v?enrg:e“g
excited atom O spontaneous
""" emission
low entropy g]nﬁﬁ"g

e

memory of no memory of
the past the future
balance of excess of
matter & matter

antimatier
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= Two types of asymmetry:
(i) special boundary conditions, or
(i) time asymmetric dynamics & Hamiltonian

* (i) Asymmetric Boundary Conditions:

= cosmological model with initial condition
OBl | that drives expansion —> time asymmetry

closed | S —— ——————

t basis of cosmological arrow
bang crunc p-————— =

retarded radiation is dominant in expanding basis of _
universe electromagnetic arrow

=
Pegg, Nature phys. Sci. 243 143 (1973)

Related arrows:

cosmological

clectromagneliC arrow
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—ﬁ.—\:‘%__ - E
H matter-ez¢ atter >

SERE .
The matter-antimatter arrow
- due to a small (0.2%) violation of CP & T invariance in neutral Kaon deca
- discovered in 1964 by Cronin & Fitch PRL 13 138 (1964).

- partially accounts for observed dominance of matter over antimatter.
- more recent work with B mesons give larger violation

- doesn't appear to directly affect our sense of time or everyday life.

(if) Time asymmetric dynamics & Hamiltonian

m  consider relative quantum fidelities: ( g} =00 ]
single particle N particles
- ol 2 \N
T<II/ ‘”b“‘dS”}_ Y _4‘513 é.’.w‘”b“‘ds"_'f | 1) _4—\;[5@1
(]t oy |

A BIG EFFECT !
= meson decay could have a significant effect on everyday life !
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Rest of talk

Violation of Time Reversal Invariance

= what does the violation mean without an external time?

= how can a time asymmetric Hamiltonian be incorporated in an
unbiased way?

s WP W
D 1@ & - |©
The "Present” State with Past & Future

= use other time asymmetric systems as a guide NOwW

= present state has overlap with both future t . FUTURE
and past states 4§ / "

=31

Mesons - T non-invariance X TR
= physical parameters %

~—5

—
=
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-
=1
=

—
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Intro T invariance Violation

Violation of time reversal (T) invariance
Wigner, Group theory(1959)

Wigner's motional time reversal
w(r)) T |y(r);
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System is time reversal invariant if

E(T'(r)f] \l//(r):} =y(t—7)) forall

.e. THT =H
/ particle <> antiparticle
CPT theorem C = charge conjugation :’: g :::
P = parity inversion - &> —
T = time reversal - )
b r n \ p H —p
CPT=1 andso CP=T L <-L

= Discovery of CP invariance violation in 1964 in K° meson decay.
- implies T invariance violated (more details about Kaons later)
=  CPT invariance implies that the Hamiltonian is Hermitian

Pirsa: 08090077 Page 42/120




Intro T invariance Violation Past, Present & Future States Mesons

System is time reversal invariant if

[f(f*( r)f] \y/(_r)} =y(t—7)) forall

€. THT =H
/ particle <> antiparticle
CPT theorem C = charge conjugation :‘:‘ g :;::
P = parity inversion = ok - > —
T = time reversal - =
il 3 | \ p H _p
CPT=1 andso CP=T L <-L

= Discovery of CP invariance violation in 1964 in K° meson decay.
- implies T invariance violated (more details about Kaons later)
=  CPT invariance implies that the Hamiltonian is Hermitian
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Intro
Irreversible systems under time reversal

= Consider a gas whose macrostate is knownonly at £= 0
gas is in an unlikely macrostate at = 0,

entropy increases with 7 and —/.

m!l'ttrop)r"|L
more likely more likely
t=0F
—_————
loss of information loss of information
-£ > f

h »0 ﬁe\ro =

evolve |
— macrostate is known only at £=0

direction of evolution is the direction of information |oss
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Intro T invariance Violation

= Open quantum system under time reversal
Stenholm & Jakob, Ann. Phys. 310, 106 (2004)

) z revgsal ( damping into future)

—p(r)—L[,o(r)] %p(r)=.ﬁ.[p(r)]
3
f,ﬁL—-TLT- p=Tpl

time reversed

(damping Into past

Louivillian
someth'mg.ﬁ:.’/\“‘ state p is known only at £=0
past future
loss of information - .
e loss of ;Inf{) rmation
—F _;
I evolve W
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= Open quantum system under time reversal
Stenholm & Jakob, Ann. Phys. 310, 106 (2004)

) Treé\r;sal ( damping into future)
%ﬁ(r):fb(r)] %p(f)=.£,[p(f)]
C ™ o 9

__,f-f;__',....r i ——0FTF —p——JgF

=l

time reversed

(damping Into past

Louivillian
something /~ - state p isknownonly at £=0
past future
loss of information - :
" loss of ;Inf{) rmation
—F —t
l evolve W
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Intro T invariance Violation Past, Present & Future States Mesons

T Iinvariance violation in absence of external time

= | et the Universe be in state “P) at some moment — the “present”
NOTE: we have no info. about the history

* Q? What is the unitary time evolution of ‘P in the absence
* of an external time parameter?

= CP violation indicates a preferred direction of time (like damping in
open systems)
To avoid putting in a preferred direction we set:

(CP violation into PAST) = (CP violation into FUTURE)

CP,

e
CP violation into past

-
CP violation into future

=
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T Invariance violation in absence of external time

= | et the Universe be in state “P) at some moment - the “present”
NOTE: we have no info. about the history

* Q? What is the unitary time evolution of |V} in the absence
* of an external time parameter?
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T Invariance violation in absence of external time

= | et the Universe be in state “P) at some moment - the “present”
NOTE: we have no info. about the history

* Q? What is the unitary time evolution of ‘Ff in the absence
* of an external time parameter?

= CP violation indicates a preferred direction of time (like damping in
open systems)
To avoid putting in a preferred direction we set:

(CP violation into PAST) = (CP violation into FUTURE)
{ CP-HCP 1
CP violation into past
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* Q? What is the unitary time evolution of ‘P in the absence
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Intro T invariance Violation Mesons
Past, Present & Future State

Canonical quantum gravity

=  Wheeler-DeWitt equation for closed Universe
minimal energy excitation requires it to be the ground state

H|E,}=0
David Pegg’s formalism Pegg, J.Phys. A 24 3031 (1991)
e—FH_\ e—f’HA —EBT_\.
'> o '¢h _[_‘,?51 | ¢, ¥ ¢5 History Vector
il e L =l totality of physical reality

lg.) <1+ | + = Do
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Canonical quantum gravity
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Canonical quantum gravity
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Intro T invariance Violation Past. Present & Future States Mesons

= Finite duration of measurements mean any estimate of the state of B
extends into the future and past according to the Clock

* o
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Canonical quantum gravity
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= Finite duration of measurements mean any estimate of the state of B
extends into the future and past according to the Clock
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= Finite duration of measurements mean any estimate of the state of B
extends into the future and past according to the Clock
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\|2
: = ¥ now ‘Wft[ture f.}
: 2
Iz |_—fo}'? )
= [\¥now |€ ‘Wﬂﬂw /
= probability of now
being in future state
‘Wnow> s — I 1.1'2
_PAST \ AN ow !,--' = [ WIIDW l wpﬂﬂ _J!:
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e | Sl
\J\{f '?9"'}\ | iT-HTtlh \;
/_f \ T i Y now “' ‘Wllﬂﬁ' /
e g = probability of now
. e 8 being in past state
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= probability of now
being in future state
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MeSONS - neutral K mesons

Physical parameters

MeV
mass =, 498 (= Lm 2
_ c™ -
lifetimes 5°8 9 0x10 2 g (decay to all modes)
= 5.1x107° s

bare state picture dressed state picture
weak interaction TCP =)
Q=52 10" rads™ 3 T —

“overdamped

& | — —E{:]

e & . ; St ~—
irsa: 08090077 cmnh & H‘th PRLQ Eaf Eilgo )
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MeSONS - neutral K mesons

Physical parameters

~o MeV
Mass meo =Mes = 498 (= Lm )
il c™ s
lifetimes o 90x10 11 g (decay to all modes)
= = 5.1x107° s
bare state picture dressed state picture
weak interaction TCP =1
Q=52:10' rads™ " g —
_ ~  Toverdamped Ky — JI AR
KU e— T— KU > X CP~=1
| St &0 o
= S

v.e .7 . = & il
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MeSONS - neutral K mesons
Physical parameters

- = C =
mass me o =Mes -lll)g C: (=5m,)
lifetimes K” =90x10 (decay to all modes)
TKE =5.1x107° s

bare state picture dressed state picture
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MeSONS - neutral K mesons
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MeSONS - neutral K mesons

Physical parameters e
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MeSONS - neutral K mesons

Physical parameters e
mass M o =My = 498 (= %m'p )
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Unitary model Datta et al. PLA 130, 187 (1988)
U|K®) =~ |KD)e™ +|g,(D)
)K?)z11+5;K0"">t{1—5.f‘jl‘ £=23-10"°
5 /
- () 0
= L
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() i i L0 e mme e s —— I
rK{} — = 600 T. 0
o rﬁ‘:ﬂ AE
b~ S i
S

we work in this region
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Unitary model Datta et al. PLA 130, 187 (1988)
U|K*) =KD )e™ +|g,(1))

K£>'Iil—|—.€l
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KVl xS =—Tag’

i
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we work in this region
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Unitary model Datta et al. PLA 130, 187 (1988)
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Unitary model Datta et al. PLA 130, 187 (1988)
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Unitary model Datta et al. PLA 130, 187 (1988)
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Unitary model Datta et al. PLA 130, 187 (1988)
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Intro T invariance Violation Past, Present & Future States
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