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Abstract: A brief review of the Two State Vector Formalism (TSVF) will be presented. It will be argued that we need to consider also backwards
evolving quantum state because information given by forwards evolving quantum states is not complete. Both past and future measurements are
required for providing complete information about quantum systems. Peculiar properties of pre- and post-selected quantum systems which can be
efficiently analyzed in the framework of the TSV F and which can be observed using weak measurements will be described. An exampleis a particle
reaching a certain location without being on the path that leads to and from this location. An extension of the TSVF to multiple space-time points
will be discussed.
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Are there any differences between what can be done to and ‘ ‘{—’;:
Nondemolition (von Neumann) measurements No
Unitary transformation No
No cloning theorem No

Teleportation

Nonlocal nondemolition measurements
Aharonov, Albert, and Vaidman, PRD 34, 1805 (1386)

Nonlocal demolition measurements iy
Vaidman. PRL 90, 010402 (2003)
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The two-state vector is a complete description of a system attime ¢
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Measurements performed on a pre- and post-selected system
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The 3'boxes paradox Aharonov and Vaidman, JEA 24, 2315 (1921

n Found Phys 29 865 (1999)
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A single photon “sees” two balls

Aharonov and Vaidman PR A &7, 042107 (20
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Any weak coupling “feels” two balls

Experimental realization of the
quantum box problem
[ | - K. J. Resch et al. PLA 324 125 (2004)
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The outcomes of weak measurements are weak values

Neak value of a variable C of a pre- and post-selected system
described at time ? by the two-state vector (®| 'V
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Weak measurement of (' with post-selection
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The outcomes of weak measurements are weak values

Neak value of a variable C of a pre- and post-selected system
described at time f by the two-state vector (©| |V
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The outcomes of weak measurements are weak values
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The outcomes of weak measurements are weak values

Weak value of a variable C of a pre- and post-selected system
described at time t by the two-state vector (®| |V
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The outcomes of weak measurements are weak values

Weak value of a variable C of a pre- and post-selected system
described at time t by the two-state vector (@D | |V
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The outcomes of weak measurements are weak values

Weak value of a variable C of a pre- and post-selected system
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The outcomes of weak measurements are weak values
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Science 8 February 2008: Amplifying a Tiny Optical Effect
K. J. Resch
“In the first work on weak measurement (AAV). it was speculated that the

technique could be useful in amplifying and measuring small effects. Now. 20
years later. this potential has finally been realized.”

Observation of the Spin Hall Effect of Light via Weak Measurements
Q. Hosten and P. Kwiat
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Counterfactual Computation:
FINDING THE RESULT OF A COMPUTATION
WITHOUT RUNNING THE COMPUTER

or

Where is the pre- and post-selected particle?
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Where Is the Quantum Particle between Two Measurements”®
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Mach-Zehnder Interferometer
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Mach-Zehnder Interferometer
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Interaction-free measurement A Eibrw st L. Vi

Found. Phys. 23. 987 (1993) .

explodes when any particle “touches™ it
SUPER MINE :

interacts only through explosion
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Interaction-free measurement A Eibos st ). \asdinan

Found. Phys. 23,987 (1993) .

explodes when any particle “touches it
SUPER MINE :

interacts only through explosion
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Interaction-free measurement A Eibrs st ). Naidenan

Found. Phys. 23. 987 (1993) .

explodes when any particle “touches’ it
SUPER MINE :

interacts only through explosion

HOW TO FIND THE SUPER MINE WITHOUT EXPLODING IT?
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Interaction-free measurement
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Interaction-free measurement
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Interaction-free measurement
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Jozsa, LNCS 1508, 103(198

Counterfactual Computatlon
FINDING THE RESULT OF A COMPUTATION

9
@ WITHOUT RUNNING THE COMPUTER
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Jozsa, LNCS 1508, 103(198

- Counterfactual Computatlon
M FINDING THE RESULT OF A COMPUTATION
@ WITHOUT RUNNING THE COMPUTER

Computer is “running” = a photon passes through
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Counterfactual Computatlon
FINDING THE RESULT OF A COMPUTATION

WITHOUT RUNNING THE COMPUTER
Computer is “running” = a photon passes through

Qutcome “0" the photon is not disturbed
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Counterfactual Computatlon
FINDING THE RESULT OF A COMPUTATION

@ WITHOUT RUNNING THE COMPUTER

Computer is “running” = a photon passes through
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4 The computer calculates f which might be 1 or O

Qutcome “0" the photon is not disturbed =
| 3 0

Outcome “1” the photon is absorbed N\
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Counterfactual computation
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Counterfactual computation
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Counterfactual computation
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The outcome is 1. The
computer was not running
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Counterfactual computation

&

The ocutcome is 1. The
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Counterfactual computation
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Counterfactual computation
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Counterfactual computation
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Counterfactual computation

The outcome is 0. The computer v
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Counterfactual computation
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The outcome is 0. The computer was running
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Counterfactual computation only for one outcome

The outcome is 0. The computer w:
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Kwiat: Counterfactual computation for all outcomes is possible
Hosten....Kwiat. Nature 439, 949 ( 2006)
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Counterfactual computation
for outcome “0” is possible
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Simple Counterfactual Computation with Outcome (
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Simple Counterfactual Computation with Outcome C
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Simple Counterfactual Computation with Outcome C
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Simple Counterfactual Computation with Outcome C

F.

\

The outcome is 0.

The computer
vas not running!
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The Impossibility of the Counterfactual Computation for all
Possible Outcomes

L.Vaidman, PRL 98, 160403 (2007)
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Simple Counterfactual Computation with Outcome C
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Simple Counterfactual Computation with Outcome C
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Kwiat’s scheme = 3-boxes paradox
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Kwiat’s scheme = 3-boxes paradox
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Kwiat’s scheme = 3-boxes paradox
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Kwiat’s scheme = 3-boxes paradox

—({A4 |+ (B |- (C |)
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Kwiat’s sche -boxes paradox
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Kwiat’s scheme = 3-boxes paradox
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Simple Counterfactual Computation with Outcome C
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Where is the pre- and post-selected particle?
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Where is the pre- and post-selected particle?
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Where is the pre- and post-selected particle?
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Where is the pre- and post-selected particle?
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Bohr: Does not ask this question!
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Where is the pre- and post-selected particle?
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Bohr: Does not ask this gqeestion!
Bohm: As Kwiat claims.
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Where is the pre- and post-selected particle?
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Bohr: Does not ask this question!
Bohm: As Kwiat claims.
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Weak measurements
TWo=State Vector Formalism
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Where is the pre- e*nd post-selected particle?

The particle did not enter
the interferometer. the

particle never left the
interferometer. butitwas =
there! 1
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Bohr: Does not ask this question!
Bohm: As Kwiat claims.

Weak measurements
TWo=State Vector Formalism
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When the worlds split?
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A world consist of:
«"classical” macroscopic objects rapidly measured by the environment.
» quantum objects measured only occasionally (at world splitting events)

— b —_— e - 1 — —

e Weakly coupled quantum objects
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Forward evolving branch of the universal wave function
does not describe all we should know about a world.
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Conclusions

The TSV is a complete description of pre- and post-selected

quantum systems in which forwards and backwards evolving
states enter on equal footing.

Any system coupled weakly enough to pre- and post-selected
quantum system “feels” weak values of guantum observables

Weak measurement procedure is an amplification scheme for
observation of tiny effects

“Weak reality” leads to a modification of the branching picture of
the MWI -

The TSVF is another way to look at standard quantum mechanics,
but it provides a convenient framework for its modification.
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